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REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
This article reports on the development of a novel machine-learning (ML) framework to predict 
electronic band structures at the G0W0 level. The authors propose a fingerprint (a.k.a. descriptor) 
based on a "energy-decomposed operator matrix elements" and a "radially-decomposed projected 
density of states", in addition to other quantities such as the electronic polarisability. The (ML) 
algorithm learns, on a remarkably small training set, how to map a DFT band structure into a 
G0W0 band structure with relatively good accuracy. The framework is inspected with clustering 
techniques and feature importance analysis, providing insights on the model success. 
 
The manuscript is well written, easy to follow and with clear supporting figures. I just note here a 
couple of mistakes: 1) at the first page there is a missing reference "[?]" right after the word 
"G0W0@LDA" and 2) in section 4.3 there is a forgotten comment "XXX:should we mention what 
they are? ..." 
 
The results are very noteworthy, in particular this novel approach allows to compute the full band 
structure with a ML algorithm, at variance with earlier approaches who focused on the band gap 
only. The methodology is sound and the methods clearly outlined, I appreciate in particular the 
effort on understanding the behaviour of the descriptor and of the algorithm through importance 
analysis. 
 
I think this work will have an important impact on the field, in particular I find two very relevant 
aspects. On the one hand, this work will equip high-throughput studies with much more accurate 
band structures at a reasonable computational cost. Database of GW calculations for training will 
become more populated over time, potentially increasing the accuracy of this method to the level 
of a direct GW calculation. On the other hand this work has shed some light on what are the 
important ingredients to craft an effective electronic structure descriptor, where I refer in 
particular to the discussion of Fig. 7. 
 
I recommend publication of this manuscript without any substantial revision. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors created a new method to predict a material's k-resolved band structure with GW level 
accuracy. They train their new model using a reasonably large dataset of 2D band structures and 
supplement their descriptor set with a few additional PBE-level obtained input parameters. They 
show their approach can reliably estimate the band structure while also providing a detailed 
analysis using tSNE and SHAP feature analysis. Overall, this work is a nice demonstration of using 
machine learning to reduce computationally expensive calculations to more accessible levels. 
There is also value in obtaining k-resolved information, as the authors note in their introduction. 
 
However, I am not sure this paper would be of interest to the general readership of Nat. Comm. 
with the current content. I think the manuscript would be a better fit for a specialized journal like 
npj Computational Materials. I believe a few things the authors could do to tailor the paper to a 
more general journal. 
 
1. The model was trained on 2D materials, and at the end of the paper (page 5), the authors note, 
"the methods can be straightforwardly used to fingerprint states in 3D crystals as well as non-
periodic structures like molecules or surfaces." It would be nice if they provided a demonstration of 
this claim? Proving this goal would significantly increase the broad interest in their technique. In 
fact, the choice of the hold-out band structure is also a bit odd: are PtO2, SbClTe, GeS2, and 
CaCl2 meaningful 2D materials? Or are these bulk structures? This point is not very clear. 
 
2. The authors could also provide a better comparison of their model accuracy relative to the 
literature. For example, they highlight that their model MAE is 0.18 eV at the end of the results 
section. How does this compare to other ML models? 



 
3. The authors should create a few different random states for their hold-out test set. This is a 
relatively small composition space (only 286 compounds), and the 58 compounds in the test set 
can massively influence the model's accuracy. I would recommend the authors analyze a few test 
sets and report the average MAE. 
 
4. At the top of page 5, the authors mention that "...feature selection might improve the model's 
performance further." This is also valuable to reduce the risk of overfitting. Is there a reason why 
feature selection is not performed? 
 
5. Why is alpha_xy so critically vital to the model but alpha_z not nearly as important? 
 
6. XGBoot is powerful, but a short discussion of why they chose XGB over gradient boosting or 
random forest, for example, could be useful. 
 
7. How did they settle on the density of the grid for the k-resolved training data? Were other 
meshes considered? 
 
8. The author's reason for wanting band structure was to provide information on the type of 
transition (direct/indirect) or electron/hole mass. They could compare these properties obtained 
from their model as well as PBE and GW methods. That could provide further support for their 
model. 
 
Finally, a minor note - the authors should check section 4.3; they left a note to themselves in the 
submitted text that should not be there... 
 
 



 

Reply to reviewer #2 

 

We thank the reviewer for taking the time to read our manuscript and for the valuable 

suggestions for improvements. Except for one point (the first one below), we have followed 

all your suggestions, and we hope that you can now recommend our paper for publication.  

  
Reviewer comment: 

The model was trained on 2D materials, and at the end of the paper (page 5), the authors note, "the 

methods can be straightforwardly used to fingerprint states in 3D crystals as well as non-periodic 

structures like molecules or surfaces." It would be nice if they provided a demonstration of this claim? 

Proving this goal would significantly increase the broad interest in their technique. In fact, the choice 

of the hold-out band structure is also a bit odd: are PtO2, SbClTe, GeS2, and CaCl2 meaningful 2D 

materials? Or are these bulk structures? This point is not very clear.  

 

Reply: 

The model was exclusively trained on and applied to 2D materials, that is atomically thin 2D 

structures surrounded by vacuum. The materials PtO2, SbClTe, GeS2, and CaCl2 used as examples 

are all 2D materials. No bulk materials were considered in the current work. The machine learning 

model trained on 2D materials cannot be directly used for bulk 3D structures because some 

components of the fingerprints are designed for 2D materials (e.g. we average over the in-plane 

directions x and y while treating the out-of-plane z-direction separately). However, it would be very 

straightforward to construct similar fingerprints suitable for 0D, 1D or 3D structures. The reason why 

this has not been done in the current work is that there are no available GW band structure databases 

for such materials. Having said that we agree that this is a very relevant point and we are currently 

working to create GW databases that could serve as training sets for further machine learning studies. 

