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a)

c)

d)

I. SUPPLEMENTARY FIGURES

Figure S1: a) Plan of the Barrington A, Edix Hill, archaeological site with a map of the surrounding
area (based on Malim and Hines 1998, various figures, redrawn by Vicki Herring for the After the
Plague project). The grave from which EDI064 was excavated is marked in red. b) Skeletal record
form for the juvenile individual EDI064. Graphical representation of the skeletal inventory (areas
shaded in grey were not recovered from the grave). c) Right patella of EDI064 that is ankylosed to
the anterosuperior aspect of the right distal femoral epiphysis (inferior view). Photograph by J.

Dittmar. d) Image of the left calcaneus with region of periosteal new bone on the medial portion of
the calcaneal tuberocity. Photograph by S. Inskip. e) Right distal femoral epiphysis with cortical

defects. Photograph by S. Inskip.

b)

e)
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a)

b)

Figure S2: X-rays of the ankylosed right patella (Fig. S1c): a) Inferior view of the
distal right epiphysis of the right femur with patella; b) Plain X-ray showing the
lateral view of the distal epiphysis of the right femur with patella fused on to the

anterior superior margin. X-rays taken by S. Inskip at Leicester University.
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Figure S3: Non-competitive comparative mappings for the final reference sequence and
reference sequences for each serotype (a-f). Plots on the left show coverage across the
genome, plots on the right depict 5pCtoT deamination signatures (calculated using

mapDamage2) and a histogram of read edit distances (-n0.1, MQ>0).
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Figure S4: Full version of the clustermap presented in Fig. 3 in the main manuscript. Clusters
for Hie and Hif are not collapsed. The clustermap has been generated based on coverage
values in virulence-associated gene intervals for typable genomes using seaborn. Clusters

were calculated based on cosine distance.
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Gene: Hypothetical Protein
SNP: 515,167 (Insertion; C>CA)
Predicated Effect: frameshift variant

Gene: YfcZ/YiiS
SNP: 776,614 (A>G)
Predicated Effect: start lost

Gene: msbA
SNP: 890,935 (Insertion; G>GA)
Predicated Effect: frameshift variant

Gene: LysE
SNP: 979,089 (G>A)
Predicated Effect: stop gained

Gene: pepT
SNP: 1,295,975 (A>G)
Predicated Effect: start lost

Gene: MBL fold metallo-hydrolase
SNP: 1,490,685 (Deletion; TG>T)
Predicated Effect: frameshift variant

Figure S5: HI-EDI064 SNPs with predicted high effect and coverage above 1X (Min DP2,
80%ALT allele) (SNPeff analysis on NCTC8468 mapping, MQ>30). Read alignments were

visualised in Geneious Prime (2020.0.4) [79].
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Figure S6: mapDamage2 plots of our mapping to the Yersinia pestis reference genome CO92
(-n 0.1; MQ>30) for the EDI064 sequencing data (nonUDG-shotgun and fullUDG-capture

merged).
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EDI001

Y. pestis Chromosome pos. 2352174

YP-EDI064

EDI001

Y. pestis Chromosome pos. 2801707

YP-EDI064

EDI001

Y. pestis Chromosome pos. 1489055

Figure S7: Screenshots of EDI064 (upper panel) and EDI001 (lower panel) reads
mapped to the Yersinia pestis reference genome CO92 in IGV [142]: a) positions
1489055 and 2352174 for which EDI064 shows a reference call, potentially due to

mapping of non-Y. pestis reads; b) position 2801707 with the unique SNP of EDI001,
which defines its short branch, present in a single read in EDI064.

a)

b)
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Figure S8: Coverage plots (left) and diagrams showing edit distance and damage pattern (right) for
the chromosome, pCD1, pMT1 and pPCP1 using our EDI064 sequencing data (nonUDG-shotgun
and fullUDG-capture merged). Data was mapped to the Yersinia pestis reference genome CO92 (-n

0.1; filter MQ>30 was applied, repeated section of the plasmids show no coverage).
See Methods for details about data processing.
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Figure S9: Radiocarbon date for the individual EDI064, calibrated with
IntCal20 in OxCal v4.4.4.



