SUPPLEMENTARY INFORMATION

Mitochondrial protein import determines lifespan through metabolic reprogramming and *de novo* serine biosynthesis

Eirini Lionaki^{1,a*}, Ilias Gkikas^{1,2,a}, Ioanna Daskalaki^{1,2}, Maria-Konstantina Ioannidi^{3,4}, Maria I. Klapa³

& Nektarios Tavernarakis^{1,5*}

¹Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, ²Department of Biology, School of Sciences and Engineering, University of Crete, ³Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece; ⁴Department of Biology, University of Patras, Patras, Greece; ⁵Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 71110, Crete, Greece.

*Correspondence and requests for materials should be addressed to E.L. (e-mail: lionaki@imbb.forth.gr), or to N.T. (e-mail: tavernarakis@imbb.forth.gr).

CONTENTS

- 1. Supplementary Figures 1-10
- 2. <u>Supplementary Table 1</u>
- 3. Supplementary Table 2
- 4. Supplementary Table 3
- 5. Images of blots included in Supplementary Figure 3e

Supplementary Figure 1

1	Supplementary Figure 1. Phenotypic characterization of animals with
2	mitochondrial protein import deficiencies. a Schematic diagram of the basic protein
3	import routes to mitochondria. The localization and role of each translocase (TOM,
4	TIMM23, TIMM22, TOB/SAB) is indicated. b Protein sequences obtained through
5	Blast search in different species were used for the phylogenetic tree, generated in
6	Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo). c Relative expression of
7	timm-22, timm-23, tomm-40 and gop-3 mRNA levels upon genetic inhibition of each of
8	them. $n=3$ biologically independent experiments, two-tailed <i>t</i> -test was used for
9	comparisons. Data are presented as mean expression \pm SEM. d Animal body size upon
10	genetic inhibition of <i>timm-22</i> , <i>timm-23</i> , <i>tomm-40</i> and <i>gop-3</i> with the Image J software
11	(Area). n=3 biologically independent experiments, mean area ±SEM One-way ANOVA
12	with Dunnett's multiple comparison test. Exact sample size and P values are included in
13	Source Data file. (**** denotes $P \le 0.0001$ and ns denotes not significant) e Brood size
14	of animals treated with <i>timm-22</i> , <i>timm-23</i> , <i>tomm-40</i> and <i>gop-3</i> RNAi. n=5 biological
15	independent experiments f Total ATP content per μ g of protein of RNAi treated wt
16	worms on their first day of adulthood. Data presented as mean values \pm SEM. n=3
17	biologically independent, One-way ANOVA Dunnett's multiple comparison test. Exact
18	P values are included in Source Data file (** denotes P<0.01 and * denotes P<0.05) g
19	Quantification of the relative mtDNA copy number of animals treated with <i>timm-22</i> ,
20	<i>timm-23</i> , <i>tomm-40</i> and <i>gop-3</i> RNAi. n=2, two-tailed <i>t</i> -test was used for comparisons.
21	Data presented as mean expression \pm SD. h Lifespan curves of animals treated with
22	timm-23 and tomm-40 RNAi from the L4 stage. n=2 biologically independent
23	experiments. Curves were compared with the Log-rank (Mantel-Cox) test (**** denotes
24	P<0.0001, ** denotes P<0.001); detailed values are shown in Supplementary Table 2. i-
25	k Quantified fluorescence of COX-4::GFP reporter animals (i), mitochondrial

26	membrane $\Delta \psi$ (TMRE stained animals) (j) and total mitochondrial mass (Mitotracker
27	Green stained animals) (k) upon treatment with <i>timm-23</i> and <i>tomm-40</i> RNAi from the
28	L4 stage and from egg. n=3 biologically independent experiments. One-way ANOVA,
29	Tukey's multiple comparisons test (**** denotes P<0.0001, * denotes P<0.05, ns
30	denotes not significant). Exact sample size and P values are included in Source Data
31	file. a.u.: arbitrary units.

Supplementary Figure 2

- 33 Supplementary Figure 2. MitoMISS extends lifespan independently of well-
- 34 characterised longevity pathways. a-f Lifespan curves of well-characterized longevity
- 35 mutants such as *skn-1(zn129)* (a), *skn-1(zn135)* (b), *ucr-1* respiration-deficient animals
- 36 (c), *ceh-23(ms23)* (d), *cep-1(lg12501)* (e), and *hif-1(ia04)* (f) upon MitoMISS are
- 37 indicated. Survival curves were compared with the Log-rank (Mantel-Cox) test (***
- denotes P<0.0001, ** denotes P<0.001); detailed values are shown in Supplementary
- 39 Table 2.
- 40
- 41

42	Supplementary Figure 3. Association of MitoMISS with various proteostatic
43	networks. a-c Epifluorescence images of <i>hsp-4</i> transcript levels (UPR ^{ER}) (a), <i>hsp-16.2</i>
44	transcript levels (HSR) (b) and HSF-1 protein levels (c) upon <i>timm-23</i> , <i>tomm-40</i> , <i>timm-</i>
45	22 and gop-3 genetic inhibition (left panels) and their corresponding quantifications
46	depicted in violin plots (right panels), one-way ANOVA, with Dunnett's multiple
47	comparisons test. n=3 biologically independent experiment with at least 20 worms per
48	condition. Exact sample size and P values are included in Source Data file. a.u.:
49	arbitrary units d Normalised expression levels of proteasomal (<i>pbs-5</i> and <i>rpn-6</i>), UPR ^{ER}
50	(hsp-4 and xbp-1s) and heat stress response marker genes (hsp-16.2, hsp-70 (C12C8.1),
51	hsp-16.41, hsp-12.6, hsp-3, dnj-21), relative to the housekeeping genes pmp-3 and act-3
52	($n\geq3$, normalised mean expression \pm SEM, 2way ANOVA, with Sidak's multiple
53	comparisons test). e Immunoblot analysis of the phosphorylated and the total protein
54	levels of eIF2α upon <i>timm-23</i> , <i>tomm-40</i> , <i>timm-22</i> and <i>gop-3</i> genetic inhibition (****
55	denotes <i>P</i> <0.0001, *** denotes <i>P</i> <0.001, ** denotes <i>P</i> <0.01 and * denotes <i>P</i> <0.05).
56	Quantified ration of phospho/total eIF2 α levels from three independent experiments
57	(Image J software) are shown in the bar graph below as mean \pm SD.

