SUPPORTING INFORMATION

Temperature dependence of water contact angle on Teflon AF1600

Yijie Xiang,* Paul Fulmek, Daniel Platz, and Ulrich Schmid*

Institute of Sensor and Actuator Systems, Vienna University of Technology, Vienna, 1040, Austria

E-mail: yijie.xiang@tuwien.ac.at; ulrich.e366.schmid@tuwien.ac.at

Contents

Comparison of FTIR results	2
Derivation of the Eq. (3) and the calculation of A_m	3

Comparison of FTIR results

Figure S1: The FTIR spectra of Teflon AF1600 with two baking steps (in violet) and with three baking steps (in blue). The peaks at $2000 \sim 1500 \text{cm}^{-1}$ and $\sim 2300 \text{ cm}^{-1}$ indicate water and carbon dioxide inside the measurement chamber, respectively. In the interesting wavenumber range between 1500 to 500 cm⁻¹ for Teflon AF1600, no differences have been found between both spectra within the measurement accuracy.

Derivation of the Eq. (3) and the calculation of A_m

An expression based on the Gibbs adsorption equation has been presented by *Extrand*¹ to characterize the energy change of the solid-liquid interface between advancing and receding WCA. We use the same expression to describe the energy change during the evaporation process, from the initial WCA to the stabilized WCA: $\Delta g = -(\frac{RT}{A_m}) \ln \frac{\sin \theta_{\text{sta}}}{\sin \theta_{\text{init}}}$. The A_m is the molar surface area of solid surface and calculated by:

$$A_m = \left(\frac{M_0}{\rho}\right)^{2/3} N^{1/3}.$$
 (1)

In our case, the solid material is Teflon AF1600. The A_m of Teflon AF1600 is 192 436.08 m²/mol, calculated with the Avogadro constant $N = 6.022 \cdot 10^{23} \text{mol}^{-1}$, the density $\rho = 1.78 \text{ g/mL}$, and the monomer weight M_0 , given by the components 4,5-difluor-2,2-bis-47(trifluormethyl)-1,3dioxol (PDD, 244.04 g/mol, 65 mol%) and tetrafluorethylen (TFE, 100.02 g/mol, 35 mol%), $M_0 = 193.63 \text{ g/mol}.$

A short derivation of the expression Δg achieved by *Extrand* is introduced in the following, and more details can be found in the original paper. The Gibbs adsorption equation relates the surface free energy g of the solid to its chemical potential μ_s :

$$-\mathrm{d}g = \frac{1}{A_m} \mathrm{d}\mu_s. \tag{2}$$

At the solid-liquid interface, the chemical potential change of the liquid-molecules adsorbed onto the solid μ_s is equal to that of the liquid droplet μ_l :

$$d\mu_s = d\mu_l = RT d(\ln p_l) \tag{3}$$

where R is the ideal gas constant, T is the absolute temperature and p_l is the pressure across the liquid interface. The Δg between the solid states with initial WCA and the stabilized WCA can be therefore written by combining Eq. 2 and Eq. 3 as:

$$\Delta g = g^{sta} - g^{init} = -\frac{RT}{A_m} \ln \frac{p_l^{sta}}{p_l^{init}}.$$
(4)

 p_l^{sta} and p_l^{init} can be calculated by Young-Laplace pressure,²

$$p_l = \gamma_{\rm la} \cdot \frac{2}{r},\tag{5}$$

with the radius r of the liquid droplet. Assuming a spherical cap shape of the small droplet in our case (r = 1 mm), r can be written as

$$r = \frac{x}{\sin \theta},\tag{6}$$

where x is the contact area radius. In the CCR regime, the triple-line is pinned, so that the contact area radius x is constant, while the WCA decreases from the initial WCA to the stabilized WCA. Plugging Eq. 5 and Eq. 6 into Eq. 4 gives the final equation.

$$\Delta g = -\left(\frac{RT}{A_m}\right) \ln \frac{\sin \theta_{\rm sta}}{\sin \theta_{\rm init}} \tag{7}$$

References

- Extrand, C. A thermodynamic model for contact angle hysteresis. Journal of Colloid and interface Science 1998, 207, 11–19.
- (2) Brochard-Wyart, F.; Quéré, D. Capillarity and wetting phenomena: drops, bubbles, pearls, waves; Springer, 2004.