

Supplemental Fig. S1. Silencing MUC1-C and ARID1A suppresses **IFNGR1 expression in CRPC/NEPC cells. (a).** LNCaP-AI/tet-MUC1shRNA cells treated with vehicle or DOX for 7 days were analyzed for the indicated mRNA levels by qRT-PCR using primers listed in Supplemental Table S1. The results (mean±SD of 4 determinations) are expressed as relative mRNA levels compared to that obtained for vehicle-treated cells (assigned a value of 1). (b-d). Lysates from LNCaP-AI/tet-MUC1shRNA (b), PC3/tet-MUC1shRNA (c) and NCI-H660/tet-MUC1shRNA (d) cells treated with vehicle or DOX for 7 days were immunoblotted with antibodies against the indicated proteins. (e). Nuclear lysates from DU-145 cells were precipitated with a control IqG or anti-MUC1-C. The input and precipitated proteins were immunoblotted with antibodies against the indicated proteins. (f and g). DU-145 cells expressing a CshRNA or JUNshRNA were analyzed for the indicated mRNA levels by qRT-PCR (f). The results (mean[±]SD of 4 determinations) are expressed as relative mRNA levels compared to that obtained for CshRNA expressing cells (assigned a value of 1). Lysates were immunoblotted with antibodies against the indicated proteins (q). (h and i). DU-145 cells expressing a CshRNA or ARID1AshRNA were analyzed for the indicated mRNA levels by qRT-PCR (h). The results (mean±SD of 4 determinations) are expressed as relative mRNA levels compared to that obtained for CshRNA expressing cells (assigned a value of 1). Lysates were immunoblotted with antibodies against the indicated proteins (i).

Supplemental Fig. S2. MUC1-C and NuRD suppress FBXW7 expression in CRPC/NEPC cells. (a). LNCaP-AI/tet-MUC1shRNA treated with vehicle or DOX for 7 days were analyzed for LBXW7 mRNA levels by qRT-PCR (left). The results (mean±SD of 4 determinations) are expressed as relative mRNA levels compared to that obtained for vehicle-treated cells (assigned a value of 1). Lysates were immunoblotted with antibodies against the indicated proteins (right). (b and c). Lysates from NCI-H660/tet-MUC1shRNA (b) and PC3/tet-MUC1shRNA (c) cells treated with vehicle or DOX for 7 days were immunoblotted with antibodies against the indicated proteins. (d). Lysates from LNCaP/tet-MUC1-C cells treated with vehicle or DOX for 7 days were immunoblotted with antibodies against the indicated proteins. (e). Lysates from LNCaP-AI/tet-MUC1shRNA cells treated with vehicle or DOX for 7 days were immunoblotted with antibodies against the indicated proteins. (f). DU-145 cells expressing a CshRNA, MTA1shRNA (left) or MBD3shRNA (right) were analyzed for FBXW7 mRNA levels by qRT-PCR. The results (mean±SD of 4 determinations) are expressed as relative mRNA levels compared to that obtained for CshRNA expressing cells (assigned a value of 1).

Supplemental Fig. S3. MUC1-C is necessary for STAT1 and IRF1 expression. (a and b). LNCaP-AI/tet-MUC1shRNA cells treated with vehicle or DOX for 7 days were analyzed for the indicated mRNA levels by qRT-PCR (a). The results (mean±SD of 4 determinations) are expressed as relative mRNA levels compared to that obtained for vehicle-treated cells (assigned a value of 1). Lysates were immunoblotted with antibodies against the indicated proteins (b). (c). Lysates from PC3/tet-MUC1shRNA cells treated with vehicle or DOX for 7 days were immunoblotted with antibodies against the indicated proteins.

Supplemental Fig. S4. MUC1-C is necessary for induction of IFN- γ stimulated gene sets. RNA-seq was performed in triplicates on DU-145/tet-MUC1shRNA cells treated with vehicle or DOX for 7 days and then stimulated with 10 ng/ml IFN- γ for 24 hours. (a). Heatmap representing all genes from within the HALLMARK INTERFERON GAMMA RESPONSE pathway. Significant DEGs are shown as row annotations (downregulated = teal, upregulated = gold). (b). Top 30 significantly enriched pathways activated (top) and suppressed (bottom) by MUC1 silencing. (c). Analysis by GSEA using the HALLMARK INTERFERON ALPHA RESPONSE gene signature comparing DOX-treated with vehicle-treated cells. (d). Epigenetic Landscape in Silico deletion Analysis (LISA) was applied to the top 500 downregulated (MUC1-induced) and upregulated (MUC1-repressed) DEGs. Each data point represents the significance level of regulatory potential of a given transcriptional factor derived from a unique ChIP-seq dataset. MUC1-activated genes are enriched for STAT1 and IRF1 in support of MUC1-C integrating the IFN- γ response by inducing the STAT1 \rightarrow IRF1 pathway. CEBPB is also enriched in the MUC1-activated gene set.

Supplemental Fig. S5. MUC1-high PCs associate with upregulation of IDO1, IDO2, TDO2, WARS and PTGES. (a-c). Expression of the indicated genes in the TCGA-PRAD (a) and SU2C-CRPC (b,c) cohorts was assessed in MUC1-high and MUC1-low groups using a Wilcoxon rank-sum test.