58

60	Supplementary Figure 4. Components of canonical UPR ^{mt} are not consistently
61	activated or required for longevity upon MitoMISS. a Epifluorescence images of
62	hsp-6 transcriptional reporter upon timm-23, tomm-40, spg-7, cco-1 and atp-3 genetic
63	inhibition performed at the L4 stage (left panel) and the corresponding quantification
64	(right panel) n=2 biologically independent experiments with at least 20 worms per
65	condition. Two-tailed <i>t</i> -test. Exact sample size and P values are included in Source Data
66	file. b Epifluorescence images of <i>hsp-6</i> transcript levels upon 10% <i>cco-1</i> and <i>atp-3</i> ,
67	90% timm-23 and their combination performed from egg (left panel) and the
68	corresponding quantification of p _{hsp-6} GFP fluorescence (right panel) n=2 biologically
69	independent experiments with at least 20 worms per condition. One-way ANOVA, with
70	Tukey's multiple comparison test). Exact sample size and P values are included in
71	Source Data file. c Relative expression of hsp-6 mRNA in tomm-40, atfs-1 and atfs-
72	<i>l;tomm-40</i> RNAi treated animals. n=3 biologically independent experiments.one-way
73	ANOVA with Dunnett's multiple comparison test d Relative expression of <i>atfs-1</i>
74	mRNA in atfs-1 and atfs-1; tomm-40 RNAi treated animals and of tomm-40 mRNA in
75	atfs-1;tomm-40 RNAi treated animals. n≥2 Data presented as normalised mean
76	expression \pm SD e Lifespan curves upon MitoMISS in the absence of ATFS-1. n=2
77	biologically independent experiments with at least 20 worms per condition. f
78	Fluorescence intensity of p_{hsp-60} GFP transgenic worms crossed with <i>dve-1(tm4803</i>).
79	tomm-40 RNAi does not increase hsp-60 expression in the dve-1(tm4803) mutant
80	background. n=3 biologically independent experiments with at least 20 worms per
81	condition. Exact sample size and P values are included in Source Data file. g Survival
82	curves of <i>tomm-40 RNAi</i> extends lifespan of the <i>dve-1(tm4803)</i> mutant. n=2
83	biologically independent experiments. h-i Fluorescent intensity of phsp-60GFP
84	transgenics crossed with atfs-1(tm4525) (h) or haf-1(ok705) (i) mutants. n=2

85	biologically independent experiments with at least 20 worms per condition. Comparison
86	with two-tailed <i>t</i> -test. Exact sample size and P values are included in Source Data file.
87	(j) MitoMISS potently increases lifespan of haf-1(ok705) mutants. n=2 biologically
88	independent experiments. k Nuclear/cytoplasmic mean fluorescent intensity of DVE-
89	1::GFP. Two-tailed <i>t</i> -test (** denotes P<0.01 and ns denotes not significant). n=2
90	biologically independent experiments with at least 20 worms per condition. Exact
91	sample size and P values are included in Source Data file. Survival curves were
92	compared with the Log-rank (Mantel-Cox) test (*** denotes P<0.0001, ** denotes
93	P<0.001) ; detailed values are shown in Supplementary Table 2. a.u.: arbitrary units.
94	

f

Supplementary Figure 5

97	ATFS-1 target genes upon MitoMISS. a Epifluorescence images showing the
98	expression levels of gpd-2 transcript, upon inhibition of spg-7, tomm-40, atfs-1 and atfs-
99	1;tomm-40 (left panel) and the corresponding quantification (right panel). b
100	Quantification of DRP-1::GFP fluorescence upon inhibition of spg-7, tomm-40, atfs-1
101	and <i>atfs-1;tomm-40</i> . c-e Quantified fluorescence of the $gpi-1(c)$, sod-3 (d) and isp-1 (e)
102	transcriptional reporters upon inhibition of spg-7, tomm-40, atfs-1 and atfs-1;tomm-40. f
103	Epifluorescence images of the <i>cts-1</i> transcriptional reporter, upon inhibition of <i>spg-7</i> ,
104	tomm-40, atfs-1 and atfs-1;tomm-40 (left panel) and the corresponding quantification
105	(right panel). g-i Quantified fluorescence of the $mdh-2$ (g), $rpom-1$ (h) and $gst-4$ (i)
106	transcriptional reporters upon inhibition of spg-7, tomm-40, atfs-1 and atfs-1;tomm-40.
107	Quantified fluorescence intensities are depicted in violin plots. N≥2 biologically
108	independent experiments of at least 20 worms per condition. One-way ANOVA, with
109	Tukey's multiple comparisons test (**** denotes <i>P</i> <0.0001, *** denotes <i>P</i> <0.001, **
110	denotes P<0.01 and * denotes P<0.05). Exact sample size and P values are included in
111	Source Data file. a.u.: arbitrary units (j) Normalized expression levels of the indicated
112	ATFS-1 targets genes, relative to the housekeeping genes <i>pmp-3</i> and <i>act-3</i> ($n \ge 3$, $\pm SEM$,
113	two-way ANOVA, with Sidak's multiple comparisons test).

