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1 SUPPLEMENTARY METHODS 

1.1  Comprehensive Literature Search 

In order to leverage existing physiological data from children with obesity into our virtual 

population, a comprehensive literature search was conducted in PubMed. A detailed search plan 

was developed in collaboration with medical librarians at the University of North Carolina – 

Chapel Hill’s Health Science Library that included each of 121 physiological terms relevant to 

PK modeling combined with keywords 'obese' and 'pediatric', as well as related MeSH (Medical 

Subject Headings) terms (Supplementary Table 15). Articles from all dates were included, and 

the Human Species filter was used to limit the results. The titles and abstracts from 26,369 

resulting search hits were screened for relevance to the virtual population development work 

using Covidence (Veritas Health Innovation Ltd, Melbourne, Australia) systematic reviews 

production tool for title/abstract screening, full-text screening, data abstraction, and quality 

assessment. Each article’s title and abstract was reviewed by two independent screeners, with 

two rejections required to exclude the article. The full-text of articles approved by one or both 

screeners was reviewed, and any relevant physiological data extracted to inform the virtual 

population development. Extracted data for several key physiological parameters relevant to 

pharmacokinetics are summarized in the Supplementary Tables 9-11, 13-14 below. 

1.2  Virtual Population Data Analysis 

In combining data across multiple sources and studies, all units were converted to a single 

standard unit. When a range was reported for any particular parameter, the midpoint and standard 

deviation were used. For electronic health record data, recorded height and weight values 

significantly far above the 3rd and 97th percentile for 2 and 20 year-olds, respectively, were 

discarded as implausible outliers. All virtual population modeling and validation was performed 
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using PK-Sim® (version 9.0, Open Systems Pharmacology Suite, open-systems- 

pharmacology.com). Data analysis and growth curve development and validation were 

performed using the software R (version 3.5.3) and RStudio (version 1.1.463; RStudio, Boston, 

MA). 

1.3  Growth Curve Development and Validation 

While the current definition of obesity as defined by the 95th BMI percentile from the 2000 CDC 

growth charts was retained, the growth curves were updated with more recent demographic data 

to better represent the higher shift in BMI of today’s children, such that a greater percent are 

above the obesity cutoff. Growth curves of BMI versus age were developed using pooled 

NHANES data from 1999 – 2016, then validated using demographic data from the PTN Data 

Repository. Growth curves were calculated using the same lambda-mu-sigma (LMS) estimation 

method that the U.S. Center for Disease Control and Prevention (CDC) used to develop the 

current growth curves [1]. Briefly, selected empirical percentiles of BMI for age are smoothed 

using locally estimated polynomial regression. Selected empirical percentiles included the 3rd, 

5th, 10th, 25th, 50th, 75th, 85th, 90th, 95th, 97th, and 99th percentile BMI for age. Then, the smoothed 

curves for each percentile are approximated using LMS estimation method, resulting in final 

percentile curves closely matching the smoothed ones, thus allowing for computation of 

additional percentiles and z-scores using the LMS parameters. In the LMS estimation method, a 

Box-Cox transformation is first applied to make the BMI for age distribution approximately 

normal. Then, the LMS parameters are estimated using the following equations: 

𝑋 = 𝑀(1 + 𝐿𝑆𝑍)
1

𝐿; 𝐿 ≠ 0                (1) 

𝑋 = 𝑀𝑒𝑥𝑝(𝑆𝑍); 𝐿 = 0                (2) 
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where X is the BMI value and Z is the z-score that corresponds to the percentile. LMS 

parameters were estimated simultaneously across the 11 percentiles at each age point as the best 

solution to the system of 11 equations by minimizing the sum of squared errors. Thus, the BMI 

percentile for a given age (X) can then be obtained from a normal distribution table from the z-

score estimated using the LMS parameters. Separate growth curves were generated for male and 

female Asian Americans, Black Americans, Mexican Americans, and White Americans, as well 

as pooled males and females (ten curves total, Figure 1, Supplementary Figure 1). 

BMI for age data for males and females for all three available racial groups included the 

PTN Data Repository (Asian American, Black American, and White American children, as well 

as pooled males and females) was used to validate the growth curves. To validate the updated 

growth curves, observed subjects’ ages were rounded to the nearest month, then the observed 

BMI percentile was calculated at each age point for key percentiles (5th, 50th, 85th, and 95th 

percentiles). These points were overlaid on top of the updated growth curves described above, 

and fit to the observed PTN Data Repository points was determined visually (Supplementary 

Figure 2). Excel sheets with LMS parameters for calculating updated growth curves and BMI 

percentiles are provided as Electronic Supplementary Files 2. 

1.4  Calculations for Glomerular Filtration Rate (GFR) 

Simulated pediatric GFR is calculated in PK-Sim® as a function of adult GFR and kidney size 

using the equation: 

𝐺𝐹𝑅𝑝𝑒𝑑 =
𝐺𝐹𝑅𝑎𝑑𝑢𝑙𝑡∗𝐹𝑎𝑔𝑒

𝑉𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑘𝑖𝑑𝑛𝑒𝑦
                (3) 
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Where GFRped is the simulated pediatric GFR (in mL/min/100g kidney), GFRadult is the standard 

adult GFR value, Fage is a scaling factor to account for age in children, and Vstandard kidney is the 

volume of a standard adult kidney. 

Simulated GFR values for virtual children with obesity were compared to observed values 

reported in the literature using a number of different GFR calculations [2]. The observed study 

calculated creatinine clearance (CrCl) through 24-hour urine collection and estimated GFR using 

the Zappitelli and Schwartz equations as follows: 

𝐺𝐹𝑅𝑍𝑎𝑝𝑝𝑖𝑡𝑒𝑙𝑙𝑖 =
43.82𝑒0.003∗𝐻𝑒𝑖𝑔ℎ𝑡

𝐶𝑦𝑠𝐶0.635∗𝑆𝐶𝑟0.547                 (4) 

𝐺𝐹𝑅𝑆𝑐ℎ𝑤𝑎𝑟𝑡𝑧 = 39.1 (
𝐻𝑒𝑖𝑔ℎ𝑡

𝑆𝐶𝑟
)

0.516

(
1.8

𝐶𝑦𝑠𝐶
)

0.294

(
30

𝐵𝑈𝑁
)

0.169
(1.099)𝑀𝑎𝑙𝑒 (

𝐻𝑒𝑖𝑔ℎ𝑡

1.4
)

0.188

         (5) 

where height is in meters, CysC is cystatin C in mg/L, SCr is serum creatinine in mg/dL [2-4], 

BUN is blood urea nitrogen in mg/dL, and Male is an indicator variable equal to one if male. 

Absolute GFR values were normalized to a number of different body size metrics, including total 

body weight, BMI, lean body mass (LBM) as calculated by the Peters equation, fat-free mass 

(FFM) as calculated by the Al-Sallami equation, and body surface area (BSA) as calculated by 

the Haycock equation using the following equations: 

𝐿𝐵𝑀 = 3.8(0.0215 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡0.6469 ∗ 𝐻𝑒𝑖𝑔ℎ𝑡0.7236)            (6) 

𝐹𝐹𝑀𝑚𝑎𝑙𝑒𝑠 = [0.88 + (
1−0.88

1+(
𝐴𝑔𝑒

13.4
)

−12.7)] [
9270∗𝑊𝑒𝑖𝑔ℎ𝑡

6680+(216∗𝐵𝑀𝐼)
]           (7a) 

𝐹𝐹𝑀𝑓𝑒𝑚𝑎𝑙𝑒𝑠 = [1.11 + (
1−1.11

1+(
𝐴𝑔𝑒

7.1
)

−1.1)] [
9270∗𝑊𝑒𝑖𝑔ℎ𝑡

8780+(244∗𝐵𝑀𝐼)
]           (7b) 

𝐵𝑆𝐴 = 𝑊𝑒𝑖𝑔ℎ𝑡0.5378 ∗ 𝐻𝑒𝑖𝑔ℎ𝑡0.3964 ∗ 0.024265             (8) 
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where weight is in kg, height is in centimeters, age is in years, and BMI is in kg/m2 [5-7]. Note 

that the observed study calculated FFM using the Schaeffer equation, but this was not applicable 

to the simulated population since it calculates FFM using bioimpedance [8]. The final GFR 

comparisons are shown in Table 2. 

1.5  Clinical Data for Clindamycin PBPK Modeling – External Data Study 

The External Data Study (ClinicalTrials.gov #NCT02475876) was a multicenter (n = 10), open-

label, interventional PK and safety study that enrolled children aged 36 weeks postmenstrual age 

and 16 years of age receiving clindamycin per clinical care at the physician’s discretion. 

Exclusion criteria included failure to obtain consent or assent, known pregnancy or 

breastfeeding, history of allergic reactions to study drugs, serum creatinine >2 mg/dL, alanine 

aminotransferase >250 U/L or aspartate transaminase >500 U/L, or on extracorporeal membrane 

oxygenation support. Protocol specified clindamycin dose was 9 mg/kg, 12 mg/kg, and 10 mg/kg 

every 8 hours for subjects between 1-5 months, >5 months – 6 years, and >6 years to 16 years of 

age, respectively. PK samples were collected at protocol specified times, which were after the 1st 

and the >6th dose at between 0-10 min and 2-4 h after the dose and <30 minutes before the next 

dose. The plasma samples were quantified at a single central laboratory (OpAns, LLC, Durham, 

NC, USA) using a validated high-performance liquid chromatography-tandem mass 

spectrometry assay with a lower limit of quantitation of clindamycin of 50 ng/L as previously 

described [9]. The External Data Study protocol was approved by the institutional review board 

of participating instructions, and informed consent was obtained from the parent or guardian and 

assent from the subject when appropriate. 
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1.6  Clindamycin Oral Absorption Model Development and Evaluation 

In this study, we also developed an oral clindamycin hydrochloride absorption model using 

available adult data from the literature in order simulate exposure for 15 observed children with 

obesity who received oral doses (Supplementary Table 16). Clindamycin hydrochloride dosing 

was adjusted using the salt factor (0.9151) and simulated as a clindamycin dose. Intestinal 

transcellular permeability and Weibull parameters were optimized using digitized data across 

seven adult oral clindamycin studies using the Levenberg-Marquardt algorithm [10]. Final 

clindamycin PBPK model parameters are shown in Supplementary Table 6. For five pediatric 

subjects who received both intravenous and oral doses (all of whom had samples taken after an 

oral dose), all doses were modeled as clindamycin doses adjusted using the salt factor. 