11

Figure S10: Analysis of calculus sample RN4
from Eerkens et al. 2018.

a) Non-competitive comparative mappings to
reference genome for closely related species
and serotype a-f. Plots on the left show
coverage across the genome, plots on the right
depict 5pCtoT deamination signatures
(calculated using mapDamage2) and a
histogram of read edit distances (-n0.1,
MQ>0). The best matching mapping is
marked in green.

b) Relative abundance plot for species of the
genus Haemophilus for which reads were
identified using KrakenUniq (for E-value see
methods); generated using plotly.
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Figure S11: Competitive mapping to the antibiotic resistance reference (see methods). Plots on the
left show coverage across the genome, plots on the right depict deamination signatures on the right

axis (calculated using mapDamage2) and a histogram of read edit distances.



II. SUPPLEMENTARY TEXT

1. The potential role of Y. pestis as enhancer for pre-existing or
opportunistic bacterial infections (Marcel Keller):

Co-infections of Y. pestis with other bacteria are scarcely reported in the scientific literature for multiple
reasons. Today, Y. pestis outbreaks are more restricted to regions with limited medical capacity for
large-scale testing; resources might even be more limited in cases of epidemics [58]. Moreover, the rapid
treatment of suspected or confirmed Y. pestis infections with streptomycin will likely also suppress
pre-existing or acquired co-infections of a broad range of pathogenic bacteria (including H. influenzae; cf.
[59] and therefore impede their diagnosis. However, during the widespread plague pandemics from Late
Antiquity to the Early Modern Era, often affecting immunocompromised populations in the pre-antibiotic
era, pre-existing infections or opportunistic superinfections with other bacteria are to be expected.

In modern clinical literature, plague co-infections were described with multi-drug resistant
Stenotrophomonas maltophilia in a single patient [109] and Leptospira in an apparently mixed pneumonia
outbreak in the Democratic Republic of Congo [58]. Recently, palaeogenomic analyses also revealed a
pre-existing Treponema pallidum pertenue infection in a 15th-century plague victim [13]. A previous report
of a Bartonella quintana co-infection in a 15th-century plague burial from France [110] remains questionable
due to the alleged identification of a strain of biovar Orientalis, which arguably emerged in the 19th century
just prior to the Third Pandemic in Asia [111].

Considering that the first ancient Haemophilus influenzae serotype b genome happens to have be retrieved
from a plague victim, and the previously published T. pallidum pertenue co-infection, a pathogen so far
palaeogenomically identified only in two samples from Mexico [112,113] and one from Finland [114], was
as well, the question arises whether there is a higher chance of finding other pathogens in plague burials
compared to non-plague burials. To investigate this, we discuss three scenarios, which could explain the
seemingly increased detectability of other pathogens in plague victims: A) due to higher susceptibility for
plague in frail individuals with pre-existing health conditions; B) due to syndemic effects, i.e., synergistic
epi-/pandemic spread of two different pathogens in parallel; and C) due to facilitation of bacteremia in the
course of a plague co-infection.

Concerning scenario A, it remains a controversial topic in bioarchaeology whether plague was an
indiscriminate killer with respect to age, sex and frailty, or not [115]. Whereas some studies could show an
increased susceptibility for individuals with pre-existing health conditions [116,117], others could not
support that [118]. However, even studies showing increased rates of mortality for frail individuals during
plague epidemics when compared to their healthy demographic cohort, do not report more elevated mortality
rates than in non-epidemic circumstances [116]. Thus, plague burials might show a higher percentage of frail
individuals compared to the living population, but not when compared to attritional cemeteries. Therefore,
the likelihood of detecting other pathogens in plague burials does not seem to be elevated by epidemiological
factors.
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Syndemic effects, as outlined in scenario B, are unlikely to be responsible for the discussed co-infections,
since the T. pallidum pertenue case likely represents a chronic infection, responsible for periosteal lesions on
the skeleton [13], and Hib is expected to be endemic in ancient population. In contrast, plague causes
relatively short outbreaks with acute infections, therefore a synchronicity can hardly be established.
Syndemic effects are, therefore, more likely to be expected for other acute, epidemic diseases or health
conditions such as starvation during famines.