Supplementary Figure 5. Shared and differential expression patterns of known

Supplementary figure 6

116	Supplementary Figure 6. MitoMISS activates expression of genes involved in
117	glucose metabolism. a Relative expression of gpi-1 mRNA in gpi-1 and gpi-1;tomm-40
118	RNAi treated animals and of <i>tomm-40</i> mRNA in <i>gpi-1;tomm-40</i> RNAi treated animals.
119	b Relative expression of gsy-1(grey), gpi-1(green), gspd-1(pink) and tkt-1(blue) mRNA
120	in control and tomm-40 RNAi treated wild type animals (left panel) and atfs-1 mutants
121	(right panel). Expression levels were normalized to housekeeping genes act-3 and pmp-
122	3. N=2 biologically independent experiments. Mean expression ±SD. Two-way
123	ANOVA Sidak's multiple comparisons test. c Expression levels of the glycolysis
124	transcriptional reporter, gpd-2, upon MitoMISS, timm-22 and gop-3 inhibition, n=3
125	biologically independent experiments (one-way ANOVA, with Tukey's multiple
126	comparisons test. Exact sample size and P values in Source Data file d Relative
127	expression of fgt-1 mRNA in tomm-40, atfs-1 and atfs-1; tomm-40 RNAi treated
128	animals. n=5 biological independent experiments. Mean expression ±SEM.
129	Comparisons with two-tailed <i>t</i> -test. e Lifespan of wt or <i>fgt-1(tm3165)</i> mutants upon
130	MitoMISS. n=2 biological independent experiments. Statistical analysis of survival
131	curves was performed with the Log-rank (Mantel-Cox) test (*** denotes $P \le 0.0001$, **
132	denotes P<0.001 and * denotes P<0.01); detailed values are shown in Table S2. a.u.:
133	arbitrary units.
134	

C.

Supplementary Figure 7: Metabolic profiling of control and MitoMISS animals-136 137 Collection time 1 (CT1). a Hierarchical clustering analysis of the normalized metabolomic dataset for collection time 1 (CT1) based on Euclidean distance (median 138 RPA = 1.27). It depicts the difference in the abundance between the various metabolites 139 140 with trehalose being among the most abundant with a clear increase in the tomm-40 RNAi worms compared to the controls; b Hierarchical clustering analysis of the 141 142 standardized metabolic profiles for collection time 1 (CT1) based on Euclidean distance. The metabolites of differential abundance between the control and tomm-40 RNAi 143 worms are apparent; c The SAM curve of the metabolic profile data of the tomm-40 144 145 RNAi worms (Group B) compared to the controls (Group A). Each point corresponds to 146 a particular metabolite; axes correspond to the observed (y axis) and the expected (x axis) values calculated by the method for each metabolite. The expected value concerns 147 the case in which the difference in a metabolite abundance between the two groups 148 would have been based on random error. The dashed lines define the smallest threshold 149 of significance δ for which FDR (median) is equal to zero. If the difference between the 150 measured and the expected value for a metabolite abundance is in absolute value larger 151 152 than δ , then if positive or negative, this metabolite is, respectively, identified of 153 significantly higher (red) or lower (green) abundance in the B compared to the A group. The further a significant metabolite is from the origin (0,0), the higher the statistical 154 significance of the metabolite. The full list of positive, significant metabolites are 155 156 shown in Supplementary Table 3 and their abundance is also depicted in the heat map of Fig. 5a and b. Here indicated are the 8 positively significant metabolites exhibiting the 157 largest difference in Group B vs A and the two exhibiting the largest decrease in Group 158 B vs A, which is, however, not identified as significant in the context of the overall 159

- 160 increase in the total 73 metabolite abundance (positive intercept with y axis) in tomm40
- 161 RNAi worms compared to the controls.
- 162

Supplementary Figure 8

С.

Supplementary Figure 8: Metabolic profiling of control and MitoMISS animals-164 165 Collection time 2 (CT2). a Hierarchical clustering analysis of the normalized 166 metabolomic dataset for collection time 2 (CT2) based on Euclidean distance (median RPA = 0.6). It depicts the difference in the abundance between the various metabolites 167 168 with trehalose being the most abundant and with a clear increase in the tomm-40 RNAi worms compared to the controls; b Hierarchical clustering analysis of the standardized 169 170 metabolic profiles for collection time 2 (CT2) based on Euclidean distance. The metabolites of differential abundance between the control and tomm-40 RNAi worms 171 are apparent; c The SAM curve of the metabolic profile data of the tomm-40 RNAi 172 173 worms (Group B) compared to the controls (Group A). Details of the graph are as described in Supplementary Table 3. The full list of positively significant metabolites 174 are shown in Supplementary Table 3 and their abundance is also depicted in the heat 175 176 map of Figure 5a and b. Here indicated are the 8 positively significant metabolites exhibiting the largest difference in Group B vs. A, and the four exhibiting the largest 177 decrease in Group B vs. A, but are not identified as significant in the context of the 178 179 overall increase in the total 72 metabolite abundance (positive intercept with y axis) in 180 tomm-40 RNAi worms compared to the controls.

181

b

е

С

f

d

Nile Red Staining

Supplementary figure 9

183	Supplementary Figure 9. MitoMISS induces fat mobilization and extends lifespan
184	of sams-1 mutants. a Fluorescence intensity of pck-2 transcriptional reporter or b
185	translationa reporter under control, tomm-40, atfs-1 and atfs-1;tomm-40 RNAi. n=3
186	biologically independent experiments with at least 20 worms per condition. One-way
187	ANOVA with Tukey's multiple comparisons test. Exact sample size and P values in
188	Source data file. c Fluorescence intensity of the translation reporter worms VS20
189	expressing full length ATGL-1 under its endogenous promoter, treated with the
190	indicated RNAi constructs from hatching until day 1 of adulthood. n=3 biologically
191	independent experiments with at least 20 worms per condition. Two-tailed t- test. Exact
192	sample size and P values in Source data file. d VS20 worms crossed with atfs-
193	1(tm4525) mutants and treated with the indicated RNAi constructs from hatching until
194	day 1. n=3 biologically independent experiments with at least 20 worms per condition.
195	Two-tailed <i>t</i> - test. Exact sample size and P values in Source data file. e Total
196	fluorescence intensity of wild type worms treated with the indicated RNAi constructs
197	from hatching until L4 and dyed after fixation with the lipid-specific dye Nile Red. n=3
198	biologically independent experiments with at least 10 worms per condition. Two-tailed
199	<i>t</i> - test. Exact sample size and P values in Source data file. a.u.: arbitrary units f Lifespan
200	analysis of sams-1(ok2946) mutant animals upon MitoMISS. n=2 biological
201	independent experiments. Survival curves were compared with the Log-rank (Mantel-
202	Cox) test (**** denotes $P \le 0.0001$); detailed values are shown in Supplementary Table
203	2. a.u. : arbitrary units .
204	