2 SUPPLEMENTARY RESULTS 

2.1  Virtual Population Demographics 

Each virtual child's height in the virtual population is randomly selected from published 

distributions from the International Commission on Radiological Protection (ICRP) database 

depending on the child's age. Simulated height was reflective of the ICRP values and increased 

with age (Supplementary Figure 22). 

Each virtual child's weight is determined as the sum of the 19 organ compartments 

modeled in PK-Sim®. Individual organ weights are selected from published ICRP distributions 

depending on the child's age, with additional scaling factors introduced for children with obesity. 

The remaining extra weight is added to both the adipose and skin organs to increase the virtual 

child's weight to a BMI within the obese range (e.g., ≥ 95th percentile BMI for age and sex). 

Simulated height and weight were correlated, with a rightward shift in the height-weight curve 
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for children with versus without obesity observed, reflecting an increase in weight 

(Supplementary Figure 23). 

2.2  Clindamycin Oral Absorption Model 

The clindamycin oral absorption model was able to capture the majority of digitized adult data, 

with an overall AFE of 0.90 (mean [range] of 0.99 [0.50, 2.23] across seven studies of orally 

dosed clindamycin in healthy adult volunteers) (Supplementary Table 16, Supplementary 

Figure 24). 

2.3  Incorporating AAG Concentration into Fu for Clindamycin 

Expanding the previously developed pediatric clindamycin PBPK model to include children with 

obesity first resulted in 64% of observed concentrations falling within the 90% model prediction 

interval (with 26% above and 10% below), and an overall AFE of 0.76. Exploring model 

misspecification revealed a trend in increasing underestimation of observed concentrations with 

increasing AAG concentration (Supplementary Figure 25). Thus, the fraction unbound for each 

observed subject was adjusted based on their individual AAG concentration using the equation: 

𝑓𝑢,𝑝𝑒𝑑 =
1

1+(
𝐴𝐴𝐺𝑝𝑒𝑑

𝐴𝐴𝐺𝑎𝑑𝑢𝑙𝑡
)(

1−𝑓𝑢,𝑎𝑑𝑢𝑙𝑡
𝑓𝑢,𝑎𝑑𝑢𝑙𝑡 

)
                (9) 

where fu,ped is the AAG-adjusted fraction unbound for the observed pediatric subject, AAGped is 

the reported AAG concentration for the observed pediatric subject, AAGadult is the upper or 

lower bound reference healthy adult AAG concentration (0.77 and 1.46 mg/mL, respectively), 

and fu,adult is the reported adult fraction unbound [11-12]. After adjusting fraction unbound using 

the AAG concentration, the model captured observed concentrations from children without 

obesity well, with 74% of observed concentrations falling within the 90% model prediction 

interval (15% above and 11% below) and a revised AFE of 0.88 (Supplementary Figure 26). 
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Seventy-seven percent of concentrations from children with obesity fell within the 90% model 

prediction interval (7% above and 16% below) with an overall AFE of 1.09, following adjusting 

the fraction unbound (Supplementary Figures 8, 27). No further trends in model 

misspecification were identified by study, age, body size, or AAG concentration 

(Supplementary Figure 27). 
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3 SUPPLEMENTARY FIGURES 
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Supplementary Figure 1. Updated growth curves based on NHANES pooled data for male and 

female groups. Key BMI percentiles are highlighted in blue (5th percentile), black (50th 

percentile), dark red (85th percentile), and red (95th percentile). The BMI cutoff for obesity as 

defined by the CDC is represented by the bold, red dashed line, such that children with a BMI 

above that line for a given age are considered obese. 

BMI, body mass index; CDC, Center for Disease Control and Prevention; NHANES, National 

Health and Nutrition Examination Survey 
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Supplementary Figure 2. Validation of updated growth curves for males and female groups. 

Key BMI percentiles are represented in blue (5th percentile), black (50th percentile), dark red 

(85th percentile), and red (95th percentile). Solid lines are the updated growth curves based on 

pooled NHANES data, and points represent the BMI for a given percentile for a given age bin 

based on demographic data obtained from the PTN Data Repository. 

BMI, body mass index; NHANES, National Health and Nutrition Examination Survey; PTN, 

Pediatric Trials Network 
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Supplementary Figure 3. Hematocrit versus age for virtual and real-world children with 

obesity. Simulated hematocrit values from virtual children with obesity (n = 10,000) generated 

from PK-Sim® are shown in gray, reported hematocrit values (mean ± standard deviation) found 

in the literature search from children with obesity are shown in blue, and individual observed 

hematocrit values from children (n = 136) with obesity in the clinical trial data are shown in red. 

See Table 1 for combined trial data summary and Supplementary Table 9 for literature 

hematocrit values. 
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Supplementary Figure 4. Observed albumin concentration versus age for children without 

(blue) and with (red) obesity from four different data sources – individual values from NHANES 

survey (n = 14,293) (a), PTN data repository (n = 3,193) (b), and combined trial data (n = 393) 

(c), and mean values (mean ± standard deviation) found in the literature search (d). Data sources 

are shown in separate panels for better visualization. Note that albumin concentrations were only 

reported for children >12 years for NHANES. 

 

NHANES, National Health and Nutrition Examination Survey; PTN, Pediatric Trials Network   
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Supplementary Figure 5. AAG concentration versus age for children without (blue) and with 

(red) obesity, including observed values from the combined trial data (n = 60 and 88 for children 

without at with obesity, respectively) (a) and reported values (mean ± standard deviation) from 

the literature search (b) with corresponding standard deviation error bars. Data sources are shown 

in separate panels for better visualization. 

 

AAG, α1-acid glycoprotein 
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Supplementary Figure 6. Reported percent increase in children’s kidney volume (a) and liver 

volume (b) with obesity for a number of studies found in the literature search. Dashed lines 

represent the median increase (18% and 19% for kidney and liver, respectively) across all of the 

studies for reference. 
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Supplementary Figure 7. Simulated cardiac output in virtual children. Panel (a) represents 

changes in cardiac output with age for 1,500 virtual children without (blue) and 1,500 virtual 

children with obesity (red). Solid lines represent the central tendency, which is the Loess line as 

calculated by the generalized additive model. Panel (b) represents simulated versus reported 

cardiac output values for children with obesity. Gray points represent simulated cardiac output 

for 10,000 virtual children, and blue points represented reported values with corresponding 

reported variation. 
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Supplementary Figure 8. Population simulations (n=250) of plasma clindamycin concentration 

after adjusting fraction unbound using reported AAG concentrations using “individualized 

populations” for each observed pediatric subject with obesity that are matched to that particular 

subject’s demographics and dosing regimen. The shaded regions are the 90% model prediction 

interval, which are overlaid with points representing observed plasma concentrations from the 

POP01, CLIN01, and External Data Study. 

AAG, α1-acid glycoprotein; CLIN01, Safety and Pharmacokinetics of Clindamycin in Pediatric 

Subjects with BMI ≥ 85th Percentile (ClinicalTrials.gov #NCT01744730) Study; POP01, 

Pharmacokinetics of Understudied Drugs Administered to Children Per Standard of Care 

(ClinicalTrials.gov #NCT01431326) Study 
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Supplementary Figure 9. Population simulations (n=250) of plasma trimethoprim concentration 

using “individualized populations” for each observed pediatric subject without obesity that are 

matched to that particular subject’s demographics and dosing regimen. The shaded regions are 

the 90% model prediction interval, which are overlaid with points representing observed plasma 

concentrations from the External Data Study. 
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Supplementary Figure 10. Population simulations (n=250) of plasma sulfamethoxazole 

concentration using “individualized populations” for each observed pediatric subject without 

obesity that are matched to that particular subject’s demographics and dosing regimen. The 

shaded regions are the 90% model prediction interval, which are overlaid with points 

representing observed plasma concentrations from the External Data Study. 
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Supplementary Figure 11. Population simulations (n=250) of plasma trimethoprim 

concentration using “individualized populations” for each observed pediatric subject with obesity 

that are matched to that particular subject’s demographics and dosing regimen. The shaded 

regions are the 90% model prediction interval, which are overlaid with points representing 

observed plasma concentrations from the POP01 and External Data Study. 

POP01, Pharmacokinetics of Understudied Drugs Administered to Children Per Standard of Care 

(ClinicalTrials.gov #NCT01431326) Study 
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Supplementary Figure 12. AFE for pediatric subjects with obesity who received trimethoprim 

(a, c, e, and g) and sulfamethoxazole (b, d, f, and h) plotted versus age and body size. Dashed 

lines represent 2-fold error for reference. AFE was calculated using median simulated 

concentration. Ext. BMI percentile is calculated as BMI divided by the 95th BMI percentile for a 

subject’s age and sex, where children with an extended BMI percentile ≥ 100% are considered 

obese. 

AFE, average fold error; BMI, body mass index; Perc., percentile; Ext., extended; POP01, 

Pharmacokinetics of Understudied Drugs Administered to Children Per Standard of Care 

(ClinicalTrials.gov #NCT01431326) Study; SMX, sulfamethoxazole; TMP, trimethoprim 
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Supplementary Figure 13. Population simulations (n=250) of plasma sulfamethoxazole 

concentration using “individualized populations” for each observed pediatric subject with obesity 

that are matched to that particular subject’s demographics and dosing regimen. The shaded 

regions are the 90% model prediction interval, which are overlaid with points representing 

observed plasma concentrations from the POP01 and External Data Study. 