Scenario C, the facilitation of bacteremia of other bacterial pathogens through Y. pestis, will be discussed in
more detail in the following. Experimental studies concerning co-infections with Y. pestis are scarce, but the
immunomodulatory effects of Y. pestis especially in the first, pre-inflammatory phase are well-known [119].
As shown in a study using trans-complementation assays, the suppression of early innate immune response
in pneumonic plague can create a protective environment for microbial proliferation not only of Y. pestis
pCD1− mutants lacking the type three secretion system (T3SS), but also for other species like Klebsiella
pneumoniae [60]. Additionally, a Y. pestis mutant lacking the plasminogen activator pla could be
complemented by its wildtype strain. Remarkably, this trans-complementation for strains missing T3SS
could not be reproduced using wildtype Yersinia pseudotuberculosis and K. pneumoniae, hence we can
assume that this anti-inflammatory effect is specific to Y. pestis and was not inherited from its evolutionary
progenitor, Y. pseudotuberculosis. The T3SS is therefore necessary, but not sufficient for this
immunosuppression. Although the described trans-complementation was investigated in a pneumonic plague
model, the same immunomodulatory effects are expected in other manifestations of plague, which are also
characterized by a biphasic progression with a pre- and proinflammatory stage.

As shown by Price et al. [60], the immune suppression of Y. pestis can also facilitate proliferation of other
bacteria, and might therefore be relevant for co-infections such as the case presented here. This
immunosuppressive effect, not attributable to T3SS alone, might also be driven by the plasminogen activator
pla. Pla enhances the activation of plasminogen to plasmin directly but also indirectly, e.g. through the
inactivation of the PAI-1 (plasminogen activator inhibitor 1, [36], [37]). Plasmin is a serine protease that
cleaves fibrin and fibrinogen, excessive plasmin activity, therefore, supports the dissemination of Y. pestis
through fibrinolysis, which is essential for pneumonic plague [120], but also increases the bacterial load in
bubonic plague [121]. Thus, these mechanisms of innate immune system suppression could serve as a model
for Y. pestis’ function as an enhancer of pre-existing or opportunistic infections with other bacteria.

The plasminogen/plasmin homeostasis is, however, a target of many bacterial pathogens. Therefore, the
creation of a permissive environment could – depending on the bacterial species involved – be a reciprocal,
synergistic process. H. influenzae has been shown to acquire plasminogen with a plasminogen receptor,
cleaved to plasmin by the host-derived tissue-specific plasminogen activator (tPA). This bacterium-bound
plasmin activity occurs in both encapsulated and non-encapsulated strains and also facilitates the
dissemination of bacteria through damaging of tissue barriers [122,123].

As an opportunistic pathogen found in the nasopharynx of healthy individuals, H. influenzae requires at least
a transient bacteremic phase to establish infection foci in other body parts such as joints or the meninges
except for non-bacteremic pneumonia. However, once an infection is established, bacteremia can be cleared
or drop below diagnostic thresholds, as shown in experimental [124] and clinical studies [125]. H. influenzae
serotype b is more successful at preventing clearance of bacteremia through the complement system of the
host compared to other H. influenzae strains, which contributes to its higher virulence [126,127]. Therefore,
the individual EDI064 most likely suffered from a pre-existing bacteraemia with Hib. Nevertheless, the
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co-infection with Y. pestis might have facilitated the proliferation of bacteria in the bloodstream and could be
one reason for the exceptionally high abundance of Hib DNA in the respective sample.