206	Supplementary	Figure 10.	Inhibition	of PHGDH-1	does not	affect n	nitochondrial
-----	---------------	------------	------------	------------	----------	----------	---------------

- **abundance and function. a-c** Fluorescence intensity of *phgdh-1* translational reporter
- 208 (a), COX-4::GFP reporter (b) or TMRE stained wild type worms (c) treated with
- 209 control, tomm-40, phgdh-1 and phgdh-1;tomm-40 RNAi. Fluorescent intensity of
- 210 different samples was compared to that of the control sample with one-way ANOVA
- with Dunnett's multiple comparison. n=3 biological independent experiments with at
- least 15 worms per condition. Exact sample size and P values in Source Data file(****
- denotes P < 0.0001, *** denotes P < 0.001 and ** denotes P < 0.01). a.u.: arbitrary units

Supplementary Table 1: Summary of oligonucleotides used in the present study.

Cono	Soguence	Enzymes for	Target
Gene	Sequence	subcloning	vector
timm-22 RNAi Forward	ATGGCGCTGGCCTCCTCAAATG	HindIII-Xbal	pL4440
timm-22 RNAi Reverse	ACCGGTGGTCCTCTCATATAATGATCAATAATTG	HindIII-Xbal	pL4440
timm-23 RNAi Forward	ATGGGTTGGTTCGGATTC	HindIII-Notl	pL4440
timm-23 RNAi Reverse	CACTGTCAGTTTGTGTTACCA	HindIII-Notl	pL4440
tomm-40 RNAi Forward	ATGGCGACACCAACAGAAAGTGAG	EcoRI	pL4440
tomm-40 RNAi Reverse	ACCGGTGGACCAATGATAAGTCCG	EcoRI	pL4440
gop-3 RNAi Forward	ATGTCTGAAAAGACGTTCCACAAG	BamHI-Notl	pL4440
gop-3 RNAi Reverse	CTACAAGAAGTTGACACCAGCTCC	BamHI-Notl	pL4440
atfs-1 RNAi Forward	ATGTTTTCCCGTGTGGGACG	Kpnl-Xbal	pL4440
atfs-1 RNAi Reverse	TCATCGAGTTGATCTCACGCTTTAG	Kpnl-Xbal	pL4440
gpi-1 RNAi Forward	CCATGTCTCTGTCTCAAGACGCC	Kpnl-Apal	pL4440
gpi-1 RNAi Reverse	GAAATCTACCTGATGATGCAATCCC	Kpnl-Apal	pL4440
phgdh-1 RNAi Forward	ATGAGCGCCCCAATCAACAAAGTC	Kpnl-Apal	pL4440
phgdh-1 RNAi Reverse	GTTGAGCACCTCTCGTGCGTTCAAAA	Kpnl-Apal	pL4440
dve-1 RNAi Forward	GAGCTCATGTTCCCAATGAGGG	Xbal-Spel	pL4440
dve-1 RNAi Reverse	GAGCTCGAAAACCTTCTGCTCAAG	Xbal-Spel	pL4440
fgt-1 promoter Forward	TCTCCAAGTCTCATGGTGCATC	BamHI-Agel	pPD96.75
fgt-1 promoterReverse	ACCGGTGACGGAATCTAAGTAGTATTAGTGGGG	BamHI-Agel	pPD96.75
hsp-60 RNAi Forward	CTTTCCGCACGATCATTCTTG	EcoRI	pL4440
hsp-60 RNAi Reverse	GGTTCCACGATCTCTGGCTG	EcoRI	pL4440
phgdh-1 promoter	CTACATTCCACCAAATTCCCACATTCC		
Forward	CTAGATICCACCAAATIGGCAGATIGC	вашпі-Ауеі	prD90.75
phgdh-1 coding region			
Reverse no stop	CCCGGGGGGTTGAGCACCTCTCG	Danni II-Ayer	prD90.75
Glifon4000 Forward	GGATCCATGGTGAGCAAGGGCGAGGAGCT	BamHI-EcoRI	pPD96.75
Glifon4000 Reverse	GAATTCCGAATTACTTGTACAGCTCGTCCATGC	BamHI-EcoRI	pPD96.75
spg-7 RNAi Forward	CCAGGAGGATGGCAACAAATTG		pL4440
spg-7 RNAi Reverse	AGAGTGCATATCCGCCGCCA		pL4440
atp-3 RNAi Forward	AGAACAAGCTCGACCAGATTTC		pL4440
atp-3 RNAi Reverse	GGGCATCCTTGTATTTCTTGAC		pL4440
cco-1 RNAi Forward	GATGGCTCAACTTGCTAAGACG		pL4440
cco-1 RNAi Reverse	CATCTCTTTGGATCTCCTTTGC		pL4440
act-3 RT Forward	ATCCGTAAGGACTTGTACGCCAAC	-	For qPCR
act-3 RT Reverse	CGATGATCTTGATCTTCATGGTTC	-	For qPCR
pmp-3 RT Forward	CTTGCTGGAGTCACTCATCGTGTTATG	-	For qPCR
pmp-3 RT Reverse	GTCGGGACGCTGATTTATCATCTTC	-	For qPCR
timm-23 RT Forward	GATTCGATGCTCCAGCGCC	-	For qPCR
timm-23 RT Reverse	TGAGGGATCCATCTGCACATAG	-	For qPCR
tomm-40 RT Forward	CAAGCCACAATTGAGAGAAAAGG	-	For qPCR
tomm-40 RT Reverse	CCATACTGATATACCATCTCAGTTCC	-	For qPCR
timm-22 RT Forward	GAGGAGATCCTACGAAACAGCTAAC	-	For qPCR
timm-22 RT Reverse	GACAGCAAAACCAGCGGC	-	For qPCR
gop-3 RT Forward	CACAGTATACATATACTGTAAAGGGCG	-	For qPCR
gop-3 RT Reverse	CGCATTCAATTTGACTTGATGC	-	For qPCR
gpi-1 RT Forward	GCTAGATTCGAGAAATTTACCCG	-	For qPCR
gpi-1 RT Reverse	GCATGACGTCCTTTCCGTC	-	For qPCR
fgt-1 RT Forward	GTGCCCAGAGTCTCCAAAGTAC	-	For qPCR
fgt-1 RT Reverse	CTCCCTTGAACATATCTCCCATT	-	For qPCR
gsy-1 RT Forward	GAATCTCTCTGGTTTCGGATGC	-	For qPCR