POP01, Pharmacokinetics of Understudied Drugs Administered to Children Per Standard of Care 

(ClinicalTrials.gov #NCT01431326) Study  
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Supplementary Figure 14. Changes in simulated weight-normalized clearance (a, c, e) and 

weight-normalized volume of distribution (b, d, f) for clindamycin (a, b), trimethoprim (c, d), 

and sulfamethoxazole (e, f) with increasing body size, or extended BMI percentile. Clearance 

and volume of distribution were calculated from virtual children aged 6 – 12 years with and 

without obesity. Extended BMI percentile is calculated as BMI divided by the 95th BMI 

percentile for a subject’s age and sex, where children with an extended BMI percentile ≥ 100% 

are considered obese. Virtual children received single doses of 600 mg IV infusion (30 min) 

clindamycin, 160 mg PO trimethoprim, and 800 mg PO sulfamethoxazole. The shaded regions 

denote the 90% (95th and 5th percentiles), 80% (90th and 10th percentiles), and 50% (75th and 25th 

percentiles) prediction intervals from lightest to darkest color intensity, respectively. The black 

line denotes the median. Note that variability in PK parameters appears decreased at the upper 

extremity of extended BMI percentile due to a lower number of virtual subjects in this range. 

BMI, body mass index; CLIN, clindamycin; IV, intravenous; PO, oral dose; SMX, 

sulfamethoxazole; TMP, trimethoprim 
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Supplementary Figure 15. Changes in simulated weight-normalized clearance (a, c, e) and 

weight-normalized volume of distribution (b, d, f) for clindamycin (a, b), trimethoprim (c, d), 

and sulfamethoxazole (e, f) with increasing body size, or extended BMI percentile. Clearance 

and volume of distribution were calculated from virtual children aged 2 – 6 years with and 

without obesity. Extended BMI percentile is calculated as BMI divided by the 95th BMI 

percentile for a subject’s age and sex, where children with an extended BMI percentile ≥ 100% 

are considered obese. Virtual children received single doses of 600 mg IV infusion (30 min) 

clindamycin, 160 mg PO trimethoprim, and 800 mg PO sulfamethoxazole. The shaded regions 

denote the 90% (95th and 5th percentiles), 80% (90th and 10th percentiles), and 50% (75th and 25th 

percentiles) prediction intervals from lightest to darkest color intensity, respectively. The black 

line denotes the median. Note that variability in PK parameters appears decreased at the upper 

extremity of extended BMI percentile due to a lower number of virtual subjects in this range. 

BMI, body mass index; CLIN, clindamycin; IV, intravenous; PO, oral dose; SMX, 

sulfamethoxazole; TMP, trimethoprim 
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Supplementary Figure 16. Changes in simulated absolute clearance (a, c, e) and volume of 

distribution (b, d, f) for clindamycin (a, b), trimethoprim (c, d), and sulfamethoxazole (e, f) with 

increasing body size, or extended BMI percentile. Clearance and volume of distribution were 

calculated from virtual children aged 12 – 18 years with and without obesity. Extended BMI 

percentile is calculated as BMI divided by the 95th BMI percentile for a subject’s age and sex, 

where children with an extended BMI percentile ≥ 100% are considered obese. Virtual children 

received single doses of 600 mg IV infusion (30 min) clindamycin, 160 mg PO trimethoprim, 

and 800 mg PO sulfamethoxazole. The shaded regions denote the 90% (95th and 5th percentiles), 

80% (90th and 10th percentiles), and 50% (75th and 25th percentiles) prediction intervals from 

lightest to darkest color intensity, respectively. The black line denotes the median. Note that 

variability in PK parameters appears decreased at the upper extremity of extended BMI 

percentile due to a lower number of virtual subjects in this range. 

BMI, body mass index; CLIN, clindamycin; IV, intravenous; PO, oral dose; SMX, 

sulfamethoxazole; TMP, trimethoprim 
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Supplementary Figure 17. Changes in simulated absolute clearance (a, c, e) and volume of 

distribution (b, d, f) for clindamycin (a, b), trimethoprim (c, d), and sulfamethoxazole (e, f) with 

increasing body size, or extended BMI percentile. Clearance and volume of distribution were 

calculated from virtual children aged 6 – 12 years with and without obesity. Extended BMI 

percentile is calculated as BMI divided by the 95th BMI percentile for a subject’s age and sex, 

where children with an extended BMI percentile ≥ 100% are considered obese. Virtual children 

received single doses of 600 mg IV infusion (30 min) clindamycin, 160 mg PO trimethoprim, 

and 800 mg PO sulfamethoxazole. The shaded regions denote the 90% (95th and 5th percentiles), 

80% (90th and 10th percentiles), and 50% (75th and 25th percentiles) prediction intervals from 

lightest to darkest color intensity, respectively. The black line denotes the median. Note that 

variability in PK parameters appears decreased at the upper extremity of extended BMI 

percentile due to a lower number of virtual subjects in this range. 

BMI, body mass index; CLIN, clindamycin; IV, intravenous; PO, oral dose; SMX, 

sulfamethoxazole; TMP, trimethoprim 
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Supplementary Figure 18. Changes in simulated absolute clearance (a, c, e) and volume of 

distribution (b, d, f) for clindamycin (a, b), trimethoprim (c, d), and sulfamethoxazole (e, f) with 

increasing body size, or extended BMI percentile. Clearance and volume of distribution were 

calculated from virtual children aged 2 – 6 years with and without obesity. Extended BMI 

percentile is calculated as BMI divided by the 95th BMI percentile for a subject’s age and sex, 

where children with an extended BMI percentile ≥ 100% are considered obese. Virtual children 

received single doses of 600 mg IV infusion (30 min) clindamycin, 160 mg PO trimethoprim, 

and 800 mg PO sulfamethoxazole. The shaded regions denote the 90% (95th and 5th percentiles), 

80% (90th and 10th percentiles), and 50% (75th and 25th percentiles) prediction intervals from 

lightest to darkest color intensity, respectively. The black line denotes the median. Note that 

variability in PK parameters appears decreased at the upper extremity of extended BMI 

percentile due to a lower number of virtual subjects in this range. 

BMI, body mass index; CLIN, clindamycin; IV, intravenous; PO, oral dose; SMX, 

sulfamethoxazole; TMP, trimethoprim 
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Supplementary Figure 19. Boxplots of simulated clindamycin AUC0-8,ss in virtual children with 

and without obesity (n = 1,000) following population simulations. All virtual children received 

either recommended dosing of 12 mg/kg for children >2-6 years or 10 mg/kg for children >6-18 

years. Simulated exposure in virtual children without obesity was previously published [13]. 

Boxes represent the median and IQR, and whiskers extend to the minimum and maximum 

values. 

AUC0-8,ss, steady-state area under the concentration time curve from 0 to 8 hours; IQR, 

interquartile range 
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Supplementary Figure 20. Boxplots of simulated trimethoprim and sulfamethoxazole AUCss in 

virtual children with (n = 1,000) and without obesity following population simulations. All 

virtual children received recommended dosing of 6 and 30 mg/kg for children >2-12 years and 4 

and 20 mg/kg for children >12-18 years for trimethoprim and sulfamethoxazole, respectively. 

Simulated exposure in virtual children without obesity was previously published [14]. Boxes 

represent the median and IQR, and whiskers extend to the minimum and maximum values. The 

solid line represents the target AUCss efficacy threshold for trimethoprim, and the dashed lines 

represent the toxicity AUCss threshold for both trimethoprim and sulfamethoxazole. 

AUCss, steady-state area under the concentration time curve from 0 to 8 hours; IQR, interquartile 

range; SMX, sulfamethoxazole; TMP, trimethoprim 
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Supplementary Figure 21. Population simulations (n=250) of plasma sulfamethoxazole 

concentration using “individualized populations” for each observed pediatric subject with obesity 

that are matched to that particular subject’s demographics and dosing regimen, after increasing 

NAT2 clearance five-fold for obesity. The shaded regions are the 90% model prediction interval, 

which are overlaid with points representing observed plasma concentrations from the POP01 and 

External Data Study. 

NAT2, N-acetyl transferase 2; POP01, Pharmacokinetics of Understudied Drugs Administered to 

Children Per Standard of Care (ClinicalTrials.gov #NCT01431326) Study  
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Supplementary Figure 22. Height versus age for male (a) and female (b) children. Simulated 

Asian, Black, Mexican, and White American virtual children with obesity are represented by the 

gray points. The central tendency of the data for all NHANES subjects is represented by the blue 

line, which is the Loess line as calculated by the generalized additive model. Average reported 

ICRP values for each age bin are represented by the red points. 

ICRP, International Commission on Radiological Protection; NHANES, National Health and 

Nutrition Examination Survey  
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Supplementary Figure 23. Weight versus height for male (a), and female (b) children. 

Simulated Asian, Black, Mexican, and White American virtual children with obesity are 

represented by the gray points. The central tendency of the data for NHANES subjects with 

obesity is represented by the blue lines, which are the Loess line as calculated by the generalized 

additive model. Average reported ICRP values, developed from observed children without 

obesity, for each age bin are represented by the red points. 

ICRP, International Commission on Radiological Protection; NHANES, National Health and 

Nutrition Examination Survey 
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Supplementary Figure 24. Population simulations (n=100) of plasma clindamycin 

concentrations digitized from healthy adult volunteers receiving orally administered 

clindamycin. Shaded regions represent the 90% model prediction interval, and points are 

digitized observed plasma concentrations [15-21]. Simulated dosing included 150 mg (a), 600 

mg (b, c, d, f),  and 300 mg (e) single oral doses and 600 mg multiple oral dosing every 12 hours 

(g).  
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Supplementary Figure 25. AFE for pediatric subjects with obesity who received clindamycin 

plotted versus AAG without adjusting fraction unbound based on observed AAG concentration. 

Dashed lines represent 2-fold error for reference. AFE was calculated using median simulated 

concentration.  