Supplemental Fig. S6. MUC1-C and PBRM1 are necessary for IDO1, WARS and PTGES expression. (a and b). LNCaP-AI/tet-MUC1shRNA cells treated with vehicle or DOX for 7 days were analyzed for the indicated mRNA levels by qRT-PCR (a). The results (mean±SD of 4 determinations) are expressed as relative mRNA levels compared to that obtained for vehicle-treated cells (assigned a value of 1). Lysates were

immunoblotted with antibodies against the indicated proteins (**b**). (**c** and **d**). Lysates from PC3/tet-MUC1shRNA (**c**) and NCI-H660/tet-MUC1shRNA (**d**) were immunoblotted with antibodies against the indicated proteins. (**e**). DU-145/tet-MUC1shRNA cells treated with vehicle or DOX for 7 days were stimulated with 10 ng/ml IFN- γ for 24 hours. The cells were analyzed for the indicated mRNA levels by qRT-PCR. The results (mean±SD of 3 determinations) are expressed as relative mRNA levels compared to that obtained for vehicle-treated cells (assigned a value of 1). (**f**). DU-145/CshRNA and DU-145/PBRM1shRNA were stimulated with 10 ng/ml IFN- γ for 24 hours. Lysates were immunoblotted with antibodies against the indicated protein.

Supplemental Fig. S7. MUC1 and PBRM1 are necessary for ISG15 and SERPINB9 expression. (a). DU-145/tet-MUC1shRNA cells treated with vehicle or DOX for 7 days were analyzed for the indicated mRNA levels by qRT-PCR. (b). DU-145/CshRNA and DU-145/PBRM1shRNA cells were analyzed for the indicated mRNA levels by qRT-PCR. (c). DU-145/tet-MUC1shRNA cells treated with vehicle or DOX for 7 days were stimulated with 10 ng/ml IFN- γ for 24 hours. The cells were analyzed for the indicated mRNA levels by qRT-PCR. (d). DU-145/CshRNA and DU-145/PBRM1shRNA cells stimulated with 10 ng/ml IFN- γ for 24 hours were analyzed for the indicated mRNA levels by qRT-PCR. The results (mean±SD of 3 determinations) are expressed as relative mRNA levels compared to that obtained for control cells (assigned a value of 1).

Supplemental Figure S8. MUC1-high PC tumors associate with (i) increased expression of IL-10, TGFB1 and CCL5, and (ii) depletion of immune effectors in the TME. (a). Expression of IL-10 in the TCGA-PRAD cohort was assessed in MUC1-high and MUC1-low groups using the Wilcoxon rank-sum test (left). Enrichment plot for the REACTOME INTERLEUKIN 10 SIGNALING pathway, comparing MUC1-high to MUC1-low PC tumors in the TCGA-PRAD cohort (right). (b). Expression of TGFB1 in the TCGA-PRAD cohort was assessed in MUC1-high and MUC1-low groups using the Wilcoxon rank-sum test (left). Enrichment plot for the GO RESPONSE TO TRANSFORMING GROWTH FACTOR BETA pathway, comparing MUC1high to MUC1-low PC tumors in the TCGA-PRAD cohort (right). (c). Expression of CCL5 in the TCGA-PRAD cohort was assessed in MUC1-high and MUC1-low groups using the Wilcoxon rank-sum test. (d). Cell type estimates (xCell) of MUC1-high and MUC1-low CRPC tumors from the Beltran cohort.

Supplemental Figure S9. MUC1 associates with CSC and IFN signatures in CRPC cells. (a). Normalized and annotated scRNA-seq data from CRPC cells were obtained from He et al. CRPC cell expression was imputed using MAGIC and reprocessed for assessment of MUC1 across CRPC transcriptional phenotypes. (b). Single-cell enrichment was performed for curated AR and CSC signatures and select HALLMARK pathways. (c). Correlation analysis of Single-cell enrichment scores with MUC1 expression across CRPC cells.

Supplemental Table S1. Primers used for qRT-PCR.

MUC1-C	FWD	TACCGATCGTAGCCCCTATG
	REV	CTCACCAGCCCAAACAGG
IFNGR1	FWD	CTTTGGGTCAGAGTTAAAGCCA
	REV	TTCCATCTCGGCATACAGCAA
FBXW7	FWD	CGAACTCCAGTAGTATTGTGGACCT
	REV	TTCTTTTCATTTTGT TGTTTTTGTATAGA
STAT1	FWD	GGAACTTGATGGCCCTAAAGGA
	REV	ACAGAGCCCACTATCCGAGACA
IRF1	FWD	CATGGCTGGGACATCAACAA
	REV	TTGTATCGGCCTGTGTGAATG
JUN	FWD	CCAAAGGATAGTGCGATGTTT
	REV	CTGTCCCTCTCCACTGCAAC
ARID1A	FWD	ACCTCTATCGCCTCTATGTGTCTGT
	REV	CTGGCAGCACTGCTTGATGT
ID01	FWD	TCTCATTTCGTGATGGAGACT
	REV	GTGTCCCGTTCTTGCATTTGC
WARS	FWD	TGACGGATGACGAGAAGTATCT
	REV	GCCGAAAATGCCTTTCACTTG
PTGES	FWD	GGAAACTGCAAATGTCCCCTTGAT
	REV	CACATCTCAGGTCACGGGTCTA
ISG15	FWD	CGCAGATCACCCAGAAGATCG
	REV	TTCGTCGCATTTGTCCACCA
SERPINB9	FWD	TGGACCAAGCCAGACTGTATG
	REV	TGCACGAACTTGGACAGACA
GAPDH	FWD	CCAAGACCCTGATGAACACC
	REV	CCAAGACCCTGATGAACACC