gsy-1 RT Reverse	GCGGCGGCAGTCACG	-	For qPCR
icl-1 RT Forward	RT Forward GCTTCGAGTTGATGAAGGCC		For qPCR
icl-1 RT Reverse	I-1 RT Reverse GGTTCTTGCGACAATGATTGT		
tkt-1 RT Forward	t-1 RT Forward ACGTCTTCTACGTCTGCC		
tkt-1 RT Reverse	<i>tkt-1</i> RT Reverse GATGAAGTTCAAGCGAGGAGTG		
hsp-6 RT Forward	GAACCGGAAAGGAACAACAGATCG	-	For qPCR
hsp-6 RT Reverse	GCAATCTTGGTTCGGAGAGCCTC	-	For qPCR
gspd-1 RT Forward	GAAGTGCTCATACGTTCAGGG	-	For qPCR
gspd-1 RT Reverse	CCGAGATAATGATCAATACGGTAG	-	For qPCR
pdk-1 RT Forward	GAAGGAGCCTACAGCCAGGTATTC	-	For qPCR
pdk-1 RT Reverse	TAGCCTGGTCGTGAAAATGTGTG	-	For qPCR
skn-1 RT Forward	TCCACCAGGATCTCCATTCG	-	For qPCR
skn-1 RT Reverse	CTCCATAGCACATCAATCAAGTCG	-	For qPCR
aldo-1 RT Forward	CAAGAAAGACGGAGCACAGTTCG	-	For qPCR
aldo-1 RT Reverse	GTTCACCGTCTGGGAGGATCTCTG	-	For qPCR
gpd-3 RT Forward	CCAGCACAAGATCAAGGTCTAC	-	For qPCR
gpd-3 RT Reverse	CAGATGGAGCAGAGATGATGACCTTC	-	For qPCR
enol-1 RT Forward	GGTTGATCTTTTCACTGAGAAAGGAGTC	-	For qPCR
enol-1 RT Reverse	CTGGAGCGATCTTCTCGTTGATG	-	For qPCR
pyc-1 RT Forward	CGTGGAGAACGCGAAGTCTTC	-	For qPCR
pyc-1 RT Reverse	GGTTGCTTCTTGGTAACCTTGTCG	-	For qPCR
aco-2 RT Forward	AAGATTTGGCCCGTGCTAAGGAC	-	For qPCR
aco-2 RT Reverse	TGAGAAGAAGTCCTGGGAAAGCGTAG	-	For qPCR
sdhb-1 RT Forward	GCCAACTGTGCAGAAATTCG	-	For qPCR
sdhb-1 RT Reverse	CTTCACAACGAACATATGTGGAAG	-	For qPCR
pbs-5 RT Forward	GTCGCCAAGTACTGCACTTTG	-	For qPCR
pbs-5 RT Reverse	CCTGAGCCAACTGAGCACAC	-	For qPCR
rpn-6 RT Forward	CTCAGGCTCTTCCACTTGCTG	-	For qPCR
rpn-6 RT Reverse	AGAGCTGCTTGCATGCGAG	-	For qPCR
hsp-4-4 RT Forward	ACGACCACAATCGTCTCAGTCC	-	For qPCR
hsp-4 RT Reverse	CTTCGTCAGTGAGCTTTCCTCC	-	For qPCR
xbp-1s RT Forward	TGCCTTTGAATCAGCAGTGG	-	For qPCR
xbp-1s RT Reverse	ACCGTCTGCTCCTTCCTCAATG	-	For qPCR
hsp-16.2 RT Forward	TCTCTCCATCTGAGTCTTCTGAGATTG	-	For qPCR
hsp-16.2 RT Reverse	CTACCTGAAGATGTAGATGTTGGTGC	-	For qPCR
dnj-21 RT Forward	GAGGTTTAATTGTTGCCGG	-	For qPCR
dnj-21 RT Reverse	CCTCCTCTATCTGGATGATTTAC	-	For qPCR
hsp-70 RT Forward	ATGTGAACGTGCTAAGCGT	-	For qPCR
hsp-70 RT Reverse	GGTCCTTCCCATTGAAAAAC	-	For qPCR
hsp-16.41 RT Forward	TTCCGATAATATTGGGGAGATTG	-	For qPCR
hsp-16.41 RT Reverse	CGTTTCAAGTATCCATGTTCCG	-	For qPCR
hsp-12.6 RT Forward	GGAGATGGAGTTGTCAATGTCCTC	-	For qPCR
hsp-12.6 RT Reverse	GAATTCCATGTGAATCCAAGTTGC	-	For qPCR
hsp-3 RT Forward	TCCGGTGAGGTCGAACTTT	-	For qPCR
hsp-3 RT Reverse	ACCGTCACCATCCAGGTC	-	For qPCR
			For
atp-6 RT Forward	GTTTATGCTGCTGTAGCGTG	-	mtDNA
			qPCR
			For
atp-6 RT Forward	CTGTTAAAGCAAGTGGACGAG	-	mtDNA
			qPCR

Supplementary Table 2: Summary of lifespan experiments under all conditions tested.