This is, however, a very significant endeavour that will take at least one year and is outside the scope 

of the current work. This is now made more clear in the paper, see highlighted red text on page 6. 

 

 

Reviewer comment: 

The authors could also provide a better comparison of their model accuracy relative to the literature. 

For example, they highlight that their model MAE is 0.18 eV at the end of the results section. How 

does this compare to other ML models?  

 

Reply: 

We have included a new paragraph at the end of the results section (just before the new paragraph on 

effective masses) where we make a more direct comparison of our model’s performance against two 

previously published methods where nonlinear regression was used to predict  G0W0 band gaps of 

bulk semiconductors and 2D MXene crystals, respectively. This comparison shows that our ML 

model is at least on par with the previous models while at the same time being more general. We do, 

however, stress  that the main novelty of our method is that it allows for prediction of state-specific 

properties such as individual band energies and not just material specific properties such as the band 

gap. 

 

 

Reviewer comment: 

The authors should create a few different random states for their hold-out test set. This is a relatively 

small composition space (only 286 compounds), and the 58 compounds in the test set can massively 

influence the model's accuracy. I would recommend the authors analyze a few test sets and report the 

average MAE.  

 

 

 



Reply: 

We have repeated the process of splitting the data in 80/20 % train/test, training the model using 5-

fold cross-validation and computing the test MAE a total of 100 times to estimate this effect. The 

analysis shows that our reported test MAE is within one standard deviation of the test set MAEs and 

therefore we assume the selected test set to be fair and representative. To make this clear we have 

added a new paragraph explaining the multiple test set analysis in section 4.3 (“Machine learning 

model”). 

 

Reviewer comment: 

At the top of page 5, the authors mention that "...feature selection might improve the model's 

performance further." This is also valuable to reduce the risk of overfitting. Is there a reason why 

feature selection is not performed? 

 

Reply: 

A gradient boosting algorithm like XGBoost has some implicit feature selection in the training 

iterations, and therefore the improvement by using a separate feature selection algorithm is likely to 

be very small and therefore it is not performed here. But for a general machine learning model there 

might be something to gain by performing feature selection prior to training the actual prediction 

model, and thus it cannot be ruled out that feature selection might have an effect. We now mention 

this explicitly at the end of the second paragraph of the “Discussion” section. 

 

 

Reviewer comment: 

Why is alpha_xy so critically vital to the model but alpha_z not nearly as important? 

 

Reply: 

The reason is simply that the in-plane (x and y) components of the polarizability are significantly 

larger than the out-of-plane (z) component for any 2D material. In fact, the former are often 1-2 

orders of magnitude larger than the latter. The physical reason is that the electrons are confined in the 

out-of-plane direction and therefore not able to provide much screening in response to a field 

polarized in that direction. This means that that the strength of the screened Coulomb interaction, 

which is a vital ingredient of the GW self-energy, is mainly determined by alpha_xy. Note, however, 

that this will not be true for a bulk material where all three components of alpha are expected to be 

equally important.    

 

Reviewer comment: 

XGBoot is powerful, but a short discussion of why they chose XGB over gradient boosting or random 

forest, for example, could be useful.  

 

Reply: 

XGBoost is very closely related to other gradient boosting algorithms or ensemble methods like 

random forest. XGBoost is chosen because of its general performance across multiple use cases, but 

we have also tested a gaussian process regression (GPR) method which showed similar scores. 

XGBoost has the advantage of being able to handle large amounts of data compared to GPR. 

 

Reviewer comment: 

How did they settle on the density of the grid for the k-resolved training data? Were other meshes 

considered?  

 

Reply: 

The density of the k-grid for the training data was chosen as a balance between accuracy and 

computational cost. A detailed description of the GW calculations including convergence tests for the 

k-point grids can be found in 2D Materials 5, 042002 (2018). 

 

 



Reviewer comment: 

The author's reason for wanting band structure was to provide information on the type of transition 

(direct/indirect) or electron/hole mass. They could compare these properties obtained from their 

model as well as PBE and GW methods. That could provide further support for their model. 

 

Reply: 

We have calculated effective masses using the ML method for 800 materials. This shows a tendency 

of the ML model to give smaller effective masses compared to PBE. Additionally, we have calculated 

band structures of 700 non-magnetic semi-conductors from C2DB. These band structures will be 

published on the C2DB web database. From these we find that applying the ML model results in a 

shift in band gap characteristics (direct/indirect) in 12 % of the materials, with 72 % of the cases 

being shifts from direct to indirect band gaps. 

These new results required a quite substantial amount of extra work and is the main reason for the 

long delay in our resubmission. The new results are discussed in the new subsections “Band gaps” 

and “Effective masses” at the end of the Results section.   



REVIEWERS' COMMENTS 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have addressed each of the concerns adequately. Their paper is now scientifically 
sound and provides some reasonably noteworthy results. The changes have also provided a better 
comparison with the current literature. 
 
I would have preferred if the authors also modified the title of their article to reflect that this is 
related to 2D materials. But that is a minor point. I would recommend this paper for publication. 



 

Reply to reviewer #2 

 

We thank the reviewer for taking the time to read our manuscript and for the valuable 

suggestions for improvements. We have followed the reviewers suggestions.  

  
Reviewer comment: 

The authors have addressed each of the concerns adequately. Their paper is now scientifically sound 

and provides some reasonably noteworthy results. The changes have also provided a better 

comparison with the current literature.  

 

I would have preferred if the authors also modified the title of their article to reflect that this is related 

to 2D materials. But that is a minor point. I would recommend this paper for publication. 

 

Reply: 

We have updated the title to “Representing individual electronic states for machine learning GW band 

structures of 2D materials”. 
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