AAG, α1-acid glycoprotein; AFE, average fold error; BMI, body mass index 
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Supplementary Figure 26. Population simulations (n=250) of plasma clindamycin 

concentration after adjusting fraction unbound using reported AAG concentrations using 

“individualized populations” for each observed pediatric subject without obesity that are 

matched to that particular subject’s demographics and dosing regimen. The shaded regions are 

the 90% model prediction interval, which are overlaid with points representing observed plasma 

concentrations from the External Data Study. 

AAG, α1-acid glycoprotein 
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Supplementary Figure 27. AFE for pediatric subjects with obesity who received clindamycin 

plotted versus age, body size, and AAG after adjusting fraction unbound based on observed 

AAG concentration. Dashed lines represent 2-fold error for reference. AFE was calculated using 

median simulated concentration. Note that one subject (aged 7 years with a BMI of 22.9, BMI 

percentile of 98.3%, and AAG concentration of 2.8 mg/mL) with an outlying AFE of 21.0 was 

removed for better visualization. Ext. BMI percentile is calculated as BMI divided by the 95th 

BMI percentile for a subject’s age and sex, where children with an extended BMI percentile ≥ 

100% are considered obese. 

AAG, α1-acid glycoprotein; AFE, average fold error; BMI, body mass index; CLIN01, Safety 

and Pharmacokinetics of Clindamycin in Pediatric Subjects with BMI ≥ 85th Percentile 

(ClinicalTrials.gov #NCT01744730) Study; Ext., extended; POP01, Pharmacokinetics of 

Understudied Drugs Administered to Children Per Standard of Care (ClinicalTrials.gov 

#NCT01431326) Study  
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4 SUPPLEMENTARY TABLES 

 

Supplementary Table 1. Summary of clinical studies used for pediatric PBPK modeling. 

CLINDAMYCIN 

POP01 Study Originally described in Gonzalez et al [22] 

 Nonobese PBPK modeling published in Hornik et al [13] 

 Obese PBPK modeling presented here 

External Data Study Originally published here 

 Nonobese PBPK modeling presented here 

 Obese PBPK modeling presented here 

CLIN01 Study Originally described in Smith et al [23] 

 Obese PBPK modeling presented here 

TRIMETHOPRIM / SULFAMETHOXAZOLE 

POP01 Study Originally described in Autmizguine et al [9] 

 Nonobese PBPK modeling published in Thompson et al [13] 

 Obese PBPK modeling presented here 

External Data Study Originally described in Wu et al [24] 

 Nonobese PBPK modeling presented here 

 Obese PBPK modeling presented here 

 

CLIN01, Safety and Pharmacokinetics of Clindamycin in Pediatric Subjects with BMI ≥ 85th 

Percentile (ClinicalTrials.gov #NCT01744730) Study; PBPK, physiologically-based 

pharmacokinetic; POP01, Pharmacokinetics of Understudied Drugs Administered to Children 

Per Standard of Care (ClinicalTrials.gov #NCT01431326) Study 
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Supplementary Table 2. Population demographics for pediatric subjects without obesity who 

received clindamycin from the External Data Study used to evaluate the pediatric PBPK model. 

Demographicsa External Data Study (n=16) 

n, samples 88 

Age, years 7.2 (3.6, 16.0) 

Age group  

2 ≤ and < 6 years 6 (37.5%) 

6 ≤ and < 12 years 6 (37.5%) 

12 ≤ and < 21 years 4 (25.0%) 

Weight, kg 25.1 (14.7, 63.2) 

Height, cm 126.0 (96.5, 176.0) [1b] 

BMI, kg/m2 16.6 (14.2, 22.4) [1b] 

BMI percentile, % 60.4 (18.5, 85.9) [1b] 

Extended BMI percentile, % 86.6 (68.1, 92.4) [1b] 

Male 8 (50.0%) 

Race  

White 13 (81.3%) 

Black or African American 2 (12.5%) 

Asian 0 (0%) 

 Native Hawaiian/Pacific Islander 0 (0%) 

Unknown/Not reported 1 (6.3%) 

Ethnicity  

Hispanic/Latino 0 (0%) 

Not Hispanic/Latino 0 (0%) 

Unknown/Not reported 16 (100.0%) 

AAG, mg/mL 1.75 (0.29, 3.19) 

Albumin, g/dL 3.30 (3.20, 4.00) [11] 

SCR, mg/dL 0.40 (0.23, 0.63) 

AST, U/L [16] 

ALT, U/L [16] 

 

aDemographics recorded at the time of the first study dose were used to calculate descriptive 

statistics. Values are medians (range) [missing] for continuous variables and counts (%) for 

categorical variables. Extended BMI percentile is calculated as BMI divided by the 95th BMI 

percentile for a subject’s age and sex, where children with an extended BMI percentile ≥ 100% 

are considered obese. 

bOne subject did not have a height recorded, so BMI, BMI percentile, and extended BMI 

percentile could not be calculated. This subject was included in the nonobese cohort since her 

weight was approximately 50th percentile for age. 
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AAG, α1-acid glycoprotein; ALT, alanine transaminase; AST, aspartate aminotransferase; BMI, 

body mass index; SCR, serum creatinine
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Supplementary Table 3. Population demographics for pediatric subjects with obesity who received clindamycin from the POP01, 

CLIN01, and External Data Study and combined dataset. 

Demographicsa POP01 

 (n=84) 

CLIN01 (n=13) External Data 

Study (n=4) 

Combined (n=101) 

n, samples 107 53 28 188 

Age, years 12.3 (2.1, 20.2) 13.5 (9.1, 17.4) 8.1 (4.0, 12.7) 12.5 (2.1, 20.2) 

Age group     

2 ≤ and < 6 years 12 (14.3%) 0 (0%) 1 (25.0%) 13 (12.9%) 

6 ≤ and < 12 years 27 (32.1%) 3 (23.1%) 2 (50.0%) 32 (31.7%) 

12 ≤ and < 21 years 45 (53.6%) 10 (76.9%) 1 (25.0%) 56 (55.4%) 

Weight, kg 63.9 (12.8, 139.8) 76.4 (49.5, 224.0) 51.1 (16.8, 72.7) 66.6 (12.8, 224.0) 

Height, cm 147.5 (81.0, 193.0) 155.0 (134.4, 188.0) 123.2 (96.0, 156.0) 152.0 (81.0, 193.0) 

BMI, kg/m2 28.8 (18.9, 46.7) 28.9 (23.3, 74.0) 27.2 (18.2, 44.6) 28.9 (18.2, 74.0) 

BMI percentile, % 98.5 (95.0, 100.0) 98.1 (95.7, 100.0) 98.2 (97.0, 99.9) 98.4 (95.0, 100.0) 

Extended BMI percentile, % 115.6 (100.0, 176.6) 116.1 (101.9, 259.6) 116.1 (102.2, 227.2) 116.1 (100.0, 259.6) 

Male 41 (48.8%) 12 (92.3%) 2 (50.0%) 55 (54.5%) 

Race     

White 63 (75.0%) 11 (84.6%) 4 (100.0%) 78 (77.2%) 

Black or African 

American 

12 (14.3%) 1 (7.7%) 0 (0%) 13 (12.9%) 

Asian 1 (1.2%) 0 (0%) 0 (0%) 1 (1.0%) 

 Native 

Hawaiian/Pacific         

Islander 

1 (1.2%) 0 (0%) 0 (0%) 1 (1.0%) 

Unknown/Not reported 7 (8.3%) 1 (7.7%) 0 (0%) 8 (7.9%) 

Ethnicity     

Hispanic/Latino 31 (36.9%) 1 (7.7%) 0 (0%) 32 (31.7%) 

Not Hispanic/Latino 53 (63.1%) 11 (84.6%) 0 (0%) 64 (63.4%) 

Unknown/Not reported 0 (0%) 1 (7.7%) 4 (100.0%) 5 (5.0%) 

AAG, mg/mL 2.43 (0.84, 5.72) [4] 2.04 (0.54, 3.31) 0.97 (0.78, 2.98) 2.37 (0.54, 5.72) [4] 

Albumin, g/dL 3.22 (1.90, 4.40) 

[59] 

3.70 (2.60, 4.43) 2.85 (2.70, 3.00) [2] 3.45 (1.90, 4.43) 

[63] 
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SCR, mg/dL 0.60 (0.20, 1.60) 

[46] 

0.58 (0.31, 1.54) 0.47 (0.27, 0.62) 0.60 (0.20, 1.60) 

[50] 

AST, U/L 36 (15, 165) [69] 23 (8, 151) [4] 30 (8, 165) [73] 

ALT, U/L 36 (9, 165) [69] 28 (10, 114) [4] 32 (9, 165) [73] 

 

aDemographics recorded at the time of the first study dose were used to calculate descriptive statistics. Values are medians (range) 

[missing] for continuous variables and counts (%) for categorical variables. Extended BMI percentile is calculated as BMI divided by 

the 95th BMI percentile for a subject’s age and sex, where children with an extended BMI percentile ≥ 100% are considered obese. 

 

AAG, α1-acid glycoprotein; ALT, alanine transaminase; AST, aspartate aminotransferase; BMI, body mass index; CLIN01, Safety 

and Pharmacokinetics of Clindamycin in Pediatric Subjects with BMI ≥ 85th Percentile (ClinicalTrials.gov #NCT01744730) Study; 

POP01, Pharmacokinetics of Understudied Drugs Administered to Children Per Standard of Care (ClinicalTrials.gov #NCT01431326) 

Study; SCR, serum creatinine 
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Supplementary Table 4. Population demographics for pediatric subjects without obesity who 

received trimethoprim/sulfamethoxazole from the External Data Study to evaluate the pediatric 

PBPK model. 