Finally, we considered a combination of scenario A and C specifically for the presented case, where a Y.
pestis infection creates a permissive environment for proliferation of other pathogens, additionally facilitated
by genetic susceptibility for sepsis. Not only Y. pestis is known to interfere with the plasminogen system –
infections with non-typeable H. influenzae have also been shown to induce PAI-1 expression, which inhibits
tPA and other plasminogen activators, and therefore plays a crucial role in early host defence [38]. Due to the
importance of the Plasminogen activator inhibitor-1 (PAI-1) protein for both Y. pestis and H. influenzae
pathophysiology [36–38]; see discussion), we tested EDI064 for several variants associated with PAI-1
impairment that could have facilitated a H. influenzae type b infection at higher than average age and
infection with both pathogens in general. The clinical relevance of functional PAI-1 in host defence has been
shown for non-typeable H. influenzae infection in a mouse model for otitis media [128]. The PAI-1 -675
4G/5G polymorphism, a length polymorphism located in the promoter region of PAI-1, has significant
associations with sepsis risk and sepsis mortality [129]. According to ALFA [130] the 4G variant has an
allele frequency of around 54% in European populations. A homozygous state (4G/4G) is considered a risk
factor for sepsis and numerous other conditions related to fibrinolysis. In EDI064, this position is covered by
multiple reads showing both alleles, therefore we assume that this individual was heterozygous. We also
tested for two rare variants (43G>A, OMIM: 173360.0003; 2bp insertion 4977TA, 173360.0001) leading to
complete PAI-1 deficiency identified in case studies on patients with abnormal bleeding [131,132], but none
of them was identified in EDI064. Based on our analysis of loci associated with PAI-1, individual EDI064
did not have an elevated risk of developing sepsis.

In conclusion, while the rapid progression of plague infections and the severity of the osseous changes
observed on the skeleton of EDI064 suggest that the H. influenzae infection was a pre-existing condition,
mechanisms such as the pla-mediated inactivation of PAI-1 through Y. pestis could have further contributed
to the progression of the H. influenzae infection and might have led to additional infection foci. Whether this
effect might be observable more generally though, potentially leading to higher detection rates for other
pathogens in case of plague co-infections, requires further investigations beyond the scope of this case study.

2. Radiocarbon dating:
A fibula fragment of EDI064 (Sk 447B) was sent to the accelerator mass spectrometry (AMS) facility of the
14CHRONO Centre, Queen’s University Belfast, for radiocarbon dating. The retrieved conventional 14C date
is 1608±27 BP (UBA-44320) using AMS δ13C correction. Calibration with OxCal v4.4.4 [133] and IntCal20
[134] gave a 2σ interval of 416-541 calAD (see Fig. S9). The range of 416-541 calAD is in line with the
archaeological dating and compatible with an association with the Justinianic Plague (541-544 AD),
although the 2σ radiocarbon interval (416-541 AD) only overlaps with the onset of the Justinianic Plague as
historically reported for Egypt and Palestine [14]. While reservoir effects [135,136] and human bone
collagen offset [137] could explain this discrepancy, the δ13C value (-20.7) for EDI064 is consistent with a
purely terrestrial diet (δ15N: 10.0). It must also be remembered that although unlikely the date of death could
theoretically fall outside the 2σ interval, the 3σ interval for the determination is 383–565 calAD. Precision is
impossible but the individual is unlikely to have died after ca. 550, although a death as late as ca. 570 cannot
be absolutely excluded.
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3. SnpEff analysis:
Our SnpEff analysis yielded six snps with predicted high impact (see Fig S5 & Table S6). A potential
start-loss mutation on YfcZ/YiiS, a potential stop-gain mutation on a LysE family transporter (2X T>A,
MQ>30) and another potential start-loss mutation on pepT. Additionally, three indels were identified as
frameshift variants for a hypothetical protein and genes msbA and a MBL fold metallo-hydrolase (see Fig S5
& Table S6).