Strain name	RNAi treatment	Supplement	Median Lifespan from hatching	Number of deaths (n)	Significance	Ref. Control
wt	control	-	23	104		
wt	timm-23	-	27	94	****	wt
wt	timm-40	-	27	106	****	wt
wt	timm-23	-	23	124	ns	wt
wt	gop-3		23	9	ns	wt
wt	control	-	23	93		
wt	gop-3	-	23	89	ns	wt
wt	timm-23	-	25	86	****	wt
wt	tomm-40	-	27	73	***	wt
wt	timm-22	-	21	99	^^	wt
wt	control	-	21	69	**	
WL	UMM-22	-	20	101		wi
dar-2(e1370)	control	-	48	125		dof
daf-2(e1370)	timm-23	-	53	116	****	2(e1370)
daf-2(e1370)	control	-	39.5	60		
daf-2(e1370)	timm-23	-	45	136	***	daf- 2(e1370)
daf-16(mu86)	control	-	20	115		
daf-16(mu86)	timm-23	-	27	132	****	daf- 16(mu86)
daf-16(mu86)	control	-	15	75		
daf-16(mu86)	tomm-40	-	21	40	****	daf- 16(mu86)
eat-2(ad465)	control	-	24	115		
eat-2(ad465)	timm-23	-	28	142	***	eat- 2(ad465)
eat-2(ad465)	control	-	24	79		
eat-2(ad465)	timm-23	-	27	86	****	eat- 2(ad465)
skn-1(zn129)	control	-	20	31		
skn-1(zn129)	timm-23	-	25	24	****	skn- 1(zn129)
skn-1(zn129)	control	-	19	75		
skn-1(zn129)	timm-23	-	23	67	****	skn- 1(zn129)
skn-1(zn135)	control	-	20	52		
skn-1(zn135)	timm-23	-	25	66	****	skn- 1(zn135)
skn-1(zn67)	control	-	19	58		
skn-1(zn67)	timm-23	-	20	79	****	skn-1(zn67)
wt	control	-	18	147		
wt	timm-23	-	20	154	****	wt
aak-2(ok524)	control	-	16	111	**	wt
aak-2(ok524	timm-23	-	24	111	****	aak- 2(ok524

aak-2(ok524)	control	-	20	83		
aak-2(ok524	timm-23	-	22	128	****	aak- 2(ok524
hif-1(ia04)	control	-	22	99		
hif-1(ia04)	timm-23	-	28	72	****	hif-1(ia04)
hif-1(ia04)	control	-	22	86		
hif-1(ia04)	timm-23	-	26	92	****	hif-1(ia04)
ceh-23(ms23)	control	-	24	110		
ceh-23(ms23)	timm-23	-	26	139	****	ceh- 23(ms23)
cep-1(lg12501)	control	-	22	118		
cep-1(lg12501)	timm-23	-	27	97	***	cep-1 (lg12501)
wt	control	-	24	109		
wt	timm-23	-	32	103	****	wt
cep-1(lg12501)	control	-	26	109		
cep-1(lg12501)	timm-23	-	32	88	****	cep-1 (lg12501)
cep-1(gk138)	control	-	24	72		
cep-1(gk138)	timm-23	-	26	107	***	cep- 1(gk138)
ceh-23(ms23)	control	-	22	113		
ceh-23(ms23)	timm-23	-	25	131	***	ceh- 23(ms23)
cep-1(lg12501)	control	-	22			
cep-1(lg12501)	timm-23	-	27			
atfs-1(tm4525)	control	-	21	106		
atfs-1(tm4525)	timm-23	-	20	101	ns	atfs- 1(tm4525)
wt	control	-	19	68		
wt	tomm-40		20	101	*	wt
atfs-1(tm4525)	control	-	18	90		
atfs-1(tm4525)	timm-23	-	16	94	ns	atfs- 1(tm4525)
atfs-1(tm4525)	tomm-40	-	16	87	ns	atfs- 1(tm4525)
wt	control		21	67		
wt	timm-23		24	91	****	wt
wt	tomm-40		24	40	****	wt
atfs-1(tm4525)	control	-	20	70		
atfs-1(tm4525)	timm-23	-	20	58	ns	atfs- 1(tm4525)
atfs-1(tm4525)	tomm-40	-	20	84	ns	atfs- 1(tm4525)
wt	control	-	21	69		
wt	tomm-40	-	25	71	****	control
wt	atfs-1	-	21	57	ns	control
wt	atfs-1; tomm-40	-	21	87	ns	atfs-1
wt	control	-	23	88		
wt	timm-23 ½	-	26	85	***	wt
wt	atfs-1 1/2	-	23	96	ns	wt