Demographicsa External Data Study (n=8) 

n, samples (TMP; SMX) 50; 50 

Age, years 7.1 (2.8, 13.4) 

Age group  

2 ≤ and < 6 years 4 (50%) 

6 ≤ and < 12 years 1 (12.5%) 

12 ≤ and < 21 years 3 (37.5%) 

Weight, kg 25.3 (11.1, 53.1) 

Height, cm 122.1 (80.0, 157.0) 

BMI, kg/m2 16.6 (13.9, 21.5) 

BMI percentile, % 56.0 (4.7, 82.3) 

Extended BMI percentile, % 81.6 (58.0, 94.0) 

Male 6 (75.0%) 

Race  

White 7 (87.5%) 

Black or African American 0 (0%) 

Asian 0 (0%) 

American Indian/Alaskan Native 0 (0%) 

Native Hawaiian/Pacific Islander 1 (12.5%) 

Multiple races 0 (0%) 

Unknown/Not reported 0 (0%) 

Ethnicity  

Hispanic/Latino 0 (0%) 

Not Hispanic/Latino 0 (0%) 

Unknown/Not reported 4 (100%) 

Albumin, g/dL 3.75 (3.27, 4.10) [5] 

SCR, mg/dL 0.37 (0.25, 0.57) 

 

aDemographics recorded at the time of the first study dose were used to calculate descriptive 

statistics. Values are medians (range) [missing] for continuous variables and counts (%) for 

categorical variables. Extended BMI percentile is calculated as BMI divided by the 95th BMI 

percentile for a subject’s age and sex, where children with an extended BMI percentile ≥ 100% 

are considered obese. 

 

BMI, body mass index; SCR, serum creatinine; SMX, sulfamethoxazole; TMP, trimethoprim 
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Supplementary Table 5. Population demographics for pediatric subjects with obesity who 

received trimethoprim/sulfamethoxazole from the POP01 and External Data Study and combined 

dataset. 

Demographicsa POP01 (n=46) External Data 

Study (n=4) 

Combined (n=50) 

n, samples (TMP; SMX) 62; 64 25; 25 87; 89 

Age, years 14.3 (2.1, 20.2) 11.2 (7.0, 14.7) 14.0 (2.1, 20.2) 

Age group    

2 ≤ and < 6 years 4 (8.7%) 0 (0%) 4 (8.0%) 

6 ≤ and < 12 years 12 (26.1%) 3 (75.0%) 15 (30.0%) 

12 ≤ and < 21 years 30 (65.2%_ 1 (25.0%) 31 (62.0%) 

Weight, kg 70.3 (12.6, 147.9) 53.6 (32.2, 65.4) 68.1 (12.6, 147.9) 

Height, cm 156.1 (80.2, 190.0) 141.9 (124.2, 

150.0) 

155.0 (80.2, 190.0) 

BMI, kg/m2 30.3 (18.4, 46.1) 26.6 (20.9, 29.1) 29.4 (18.4, 46.1) 

BMI percentile, % 98.3 (83.0, 100.0) 96.9 (96.2, 98.6) 98.1 (83.0, 100.0) 

Extended BMI percentile, % 118.1 (100.3, 

173.9) 

105.9 (104.3, 

121.6) 

117.1 (100.3, 

173.9) 

Male 33 (71.7%) 2 (50.0%) 35 (70.0%) 

Race    

White 31 (67.4%) 4 (100.0%) 35 (70.0%) 

Black or African 

American 

8 (17.4%) 0 (0%) 8 (16.0%) 

Asian 1 (2.2%) 0 (0%) 1 (2.0%) 

American 

Indian/Alaskan 

Native 

1 (2.2%) 0 (0%) 1 (2.0%) 

Native 

Hawaiian/Pacific         

Islander 

2 (4.3%) 0 (0%) 2 (4.0%) 

Multiple races 2 (4.3%) 0 (0%) 2 (4.0%) 

Unknown/Not reported 1 (2.2%) 0 (0%) 1 (2.0%) 

Ethnicity    

Hispanic/Latino 5 (10.9%) 0 (0%) 5 (10.0%) 

Not Hispanic/Latino 40 (87.0%) 0 (0%) 40 (80.0%) 

Unknown/Not reported 1 (2.2%) 4 (100%) 5 (10.0%) 

SCR, mg/dL 0.60 (0.20, 4.50) 

[7] 

0.50 (0.40, 0.57) 0.60 (0.20, 4.50) 

[7] 

 

aDemographics recorded at the time of the first study dose were used to calculate descriptive 

statistics. Values are medians (range) [missing] for continuous variables and counts (%) for 

categorical variables. Extended BMI percentile is calculated as BMI divided by the 95th BMI 

percentile for a subject’s age and sex, where children with an extended BMI percentile ≥ 100% 

are considered obese. 
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BMI, body mass index; POP01, Pharmacokinetics of Understudied Drugs Administered to 

Children Per Standard of Care (ClinicalTrials.gov #NCT01431326) Study; SCR, serum 

creatinine; SMX, sulfamethoxazole; TMP, trimethoprim 
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Supplementary Table 6. Parameters used in clindamycin PBPK model development. 

Parameter 
Clindamycin 

phosphate 
Clindamycin Source 

PHYSICOCHEMICAL PROPERTIES 

Molecular weight, g/mol 504.96 424.98 Hornik et al [13] 

Effective molecular weight, g/mol 482.96 402.98 Hornik et al [13] 

pKa value 6.78 7.55 Hornik et al [13] 

Compound type base base Hornik et al [13] 

Lipophilicity 0.95 2.16 Hornik et al [13] 

Protein binding partner AAG AAG Hornik et al [13] 

Fraction unbound 0.22 0.06 Hornik et al [13] 

Solubility, mg/L 3,220 30.6 Hornik et al [13] 

Solubility reference pH 7.0 7.0 Hornik et al [13] 

Solubility gain per charge 1,000 1,000 Hornik et al [13] 

Blood to plasma ratio 0.62 0.61 Calculated valuea 

ABSORPTION 

Dissolution function --- Weibull Optimized 

Dissolution time, min --- 71.69 Optimized 

Dissolution shape --- 0.92 Optimized 

Lag time, h --- 0 Optimized 

Specific intestinal permeability, 

cm/min 
1.19e-7 6.73e-3 

Calculated valueb 

/ Optimized 

Specific organ permeability, cm/min 2.02e-5 9.71e-4 Calculated valuec 

DISTRIBUTION 

Partition coefficients Rodgers & 

Rowland 

Rodgers & 

Rowland 

Literature [25] 

Cellular permeabilities 
PK-Sim® 

Standard 

Charge dependent 

Schmidt 

PK-Sim® 

algorithm 

METABOLISM 

Alkaline phosphatase    

     Reference concentration, μmol/L 1.0 --- Hornik et al [13] 

     CLint, L/min 0.80 --- Hornik et al [13] 

     CLspec, 1/mind 0.51 --- Hornik et al [13] 

CYP3A4    

     Reference concentration, μmol/L --- 4.32 Hornik et al [13] 

     CLint, μL/min/pmol CYP --- 0.51 Hornik et al [13] 

CYP3A5    

     Reference concentration, μmol/L --- 0.04 Hornik et al [13] 

     CLint, μL/min/pmol CYP --- 7.00 Hornik et al [13] 

EXCRETION 

GFR fraction 0.044 1.0 Hornik et al [13] 

Renal transporter    

     Reference concentration, μmol/L --- 1.0 Hornik et al [13] 

     Vmax, μmol/L/mine --- 1,829.24 Hornik et al [13] 
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     Km, μMe --- 10,000 Hornik et al [13] 
 

a[(𝑓𝑤𝑎𝑡𝑒𝑟𝑟𝑏𝑐
+ 𝑓𝑙𝑖𝑝𝑖𝑑𝑠𝑟𝑏𝑐

∗ 10𝑙𝑜𝑔𝑃 + 𝑓𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠𝑟𝑏𝑐
∗ 𝐾𝑃𝑟𝑜𝑡) ∗ 𝑓𝑢 ∗ 𝐻𝐶𝑇] − 𝐻𝐶𝑇 + 1; where 

fwater_rbc is the fractional volume content of water in blood cells, flipids_rbc is the fractional volume 

content of lipid in blood cells, logP is the lipophilicity measure, fproteins_rbc is the fractional 

volume content of protein in blood cells, KProt is partition coefficient of water to protein, fu is 

the fraction unbound, and HCT is the hematocrit. 

b 266 ∗ (𝑀𝑊𝑒𝑓𝑓 ∗ 109)
−4.5

∗ 10𝑙𝑜𝑔𝑃 ∗ 60 ∗ 10−1; where MWeff is the effective molecular weight 

and logP is the lipophilicity measure. 

c (
𝑀𝑊𝑒𝑓𝑓∗109

336
)

−6

∗
10𝑙𝑜𝑔𝑃

5
∗ 10−5; where MWeff is the effective molecular weight and logP is the 

lipophilicity measure. 

dCLspec is a PK-Sim® software-specific term that is calculated by 𝐶𝐿𝑠𝑝𝑒𝑐 =
𝐶𝐿𝑖𝑛𝑡

𝑉∗𝑓𝑐𝑒𝑙𝑙
; where V is the 

volume of the liver and fcell is the fraction intracellular in the liver. 

eNote that these values, as inputted in PK-Sim®, are calculated for liver tissue. 

 

AAG, α1-acid glycoprotein; CLint, intrinsic clearance; CLspec, specific clearance; CYP, 

cytochrome P450; Km, concentration of half-maximal metabolism or transport; PBPK, 

physiologically-based pharmacokinetic; pKa, negative log of the acid dissociation constant; 

Vmax, maximal rate of metabolism or transport 
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Supplementary Table 7. Parameters used in trimethoprim/sulfamethoxazole PBPK model 

development. 