4. Eerkens et al. 2018 RN4 re-analysis:
We analysed the dataset available for individual RN4 described in Eerkens et al. [138], for which H.
influenzae sequences had been described. Data was downloaded from ENA and raw sequencing datasets
were trimmed and filtered using cutadapt [64] (-m 30 --nextseq-trim=20 --times 3 -e 0.2 -j 0 --trim-n) in
paired end mode (--pair-filter=any) and deduplicated using ParDRe [65]. Trimmed sequences were then
merged using FLASH [75] (-M 125 -z). The merged reads were analysed using KrakenUniq as described
under “Metagenomics” in the methods. The dataset was also mapped against the same comparative reference
sequences as HI-EDI064 (see comparative mappings in methods). Our results (see Fig. S10), show that,
based on our metagenomic screening and our comparative mappings, the sequences identified for the genus
Haemophilus more closely match Haemophilus parainfluenzae and are unlikely to be H. influenzae. While
we might not have identified the most fitting H. parainfluenzae reference or potentially species, the mapping
clearly shows increased coverage and read counts as well as mapping quality when compared to H.
influenzae. The presence of H. parainfluenzae in dental calculus is unsurprising as it is considered
commensal in the oropharynx.

5. Antibiotic-resistance associated loci analysis:
Additionally to our mapping to known H. influenzae plasmids (see results & methods), we investigated the
presence of loci associated with antibiotic resistance (ftsl, dacA, dacB, acrA, acrB, acrR, TEM-1, ROB-1, cat,
tet(B) and tet(M)) in our sample and found that no genes associated with plasmid-mediated resistance
mechanisms were present. However, Penicillin-binding site (PRP3-5) genes, associated with
β-lactamase-negative-ampicillin-resistant (BLNAR) strains, and acrABR, associated with the efflux of
macrolide antibiotics, showed coverage across most of the gene intervals (~62-98% sequence coverage at a
minimum depth of 1) with edit distances ranging from 0.64 to 1.39 when filtering MQ>30 (see Additional
file 2: Table S12a and Additional file 1: Figure S11).

We also checked our alignment for the presence of 23 amino acid changes in PRP3 (encoded by ftsl), which
have been associated with ampicillin resistance (and sometimes also cefotaxime and other cephalosporins),
as described in Tristram et al. [139] using reference strain Rd KW20 (see Additional file 2: Table S12b). We
detected three amino acid changes consistent with substitutions described for BLNAR strains: V347I (5X,
nsSNP 1st Pos G>A), N569S (1X, nsSNP 2nd Pos A>G) and A586S (11X, nsSNP 1st Pos G>T). Two more
sites were missing coverage. Substitutions A502T and N526K, which are known to be associated with
ampicillin resistance, were not detected and S350N was only detectable at 1X with G>A, which could be due
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to deamination. N526K and the R517H, which could be important to phenotypic resistance, were not found.
We also checked for the presence of three highly conserved amino acid motives which are essential for PBP3
function [139,140] and found that all were present in our alignment (S327-T-V-K, S379-S-N and K513-T-G).
However, it should be noted that we found a shift when comparing the reference. The last amino acid
sequence started at aa 512 instead of 513 in our reference, hinting that both this shift and another shift
detected for S352S can be associated with the reference sequence (NC_000907.1 Rd KW20). To limit the
possibility of off-species mappings, we blasted [141] the reference used for ftsl
(NC_000907.1:1197840-1199672) using blastn and megablast while excluding hits for H. influenzae and
filtering for hits with an interval coverage of >80%, but found that all organisms for which hits were present
were either closely related species excluded during our species validation steps, synthetic constructs or were
not present in our sample based on KrakenUniq output. While it is interesting to find these changes in
pre-antibiotic era strains, it should be noted that not the entire interval was covered and coverage was uneven
(see Additional file 1: Fig S11), making it hard to evaluate what effect the detected substitution would have
had while missing part of the amino acid sequence, particularly when considering the large range,
combinations and geographical differences in amino acid changes known to occur [139].

Additionally to PRP3-5 (encoded by ftsl, dacB and dacA), our alignments also show coverage in acrABR
intervals. acrR, which is important for the efflux of macrolide antibiotics, shows continuous coverage across
78% of the interval but is missing coverage in the first ca. 110 bp and the last 10 bp, which inhibited our
inspection of the alignment for early stop mutations caused by insertion induced frameshifts [139]. Finally,
we also extracted all reads mapping to the gene intervals using samtools and found that all assignable reads
were attributed to H. influenzae or a lower taxonomic rank.
[15,79,142]
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