
Figure S1. The actin cortex of Bd zoospores is dynamic and is affected by SMIFH2, relat-
ed to Figure 1. Synchronized populations of Bd zoospores were treated with various actin in-
hibitors for 30 minutes (See Figure 6 for concentrations). Cells were then fixed and stained for 
polymerized actin with fluorescent phalloidin, imaged, and line scans perpendicular to the cell 
edge were taken. Actin structures (inverted, black) in representative cells with the location of the 
line scan overlayed (left). Phalloidin intensity normalized to the cell interior plotted against dis-
tance along the line normalized with the cell edge at 0 µm for the cell shown (middle). Average 
intensities and standard deviations for three independent experiments (N=6 cells), normalized in 
the same way (right). Scale bars, 5 µm.  
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Figure S2. Chytrids have canonical actin as well as the Arp2/3 complex and many of its 
regulators, related to Figure 2. All chytrid sequences sharing ≥50% similarity with Rabbit, Dic-
tyostelium discoideum, Saccharomyces cerevisiae, or Schizosaccharomyces pombe actin se-
quences were obtained using BLAST and aligned with known actin, Arp1, Arp2, and Arp3 se-
quences from various taxa. (Note: although rabbit and human muscle actin have identical pro-
tein sequences, we chose rabbit actin as the vast majority of biochemical characterization of 
animal actin has been done on rabbit actin.) (A) Percent similarities between the actin se-
quences of the given species. (B) Maximum likelihood phylogeny built to determine which 
chytrid sequences were true actin sequences. Consensus tree shown, branches with less than 
70% bootstrap value were collapsed to polytomies. All bootstrap values shown. True chytrid 
actin sequences were determined as those that grouped with known actin sequences from other 
organisms. (C) The distribution of the Arp2/3 complex and its regulators across taxa. Color-filled 
circles indicate the presence of clear homologs found, with the number of homologs for each 
protein in each species shown in the colors specified in the key, whereas white dots indicate 
that no homolog was detected in that species. Dashed lines mark the chytrids. Symbols on the 
tree represent: opisthokonts (triangle); fungi (square); chytridiomycota (circle). V, copy number 
of WASH varies individually, as many WASH genes are subtelomeric S1. +, See Data S2 for de-
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tails and additional potential homologs with caveates. At, Arabidopsis thaliana; Rabbit/Oc, Oryc-
tolagus cuniculus, HUMAN, Homo sapiens, Dd, Dictyostelium discoideum; Bd, Batrachochytri-
um dendrobatidis (JAM81 and JEL423 strains); Bs, Batrachochytrium salamandrivorans; Sp, 
Spizellomyces punctatus; Rg, Rhizoclosmatium globosum; Am, Allomyces macrogynus; Sc, 
Saccharomyces cerevisiae; Spo, Schizosaccharomyces pombe; Sj, Schizosaccharomyces 
japonicus; Ca, Candida albicans; An,  Aspergillus nidulans; Mo, Magnaporthe oryzae; Nc, Neu-
rospora crassa; Um, Ustilago maydis; CHLRE, Chlamydomonas reinhardtii; GIAIN, Giardia in-
testinalis.  



 
Figure S3. Chytrids have myosins from at least 4 classes, related to Figure 2. The distribu-
tion of given myosins (left, not to scale), across taxa (right). Color-filled circles indicate the pres-
ence of at least one myosin of that class in that species, with color indicating the number of 
myosins. Unfilled circles indicate that no myosin of that class was found in the given species. 
The domain abbreviations are as follows:  yellow box, light chain binding domains (IQ motifs) 
that can vary in number;  blue rectangles, MyTH4 domain;  red circles, FERM domain;  light 
blue oval, PH domain; black bars, transmembrane domain;  membr binding, membrane 
binding;  GPA, glycine-proline-alanine rich;  SH3, src homology 3 (purple rectangle);  S/T ki-
nase, serine-threonine kinase;  THDI/II, tail homology domain I/II;  3-Helix, triple helix bundle;  
SAH, single alpha-helix;  NTE, N-terminal extension;  PBM, PDZ binding motif;  ANK, ankyrin 
repeats;  NYAP, Neuronal tYrosine-phosphorylated Adaptor for the PI 3-kinase domain;  b5, cy-
tochrome heme binding domain;  Chit syn 2, chitin synthase 2;  KE, lysine and glutamate rich;  
PDZ, PDZ domain;  DH, Dbl homology domain. At, Arabidopsis thaliana; Dd, Dictyostelium dis-
coideum; Hs, Homo sapiens (non-muscle myosins only depicted); Bd, Batrachochytrium den-
drobatidis; Bs, Batrachochytrium salamandrivorans; Sp, Spizellomyces punctatus; Rg, Rhizo-
closmatium globosum; Am, Allomyces macrogynus; Sc, Saccharomyces cerevisiae; Spo, 
Schizosaccharomyces pombe; Sj, Schizosaccharomyces japonicus; Ca, Candida albicans; An,  
Aspergillus nidulans; Mo, Magnaporthe oryzae; Nc, Neurospora crassa; Um, Ustilago maydis.  