Parameter Trimethoprim Sulfamethoxazole Source 

PHYSICOCHEMICAL PROPERTIES 

Molecular weight, g/mol 290.32 253.28 Thompson et al [14] 

Effective molecular weight, g/mol 290.32 253.28 Thompson et al [14] 

pKa value 7.3 6.0 Thompson et al [14] 

Compound type base acid Thompson et al [14] 

Lipophilicity 1.36 0.89 Thompson et al [14] 

Protein binding partner albumin albumin Thompson et al [14] 

Fraction unbound 0.56 0.30 Thompson et al [14] 

Solubility, mg/L 500 700 Thompson et al [14] 

Solubility reference pH 7.0 7.0 Thompson et al [14] 

Solubility gain per charge 1,000 1,000 Thompson et al [14] 

Blood to plasma ratio 0.79 0.65 Calculated valuea 

ABSORPTION 

Dissolution function Weibull Weibull Thompson et al [14] 

Dissolution time, min 15 20 Thompson et al [14] 

Dissolution shape 0.77 0.73 Thompson et al [14] 

Lag time, h 0 0 Optimized 

Specific intestinal permeability, 

cm/min 
5.9e-6 4.52e-5 Thompson et al [14] 

Specific organ permeability, cm/min 1.11e-3 8.46e-4 Calculated valueb 

DISTRIBUTION 

Partition coefficients Rodgers & 

Rowland 

Rodgers & 

Rowland 

Literature [25] 

Cellular permeabilities 
PK-Sim® 

Standard 
PK-Sim® Standard PK-Sim® algorithm 

METABOLISM 

CYP2C9    

     Reference concentration, μmol/L 3.84 3.84 Thompson et al [14] 

     CLint, mL/min 4.19 5.21 Thompson et al [14] 

     CLspec, 1/minc 0.0027 0.0033 Thompson et al [14] 

CYP3A4    

     Reference concentration, μmol/L 4.32 --- Thompson et al [14] 

     CLint, mL/min 4.19 --- Thompson et al [14] 

     CLspec, 1/minc 0.0027 --- Thompson et al [14] 

NAT2 (unadjusted)    

     Reference concentration, μmol/L --- 1.0 Thompson et al [14] 

     CLint, mL/min --- 5.21 Thompson et al [14] 

     CLspec, 1/minc --- 0.0033 Thompson et al [14] 

NAT2 (adjusted with obesity)    

     Reference concentration, μmol/L --- 1.0 Thompson et al [14] 

     CLint, mL/min --- 26.05 Chiney et al [26] 
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     CLspec, 1/min --- 0.0165 Chiney et al [26] 

EXCRETION 

GFR fraction 1.0 0.117 Thompson et al [14] 

Renal transporter    

     Reference concentration, μmol/L 1.0 --- Thompson et al [14] 

     Vmax, μmol/L/mind 1,306.6 --- Thompson et al [14] 

     Km, μMd 10,000 --- Thompson et al [14] 

 

a[(𝑓𝑤𝑎𝑡𝑒𝑟𝑟𝑏𝑐
+ 𝑓𝑙𝑖𝑝𝑖𝑑𝑠𝑟𝑏𝑐

∗ 10𝑙𝑜𝑔𝑃 + 𝑓𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠𝑟𝑏𝑐
∗ 𝐾𝑃𝑟𝑜𝑡) ∗ 𝑓𝑢 ∗ 𝐻𝐶𝑇] − 𝐻𝐶𝑇 + 1; where 

fwater_rbc is the fractional volume content of water in blood cells, flipids_rbc is the fractional volume 

content of lipid in blood cells, logP is the lipophilicity measure, fproteins_rbc is the fractional 

volume content of protein in blood cells, KProt is partition coefficient of water to protein, fu is 

the fraction unbound, and HCT is the hematocrit. 

b (
𝑀𝑊𝑒𝑓𝑓∗109

336
)

−6

∗
10𝑙𝑜𝑔𝑃

5
∗ 10−5; where MWeff is the effective molecular weight and logP is the 

lipophilicity measure. 

cCLspec is a PK-Sim® software-specific term that is calculated by 𝐶𝐿𝑠𝑝𝑒𝑐 =
𝐶𝐿𝑖𝑛𝑡

𝑉∗𝑓𝑐𝑒𝑙𝑙
; where V is the 

volume of the liver and fcell is the fraction intracellular in the liver. 

dNote that these values, as inputted in PK-Sim®, are calculated for liver tissue. 

 

CLint, intrinsic clearance; CLspec, specific clearance; CYP, cytochrome P450; Km, concentration 

of half-maximal metabolism or transport; NAT2, N-acetyl transferase 2; PBPK, physiologically-

based pharmacokinetic; pKa, negative log of the acid dissociation constant; Vmax, maximal rate 

of metabolism or transport 
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Supplementary Table 8. Population demographics for virtual pediatric subjects with obesity 

who were used in dosing simulations for clindamycin and trimethoprim/sulfamethoxazole. 

Demographicsa Clindamycin Simulations TMP/SMX Simulations 

Age, years 9.1 (2.1, 18.0) 12.0 (2.0, 18.0) 

Age group   

   2 ≤ and < 6 years 1,000 (33.3%) 
1,000 (50.0%)c 

   6 ≤ and < 12 years 1,000 (33.3%) 

   12 ≤ and < 21 years 1,000 (33.3%) 1,000 (50.0%) 

Weight, kg 43.9 (12.1, 174.5) 61.9 (12.8, 174.5) 

Height, cm 134.5 (77.1, 200.5) 78.1 (149.9, 200.5) 

BMI, kg/m2 24.5 (17.8, 74.3) 17.8 (27.1, 74.3) 

BMI percentile, % 97.8 (95.0, 100.0) 97.6 (95.0, 100.0) 

Extended BMI percentile, % 108.7 (100.0, 287.3) 109.1 (100.0, 287.3) 

Obesity Stageb   

   Stage I 2,340 (78.0%) 1,555 (77.8%) 

   Stage II 491 (16.4%) 332 (16.6%) 

   Stage III 169 (5.6%) 113 (5.7%) 

Male 33 (71.7%) 983 (49.2%) 

 

aValues are medians (range) for continuous variables and counts (%) for categorical variables. 

Extended BMI percentile is calculated as BMI divided by the 95th BMI percentile for a subject’s 

age and sex, where children with an extended BMI percentile ≥ 100% are considered obese. 

bObesity stages are defined by extended BMI percentiles of 100-120% (Stage I), 120-140% 

(Stage II), and >140% (Stage III). 

cOne thousand virtual subjects were generated for each age group for both clindamycin and 

TMP/SMX PBPK model simulations. For clindamycin, the age groups were >2-6 years, >6-12 

years, and <12-18 years. For TMP/SMX, the age groups were >2-12 years and >12-18 years. 

 

BMI, body mass index; SMX, sulfamethoxazole; TMP, trimethoprim 
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Supplementary Table 9. Summarized results from a comprehensive literature search for reported hematocrit values in children with 

obesity. 

n, subjects Age (y) Males Race Weight (kg) BMI (kg/m2) Hematocrit (L/L) Reference 

182 11.6 (2.9) 0% NR 72.1 (22.5) 30.7 (5.8) 0.40 (0.02) Belo et al [27] 

168 11.7 (2.9) 100% NR 76.2 (27.4) 30.5 (6.4) 0.42 (0.03) Belo et al [27] 

43 11.0 (2.4) 65% NR NR NRa 0.38 (0.03) Cacciari et al [28] 

43 16.0 (1.1) 0% NR 126.2 (22.8) 46.0 (6.0) 0.43 (0.03) Elhag et al [29] 

36 16.0 (1.1) 100% NR 126.2 (22.8) 46.0 (6.0) 0.39 (0.03) Elhag et al [29] 

 

Values are mean (standard deviation) unless otherwise noted. 

 

aThe study reported subjects with obesity, but did not report BMI directly. 

 

BMI, body mass index; NR, not reported 
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Supplementary Table 10.  Summarized results from a comprehensive literature search for reported albumin values in children with 

obesity. 

n, 

subjects 

Age (y) Males Race Weight (kg) BMI (kg/m2) Albumin (g/L) Reference 

230 10.1 (3.0)a 57% Non-Hispanic White NR 25.4 (23.1, 28.7)b 4.9 (4.7, 50.5)b Di Costanzo et al [30] 

7 (10, 16)c 43% Non-Hispanic Black (85, 148)c (34.2, 65.6)c 3.6 (3.3, 3.9)b Adelman et al [31] 

1d 10 0% Non-Hispanic Black 94 52 3.3 Adelman et al [31] 

1d 16 0% Non-Hispanic Black 164 65.5 3.6 Adelman et al [31] 

1d 14 100% Non-Hispanic Black 85 38 3.9 Adelman et al [31] 

1d 15 0% Non-Hispanic Black 148 51.6 3.7 Adelman et al [31] 

1d 16 100% Non-Hispanic Black 141 39 3.6 Adelman et al [31] 

1d 16 0% Non-Hispanic Black 105 42.5 3.6 Adelman et al [31] 

1d 16 100% Non-Hispanic Black 103 34.3 3.8 Adelman et al [31] 

47 11.3 (2.7) 40% Egyptian NR NRe 3.5 (0.5) Ahmed et al [32] 

23 10.6 (3.1) 39% Egyptian NR NRe 3.9 (0.2) Ahmed et al [32] 

21 (7, 9)c 52% Asian NR NRe 4.0 (0.2) Wu et al [33] 

42 11.7 (3.1) 52% NR 41.4 (17.7) 18.4 (3.9) 3.8 (0.4) White et al [34] 

10 16.3 (1.7) NRf NR 138.8 51.7 4.3 (0.3) Velhote et al [35] 

242 17.1 (1.6) 24% Non-Hispanic White NR 50.5 (45.2, 58.3)b 4.1 (0.3) Xiao et al [36] 

43 11.0 (2.4) 65% NR NR NRe 4.4 (0.3) Cacciari et al [37] 

36 17.5 (0.3) 44% Non-Hispanic White NR 37.4 (1.2) 4.3 (0.3) Cohen et al [38] 

36 16.0 (1.1) 100% NR 126.2 (22.8) 46.0 (6.0) 4.1 (0.4) Elhag et al [29] 

43 16.0 (1.1) 0% NR 126.2 (22.8) 46.0 (6.0) 4.1 (0.4) Elhag et al [29] 

22 (1, 21)c 36% Non-Hispanic Black NR NRe 3.9 (0.8) Abitbol et al [39] 