	atfs-1 ½;					
wt	<i>timm-23</i> ½	-	23	108	ns	wt
wt	control	-	23	85		
wt	<i>timm-23 ½</i>	-	26	69	****	wt
wt	atfs-1 1/2	-	23	84	ns	wt
	atfs-1 ½ ;					
wt	<i>timm-23</i> ½	-	24	99	ns	wt
wt	control	-	18	70		
wt	tomm-40	-	23	54	***	wt
fgt-1(tm3165)	control	-	23	85	***	wt
fgt-1(tm3165)	tomm-40	-	23	65	ns	fgt- 1(tm3165)
fgt-1(tm3165)	control	-	21	82		
fgt-1(tm3165)	tomm-40	-	21	64	ns	fgt- 1(tm3165)
wt	control	-	22	71		
wt	tomm-40	-	30	109	****	wt
Wt	gpi-1	-	27	77	****	wt
wt	gpi-1; tomm-40	-	22	54	****	tomm-40
wt	control	-	22	142		
wt	tomm-40	-	26	130	****	wt
Wt	gpi-1	-	23	89	**	wt
wt	gpi-1; tomm-40	-	21	109	***	tomm-40
wt	control	-	21	79		
wt	tomm-40	-	24	117	****	wt
wt	gpi-1	-	23	162	**	wt
wt	gpi-1;		19	139	****	tomm-40
	tomm-40		10	100		
wt	control	-	22	71		
wt	tomm-40	-	30	109	****	wt
wt	phgdh-1	-	30	27	****	wt
wt	phgdh-1; tomm-40	-	22	75	****	tomm-40
wt	control	-	21	79		
wt	tomm-40	-	24	116	****	wt
wt	phgdh-1	-	24	99	****	wt
wt	phgdh-1; tomm-40	-	19	106	****	tomm-40
wt	control	-	22	142		
wt	tomm-40	-	26	130	****	wt
wt	phgdh-1	-	23	59	***	wt
	phgdh-1; tomm-40	-	21	114	****	tomm-40
wt	control	0mM Serine	18	142		
wt	control	5mM Serine	21	136	****	control (0mM Serine)

wt	control	25mM Serine	18	112	***	control (0mM
wt	control	50mM Serine	18	113	****	control (0mM
	control		10	125		Serine)
wi	control	Umivi Serine	19	135		
wt	control	5mM Serine	22	125	***	control (0mM Serine)
wt	control	25mM Serine	20	126	**	control (0mM Serine)
wt	control	50mM Serine	20	137	**	control (0mM Serine)
wt	control	0mM Serine	19	126		
wt	control	5mM Serine	23	89	***	control (0mM Serine)
wt	control	25mM Serine	19	131	*	control (0mM Serine)
wt	control	50mM Serine	19	101	**	control (0mM Serine)
wt	tomm-40	0mM Serine	22	104		
wt	tomm-40	5mM Serine	22	117	ns	<i>tomm-40</i> (0mM Serine)
wt	tomm-40	25mM Serine	18	112	***	<i>tomm-40</i> (0mM Serine)
wt	tomm-40	50mM Serine	18	95	***	<i>tomm-40</i> (0mM Serine)
wt	tomm-40	0mM Serine	23	134		
wt	tomm-40	5mM Serine	23	122	ns	<i>tomm-40</i> (0mM Serine)
wt	tomm-40	25mM Serine	19	120	***	<i>tomm-40</i> (0mM Serine)
wt	tomm-40	50mM Serine	18	105	***	<i>tomm-40</i> (0mM Serine)
wt	phgdh-1	0mM Serine	22	114		
wt	phgdh-1	5mM Serine	23	151	**	<i>phgdh-</i> 1(0mM Serine)
wt	phgdh-1	25mM Serine	19	109	**	<i>phgdh-</i> 1(0mM Serine)

wt	phgdh-1	50mM Serine	17	116	**	<i>phgdh-</i> 1(0mM Serine)
wt	phgdh-1	0mM Serine	20	126		
wt	phgdh-1	5mM Serine	22	71	**	<i>phgdh-</i> 1(0mM Serine)
wt	phgdh-1	25mM Serine	21	93	*	<i>phgdh-</i> 1(0mM Serine)
wt	phgdh-1	50mM Serine	20	117	*	<i>phgdh-</i> 1(0mM Serine)
wt	control	-	23	109		
wt	tomm-40	-	27	112	****	wt
wt	control	5mM Serine	27	120	****	wt
wt	tomm-40	5mM Serine	27	89	ns	5mM Serine control
wt	control	5mM Serine	23	80		
wt	tomm-40	5mM Serine	23	45	ns	5mM Serine control
wt	phgdh-1; tomm-40	-	22	75		
wt	phgdh-1; tomm-40	5mM Serine	23	45	ns	phgdh-1; tomm-40
wt	phgdh-1; tomm-40	-	21	114		
wt	phgdh-1; tomm-40	5mM Serine	21	109	ns	phgdh-1; tomm-40
NR350 (Muscle specific RNAi)	control	-	27	35		
NR350 (Muscle specific RNAi)	tomm-40	-	30	172	****	NR350
NR350 (Muscle specific RNAi)	control	-	23	81		
NR350 (Muscle specific RNAi)	tomm-40	-	24	86	***	NR350
VP303 (Intestine specific RNAi)	control		23	190		
VP303 (Intestine specific RNAi)	tomm-40	-	24	100	**	VP303
VP303 (Intestine specific RNAi)	control	-	20	85		
VP303 (Intestine specific RNAi)	tomm-40	-	21	100	***	VP303
NR222 (Hypodermis specific RNAi)	control	-	23	102		