 
Figure S4. DMSO has an effect on the actin structures in Bd, related to Figure 6. Synchro-
nized populations of Bd zoospores were treated with DMSO at the same concentration used in 
Figure 6, or equal volume of Bonner’s salts as a control. Cells were then fixed and stained for 
polymerized actin with fluorescent phalloidin, imaged, and quantified for presence of actin-filled 
pseudopods (P, Pods), actin spikes (S), cortical actin (Co), and actin patches (P). (A) Represen-
tative examples of cells (DIC, grey) , and phalloidin stained actin structures (inverted, black), 
with an overlay of the two (actin, green) after treatment with Bonner’s salts or DMSO. (B) Quan-
tification of the percent of cells with each structure in the DMSO treated cells, normalized to the 
Bonner’s salts control. P-values for each structure, relative to the Bonner’s control, are shown 
(unpaired Student’s T-tests). All fluorescent images are not at the same brightness and contrast 
scale. Scale bar, 10 µm.  
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Figure S5. Additional examples of actin structures in Bd zoospores, related to Figure 6. 
Synchronized populations of Bd zoospores were treated with various actin inhibitors for 30 min-
utes (see Figure 6 legend for concentrations). Cells were then fixed and stained for polymerized 
actin with fluorescent phalloidin and imaged. (A) Representative examples of zoospores (DIC: 
grey) and phalloidin stained actin structures (inverted, black) with an overlay of the two (actin, 
green) after treatment with each drug. Insets show an enlarged view of the actin channel for the 
indicated cells. Examples of pseudopods and spikes are highlighted, note pseudopods in 
SMIFH2 treated cells (highlighted by an arrowhead labeled P) are rounder and less protrusive. 
Pseudopods (P), actin spikes (S), cortical actin (Co), actin patches (Pa). Scale bar, 10 µm for 
field of view, 5 µm for insets. (B) Calcofluour white intensity for control cells without (w/o) and 
with (w/) actin patches. (C) Circularity values for control cells without and with actin patches. For 
B and C, Larger, colored circles indicate the average value for three independent replicates, 
represented by different shapes. Each gray shape represents the value of one cell in the indi-
cated replicate. (D) Calcofluor white intensity plotted against circularity for control cells without 
(solid blue shapes) and with (outlined red shapes) actin patches. Each point represents a single 
cell from three independent replicates given their own shape.  
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Figure S6. Additional examples of actin structures in Bd sporangia, related to Figure 7. 
Populations of Bd sporangia seeded 1 day prior were treated with drugs using the same con-
centrations as in Figure 6, then fixed and stained for polymerized actin with phalloidin and for 
DNA with DAPI. (A) Examples of sporangia (DIC: grey) and phalloidin stained actin patches 
(alone inverted, black; overlay, green), with an overlay including the nucleus (blue) after treat-
ment with each drug. Scale bar, 5 µm. (B) Linescans of the intensity of actin in actin shells 
across nuclei in cells treated with the indicated actin inhibitors or controls. Actin intensity was 
normalized to the center of each line, and the distance of each line was normalized as a percent 
along the nucleus, as each line varied in size. The normalized intensity along each line is plotted 
such that the highest intensity is on the left. 
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Figure S7. Long term inhibition of actin or Arp2/3 complex stunts growth and develop-
ment of Bd sporangia, related to Figure 7. Populations of synchronized Bd zoospores were 
allowed to grow for 24 hours before the addition of actin inhibiting drugs at the same concentra-
tion as in Figure 6. Cells were treated for either 24 or 48 hours before being stained with Calco-
fluor White to highlight the cell wall and facilitate downstream image thresholding. The concen-
tration of released zoospores was measured for cells treated for 48 hours prior to cell wall stain-
ing. (A) Examples of the thresholding binaries in control cells used for the analysis of sporangia 
size. The resulting binary objects were used to estimate the diameter of a sphere with the same 
area as the binary object (EqDiameter). (B) The EqDiameter for pre-treatment cells grown for 24 
hours. (C) EqDiameter for cells that have grown for 24 hours prior to treatment, and for 24 hours 
with the indicated treatment. (D)  EqDiameter for cells grown for 24 hours prior to treatment and 
for 48 hours with the indicated treatment. Large shapes indicate the average diameter of cells 
for three independent experiments. Each gray shape indicates the diameter for one cell in the 
given experiment. (E) The percent of zoospores released by 3-day sporangia after being treated 
with actin inhibiting drugs for 48 hours, normalized to appropriate controls. Scale bar, 20 5 µm. 
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