22 (1, 21)c 50%) Non-Hispanic Black NR NRe 4.0 (0.5) Abitbol et al [39] 

8 12.0 (2.5) NRf NR 82.8 (23.2) NRe 4.8 (0.2) Widhalm et al [40] 

242 17.1g NRf Non-Hispanic White NR 50.5 (45.2, 58.3)b 4.1 (3.9, 4.4)b Nehus et al [41] 

65 11.3 (2.8) 55% NR NR 27.3 (4.3) 4.5 (0.3) Cindik et al [42] 

23 13.3 (2.7) 48% Non-Hispanic Blackg NR NRe 4.5 (0.3) Alkhouri et al [43] 

37 14.6 (2.7) 51% Non-Hispanic Whiteg NR NRe 4.4 (0.3) Alkhouri et al [43] 

8 11.3 (2.7) 38% NR NR 26.2 (4.4) 4.7 (0.3) Del Chierico et al [44] 

27 12.0 (2.8) 78% NR NR 26.5 (4.4) 4.7 (0.2) Del Chierico et al [44] 
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26 12.3 (2.5) 42% NR NR 27.4 (6.5) 4.8 (0.2) Del Chierico et al [44] 

19 15.2 (1.5) 89% NR NR 35.4 (6.0) 4.7 (0.3) Hudert et al [45] 

17 14.5 (2.2) 59% NR NR 36.7 (5.8) 4.6 (0.3) Hudert et al [45] 

13 14.0 (2.4) 85% NR NR 33.6 (6.9) 4.7 (0.3) Hudert et al [45] 

18 12.8 (2.0) 72% NR NR 32.6 (5.9) 4.6 (0.3) Hudert et al [45] 

60 10.6 (2.7) 33% NR 71.9 (19.4) 35.1 (4.6) 4.4 (0.4) Amin et al [46] 

60 10.1 (3.5) 40% NR 64.0 (13.8) 34.6 (7.8) 4.5 (0.4) Amin et al [46] 

37 7.7 (3.3) 46% NR NR NRe 4.3 (0.2) El-Karaksy et al [47] 

39 7.7 (3.3) 54% Egyptian NR NRe 4.3 (0.2) El-Karaksy et al [47] 

34 14.1 (11.0, 16.7)b 41% Egyptian 78.0 (56.2, 123.9)b NRe 3.7h Gade et al [48] 

36 14.4 (11.1, 17.7) b 58% NR 56.0 (33.2, 75.8)b NRe 3.8h Gade et al [48] 

 

Values are mean (standard deviation) unless otherwise noted. 

 

aReported as median (standard deviation). 

bReported as median (range). 

cReported as (range). 

dReported individual-level data. 

eThe study reported subjects with obesity, but did not report BMI directly. 

fIncludes both male and females subjects with an unreported ratio. 

gReported as the majority. 

hReported as mean. 

 

BMI, body mass index; NR, not reported 
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Supplementary Table 11.  Summarized results from a comprehensive literature search for reported AAG values in children with 

obesity. 

n, subjects Age (y) Males Race Weight (kg) BMI (kg/m2) AAG (g/L) Reference 

48 (3, 6)a NRb Hispanic NR NRc 1.05 (0.9, 1.3)d,e Gibson et al [49] 

876 14.9 (13.9, 16.0)d 46% NR 57.3 (50.5, 64.9)d NRc 0.8 (0.6, 1.1)d Ferrari et al [50] 

 

Values are mean (standard deviation) unless otherwise noted. 

 

aReported as range. 

bIncludes both male and females subjects with an unreported ratio. 

cThe study reported subjects with obesity, but did not report BMI directly. 

dReported as median (range). 

eReported in molar units and converted to mass units using a molecular weight of 42 kDa. 

 

AAG, α1-acid glycoprotein; BMI, body mass index; NR, not reported 
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Supplementary Table 12. Organ volume scaling factors for virtual children with obesity. 

Organ Mean Scaling Factora Standard Deviationa 

Brain 104% 0.3% 

Bone 106% 0.5% 

Gonads 114% 2.6% 

Heartb --- --- 

Kidneys 115% 2.6% 

Large Intestine 114% 2.6% 

Liver 115% 2.3% 

Lungs 114% 2.6% 

Muscle 115% 2.2% 

Pancreas 114% 2.6% 

Small Intestine 114% 2.6% 

Spleen 125% 8.8% 

Stomach 114% 2.6% 

 

aScaling factor mean and standard deviation were determined from organ volumes of adults with 

obesity and normal weight adults reported in Hwaung et al [51]. While scaling factors were 

derived from adults, they were assumed to be similar in children and validated with pediatric 

data when available (Supplementary Table 13; Figure 2) 

bNo significant increase in size with obesity reported. 
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Supplementary Table 13. Summarized results from a comprehensive literature search for kidney and liver sizes in children with and 

without obesity. 

n, subjects Age (y) Measurement 
Nonobese 

(mm)a 

Obese 

(mm)a 
Obese/Nonobese (%) Reference 

KIDNEY 

22 2-4y 

Right kidney length 

6.7 7.5 112 

Konus et al [52] 

26 4-6y 7.4 8.3 112 

32 6-8y 8.0 9.1 114 

27 8-10y 8.0 8.9 111 

15 10-12y 8.9 10.0 112 

22 12-14y 9.4 10.2 109 

11 14-18y 9.2 10.2 111 

133 2-4y 

Right kidney length 

6.4 7.7 120 

Otiv et al [53] 

129 4-6y 6.8 8.0 118 

102 6-8y 7.0 8.0 114 

115 8-10y 7.8 9.1 117 

75 10-12y 8.3 9.8 118 

62 12-14y 8.6 10.2 119 

28 2-3y 

Right kidney length 

6.8 8.5 125 

Coombs et al [54] 

24 3-4y 7.3 9.2 126 

15 4-5y 7.6 9.4 124 

21 5-6y 7.7 9.5 123 

18 6-7y 7.8 9.8 126 

26 7-8y 8.1 10.2 126 

28 8-9y 8.4 10.6 126 

39 9-10y 8.7 11.0 126 

37 10-11y 9.0 11.2 124 

43 11-12y 9.2 11.4 124 

36 12-13y 9.6 11.6 121 

38 13-14y 10.0 11.8 118 

15 14-15y 10.4 11.8 113 
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17 15-16y 10.8 12.1 112 

43 2-4y 

Right kidney length 

6.3 7.4 117 

Thapa et al [55] 

28 4-6y 7.0 8.0 115 

38 6-8y 7.8 8.5 108 

19 8-10y 8.3 9.5 115 

11 10-12y 8.6 9.7 113 

6397 6y Combined kidney volume 12.0 16.7 139 Bakker et al [56] 

1748 0.5-16y Kidney volume 14.0b 17.0b 121 DiZazzo et al [57] 

794 0-18y Right kidney length 10.0 11.8 118 Kim et al [58] 

950 >2y Kidney length 8.1 10.3 127 Mohtasib et al [59] 

368 5-18y Kidney length NR NR 110 Parmaksiz et al [60] 

204 1-19y Kidney length NR NR 105 Zuzuárregui et al [61] 

100 1-19y Kidney length NR NR 106 Soheilipour et al [62] 

671 NR Kidney volume NR NR 125 Wang et al [63] 

Median (range) 118 (105-139)  

LIVER 

27 2-4y 

Liver length 

8.6 10.5 122 

Konus et al [52] 

30 4-6y 10.0 12.4 124 

38 6-8y 10.5 12.3 117 

30 8-10y 10.5 12.8 122 

16 10-12y 11.5 13.6 118 

23 12-14y 11.8 13.6 115 

12 14-18y 12.1 13.9 115 

43 2-4y 

Liver length 

8.7 10.5 121 

Thapa et al [53] 

41 4-6y 9.2 10.7 116 

25 6-8y 9.9 11.8 119 

19 10-12y 10.6 12.7 119 

11 12-14y 11.6 13.0 112 

132 2-4y 

Liver length 

9.0 11.6 130 

Dhingra et al [64] 
115 4-6y 10.1 14.0 139 

51 6-8y 10.9 12.8 118 

62 8-10y 11.8 14.1 119 
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53 10-12y 13.3 15.4 116 

48 2-4y 

Liver length 

9.9 11.0 111 

Da Rocha et al [65] 181 4-6y 10.4 12.6 121 

109 6-8y 10.9 13.3 122 

45 4-6y 
Liver length 

9.2 10.8 117 
Amatya et al [66] 

45 10-12y 10.7 12.9 121 

699 0-19y Liver volume NR NR 110 Cervantes et al [67] 

Median (range) 119 (110-139)  

 

aUnits are cm for organ length measurements cm and cm3 for organ volume measurements. 

bNormalized by height, weight, age, and gender. 
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Supplementary Table 14. Summarized results from a comprehensive literature search for reported cardiac output values in children 

with obesity. 

n, subjects Age (y) Males Race Weight (kg) BMI (kg/m2) Cardiac Output 

(L/min) 

Reference 

61 13.5 (2.7) 46% Non-Hispanic White 85.7 (20.8) 30.8 (5.3) 4.9 (1.3) Mangner et al [68] 

32 10.2 (3.0) 47% NR 52.1 (19.1) NRa 4.9 (0.7) Castro et al [69] 

143 10.3 (2.7) 56% NR 59.0 (23.1) NRa 5.2 (0.8) Castro et al [69] 

39 16.0 (12.0, 17.0)b 44% NR NR NRa 5.5 (4.0, 6.6)b Wójtowicz et al [70] 

45 15.0 (14.0, 16.0 b 58% NR NR NRa 6.5 (5.0, 7.3)b Wójtowicz et al [70] 

65 11.7 (2.9) NRc NR 66.1 (18.1) NRa 5.1 (1.5) Özkan et al [71] 

36 13.3 (7.9, 17.4)b 0% NR 79.0 (38.0, 132.0)b 31.5 (22.3, 43.7)b 5.1 (1.2) Rauch et al [72] 

28 12.3 (8.5, 17.6)b 100% NR 77.0 (46.0, 155.0)b 29.9 (23.7, 50.0)b 5.3 (1.2) Rauch et al [72] 

10 11.7 (0.6) 100% NR 54.2 (6.7) 23.3 (1.8) 4.4 (1.1) Schuster et al [73] 

8 11.4 (1.0) 100% NR 74.0 (13.9) 29.0 (2.0) 5.4 (1.7) Schuster et al [73] 

24 11.9 (2.1) 79% NR NR 32.4 (5.8) 7.3 (1.9) Giordano et al [74] 

34 9.4 (0.15)d NRc Non-Hispanic White 51.7 (2.2)d NRa 5.3 (0.19)d Humphries et al [75] 

53 9.4 (0.13)d 0% NR 54.6 (1.9)d NRa 5.1 (0.16)d Humphries et al [75] 

44 9.6 (0.15)d NRc Non-Hispanic Black 62.7 (2.9)d NRa 5.5 (0.24)d Humphries et al [75] 

25 9.8 (0.19)d 100% NR 64.9 (4.6)d NRa 6.1 (0.32)d Humphries et al [75] 

120 12.0 (4.0) 51% NR 69.0 (25.0) 28.0 (5.0) 6.2 (1.2) McGavock et al [76] 

10 15 (0.4)d 0% NR 83.1 (4.6)d 31.1 (1.6)d 4.7e Gusso et al [77] 

 

Values are mean (standard deviation) unless otherwise noted. 

 

aThe study reported subjects with obesity, but did not report BMI directly. 

bReported as median (range). 

cIncludes both male and females subjects with an unreported ratio. 

dReported as mean (standard error). 
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eReported as mean. 

 

BMI, body mass index; NR, not reported 
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Supplementary Table 15. Search terms used in PubMed for the comprehensive literature search 

for physiological data to inform development of the virtual population of children with obesity. 

 

Search phrase for ‘obesity’ 

 

 

"pediatric obesity"[MeSH] OR "obesity"[MeSH] OR "obesity, abdominal"[MeSH] OR 

"obesity, morbid"[MeSH] OR  "obesity, metabolically benign"[MeSH] OR “fat”[MeSH] OR 

“adipose”[MeSH] 

 

 

AND search phrase for ‘pediatric’ 

 

 

"pediatrics"[MeSH] OR "infant”[MeSH] OR “newborn"[MeSH] OR 

“pediatric”[Title/Abstract] OR "infant"[Title/Abstract] OR “newborn”[Title/Abstract] OR 

“neonates”[Title/Abstract] OR “neonate”[Title/Abstract] OR “infants”[Title/Abstract] OR 

“child”[MeSH] OR “juvenile”[MeSH] NOT “pregnant”[MeSH] OR “children”[Title/Abstract] 

OR “adolescent”[Title/Abstract] OR “adolescents”[Title/Abstract] OR "Adolescent"[MeSH] 

 

 

AND each of the physiological terms belowa 

 

 

“AAG”[MeSH] 

“absorption”[MeSH] 

“adipose”[MeSH] 

“age”[MeSH] 

“albumin”[MeSH] 

“alpha-1 acid glycoprotein”[MeSH] 

“anatomy”[MeSH] 

“anthropometric”[MeSH] 

“arterial blood”[MeSH] 

“autopsy”[MeSH] 

“blood”[MeSH] 

“blood circulation”[MeSH] 

“blood flow”[MeSH] 

“blood vessels”[MeSH] 

“body weight”[MeSH] 

“bone”[MeSH] 

“bone mass”[MeSH] 

“brain”[MeSH] 

“CACO-2”[MeSH] 

“cardiac output”[MeSH] 

“central fatness”[MeSH] 

 

“low extraction”[MeSH] 

“metabolism”[MeSH] 

“microsome”[MeSH] 

“MPPGL”[MeSH] 

“mucosal blood flow”[MeSH] 

“muscle”[MeSH] 

“muscle mass”[MeSH] 

“ontogeny”[MeSH] 

“organ growth”[MeSH] 

“organ volume”[MeSH] 

“organ weight”[MeSH] 

“oxygen uptake”[MeSH] 

“PAH”[MeSH] 

“pancreas”[MeSH] 

“para-aminohippuric acid”[MeSH] 

“partition”[MeSH] 

“perfusion”[MeSH] 

“peripheral fatness”[MeSH] 

“permeability”[MeSH] 

“pH”[MeSH] 

“physiology”[MeSH] 
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“compartment”[MeSH] 

“composition”[MeSH] 

“creatinine clearance”[MeSH] 

“drug metabolism”[MeSH] 

“duodenum”[MeSH] 

“ejection fraction”[MeSH] 

“enzyme”[MeSH] 

“extracellular”[MeSH] 

“extracellular water”[MeSH] 

“fat depots”[MeSH] 

“filtering capacity”[MeSH] 

“gastrointestinal tract”[MeSH] 

“glomerular filtration rate”[MeSH] 

“glomerulus”[MeSH] 

“gonads”[MeSH] 

“growth rate”[MeSH] 

“gut wall”[MeSH] 

“haematocrit”[MeSH] 

“heart”[MeSH] 

“heart rate”[MeSH] 

“height”[MeSH] 

“hematocrit”[MeSH] 

“hemodynamic”[MeSH] 

“hemoglobin”[MeSH] 

“hepatic”[MeSH] 

“hepatocellularity”[MeSH] 

“hepatocyte”[MeSH] 

“high extraction”[MeSH] 

“HPGL”[MeSH] 

“hydrodynamics”[MeSH] 

“ileum”[MeSH] 

“interstitial”[MeSH] 

“intracellular”[MeSH] 

“jejunum”[MeSH] 

“kidneys”[MeSH] 

“kidney volume”[MeSH] 

“large intestine”[MeSH] 

“lipid”[MeSH] 

“liver”[MeSH] 

“liver volume”[MeSH] 

 

“plasma”[MeSH] 

“plasma proteins”[MeSH] 

“portal vein”[MeSH] 

“post-mortal”[MeSH] 

“postmortem”[MeSH] 

“pre-portal organs”[MeSH] 

“pressure”[MeSH] 

“protein”[MeSH] 

“protein binding”[MeSH] 

“red blood cells”[MeSH] 

“renal”[MeSH] 

“respiration”[MeSH] 

“rheological profile”[MeSH] 

“serum”[MeSH] 

“sex”[MeSH] 

“skin”[MeSH] 

“small intestine”[MeSH] 

“splanchnic blood flow”[MeSH] 

“spleen”[MeSH] 

“stomach”[MeSH] 

“stroke volume”[MeSH] 

“subcutaneous”[MeSH] 

“surface area”[MeSH] 

“tissue volume”[MeSH] 

“tissue weight”[MeSH] 

“total blood volume” [MeSH] 

“total body lipid”[MeSH] 

“total body water”[MeSH] 

“transporter”[MeSH] 

“tubular reabsorption”[MeSH] 

“tubular secretion”[MeSH] 

“vascular”[MeSH] 

“vasculature”[MeSH] 

“venous blood”[MeSH] 

“ventilation”[MeSH] 

“ventricular output”[MeSH] 

“villous blood flow”[MeSH] 

“water”[MeSH] 

“well-stirred”[MeSH] 

 

 

aNote that separate search was conducted for each of the key physiological terms, and the results 

were combined. 
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AAG, α1-acid glycoprotein; CACO-2, HPGL, hepatocytes per gram of liver; MeSH, medical 

subject headings; MPPGL, microsomal protein per gram of liver; PAH, para-aminohippuric acid 
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Supplementary Table 16. Population demographics and PBPK model simulation results for 

adult subjects who received PO doses of clindamycin hydrochloride. 

Demographicsa Value 

Al-Talla et al (2011) [15]  

Patient population healthy adults 

n 24 

Age, y 28.8 (7.7) [19-45] 

Weight, kg 75.6 (11.0) [58-101] 

Male 24 (100%) 

PO dose, mg 150 

Formulation capsule 

AFE 0.50 

Bouazza et al (2012) [16]  

Patient population healthy adults 

n 50 

Age, y 58.7 (3.0) [18-93] 

Weight, kg 69.9 (2.7) [23-133] 

Male 30 (60%) 

PO dose, mg 600 

Formulation tablet 

AFE 0.75 

del Carmen Carrasco-Portugal et al (2008) [17]  

Health status healthy adults 

n 24 

Age, yb 
25.45 (1.66), males 

21.46 (0.70), females 

Weight, kgb 
68.77 (3.41), males 

59.31 (1.88), females 

Male 11 (46%) 

PO dose, mg 600 

Formulation capsule 

AFE 1.02 

Gatti et al (1993) [18]  

Patient population healthy adults 

n 16 

Age, y 27.1 (3.9) 

Weight, kg 73.0 (12.7) 

Male 16 (100%) 

PO dose, mg 600 

Formulation capsule 

AFE 0.73 

Li et al (2008) [19]  

Patient population healthy adults 

n 24 
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Age, y 23.67 (2.16) 

Weight, kg 64.33 (4.57) 

Male 24 (100%) 

PO dose, mg 300 

Formulation capsule 

AFE 0.85 

Mazur et al (1999) [20]  

Patient population healthy adults 

n 20 

Age, y 29.0 [22-39] 

Weight, kg 80.0 [66-90] 

Male 20 (100%) 

PO dose, mg 600 

Formulation tablet & capsule 

AFE 2.23 

Na-Bangchang et al (2007) [21]  

Patient population 
Adults with acute uncomplicated 

Plasmodium falciparum malaria 

n 18 

Age, yc 29 [18-48] 

Weight, kgc 56 [40-75] 

Male 13 (72%) 

PO dose, mg 600 (multidose) 

Formulation capsule 

AFE 0.87 

 

aAge and weight presented as mean (standard deviation) [range] when available. Male presented 

as n (%). 

bStandard error of the mean 

cGeometric mean 

 

AFE, average fold error; PBPK, physiologically-based pharmacokinetic; PO, oral 
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