NR222						
(Hypodermis	tomm-40	-	23	98	ns	NR222
specific RNAi)						
NR222						
(Hypodermis	control	-	23	57		
specific RNAi)						
NR222						
(Hypodermis	tomm-40	-	23	255	ns	NR222
specific RNAi)						
TU3401						
(Neuron	control	-	20	90		
specific RNAi)						
TU3401						
(Neuron	tomm-40	-	20	97	ns	TU3401
specific RNAi)						
TU3401						
(Neuron	control	-	23	126		
specific RNAi)						
TU3401						
(Neuron	tomm-40	-	23	184	ns	TU3401
specific RNAi)						
wt	control	-	17	115		
wt	control	D-glucose	16	220	****	control
wt	tomm-40	-	22	103	****	control
wt	tomm-40	D-alucose	18	192	****	tomm-40
wt	control	-	20	76		
wt	control	D-alucose	17	139	****	control
wt	tomm-40	-	22	108	****	control
wt	tomm-40	D-alucose	18	204	****	tomm-40
wt	control		21	78		
wit	$timm_2 23 \frac{1}{6}$		25	64	****	control
vvt	ucr-1 ¹ / ₂	-	20	65	****	control
VVL	$\frac{1}{1}$	-	24	05		CONTROL
t	111111-23/2		20	54	****	timm-23
VVL	,001-1 /2	-	29	54		and <i>ucr-1</i>
	$10r = 1 \frac{1}{2}$					
wt	UCI-1 /2	-	23	42		
	timm 221/		22	52		
VVL	111111-23/2	-	25	55		
wt	$UCI = 1 7_2,$	-	25	60	****	timm-23
	<i>umm-23 /</i> 2					
wi	control		01	106		
wt	control	-	21	106		
	control timm-23	-	21 23	106 70	****	control
4	control <i>timm-23</i> 1/10	-	21 23	106 70	****	control
wt	control <i>timm-23</i> 1/10 cco-1 1/10	-	21 23 23	106 70 82	****	control control
wt	control <i>timm-23</i> 1/10 cco-1 1/10 <i>timm-23</i> 2/10	-	21 23 23	106 70 82	****	control
wt	control <i>timm-23</i> 1/10 cco-1 1/10 <i>timm-23</i> 9/10	- - -	21 23 23 25	106 70 82 71	**** ****	control control timm-23
wt wt	control <i>timm-23</i> 1/10 cco-1 1/10 <i>timm-23</i> 9/10 ;cco-1 1/10	- - -	21 23 23 25	106 70 82 71	**** ****	control control timm-23 and cco-1
wt wt	control <i>timm-23</i> 1/10 cco-1 1/10 <i>timm-23</i> 9/10 ;cco-1 1/10	- - -	21 23 23 25	106 70 82 71	**** **** ****	control control timm-23 and cco-1
wt wt	control <i>timm-23</i> 1/10 cco-1 1/10 <i>timm-23</i> 9/10 ;cco-1 1/10 control	- - -	21 23 23 25 19	106 70 82 71 147	**** **** ***	control control timm-23 and cco-1
wt wt wt	control <i>timm-23</i> 1/10 cco-1 1/10 <i>timm-23</i> 9/10 ;cco-1 1/10 control <i>timm-23</i>	- - -	21 23 23 25 19 21	106 70 82 71 147 120	**** **** ****	control control timm-23 and cco-1
wt wt wt	control <i>timm-23</i> 1/10 cco-1 1/10 <i>timm-23</i> 9/10 ;cco-1 1/10 control <i>timm-23</i> 9/10	- - - -	21 23 23 25 19 21	106 70 82 71 147 120	**** **** ****	control control timm-23 and cco-1 control

wt	<i>timm-23</i> 9/10; cco-1	-	25	61	****	timm-23 and cco-1
wt	control	-	21	104		
	timm-23			70	****	
wt	9/10	-	23	70	****	control
wt	<i>atp-</i> 3 1/10	-	27	50	****	control
wt	<i>timm-23</i> 9/10; atp-3 1/10	-	30	62	***	timm-23 and atp-3
wt	control	-	22	70		
wt	timm-23	-	26	92	****	control
haf-1(ok705)	control	-	22	22		
haf-1(ok705)	timm-23	-	30	30	****	haf- 1(ok705)
dve-1(tm4803)	control	-	24	63		
dve-1(tm4803)	timm-23	-	36	65	****	dve- 1(tm4803)
wt	control	-	20	113		
wt	tomm-40	-	26	125	****	control
dve-1(tm4803)	control	-	23	68		
dve-1(tm4803)	tomm-40	-	26	94	****	dve- 1(tm4803)
wt	control	-	21	69		
wt	tomm-40	-	25	71	****	control
wt	dve-1	-	18	106		
wt	dve- 1;tomm-40	-	19	95	****	dve-1
wt	dve-1	-	23	68		
wt	dve- 1;tomm-40	-	26	94	****	dve-1
wt	control		22	67		
wt	<i>timm-23</i> from L4		24	117	*	wt
wt	<i>tomm-40</i> from L4		24	66	*	wt
wt	control	-	26	125		
wt	<i>timm-23</i> from L4	-	29	117	***	wt
wt	<i>tomm-40</i> from L4	-	26	94	**	wt
wt	OP50	0 µM DECA	17	60		
wt	OP50	5 µM DECA	17	59	*	wt
wt	OP50	10µM DECA	17	53	*	wt
wt	OP50	20µM DECA	18	49	****	wt
wt	HT115	0 µM DECA	20	60		
wt	HT115	5 µM DECA	20	59	ns	wt
wt	HT115	20µM DECA	20	49	**	wt
wt	control	-	24	117		
wt	tomm-40		27	87	****	wt
wt	tomm-40 1/2		24	131	ns	wt
wt	hsp-60		18	119	****	wt
wt	hsp-60 ½		18	110	****	wt

wt	hsp-60 ½;tomm-40 ½	22	125	****	hsp-60 ½
wt	control	24	94		
wt	tomm-40	26	105	****	wt
wt	tomm-40 ½	24	144	ns	wt
wt	hsp-60	17	143	****	wt
wt	hsp-60 ½	17	137	****	wt
wt	hsp-60 ½;tomm-40 ½	24	138	***	hsp-60 ½
TU3401					
(Neuron	Control	18	220		
specific RNAi)					
TU3401					
(Neuron	cco-1	18	317	ns	TU3401
specific RNAi)					
TU3401					
(Neuron	cco-1 1/10	20	294	**	TU3401
specific RNAi)					
TU3401					
(Neuron	Control	20	229		
specific RNAi)					
TU3401					
(Neuron	cco-1	20	341	**	103401
specific RNAi)					
TU3401					
(Neuron	cco-1 1/10	22	228	***	103401
specific RNAi)					

Combination and dilution of different RNAi are denoted as $\frac{1}{2}$, $\frac{1}{10}$, $\frac{9}{10}$. Lifespan curves were statistically analyzed with the Log-rank (Mantel-Cox) test (**** denotes P<0.0001, *** denotes P<0.001, ** denotes P<0.001, ** denotes P<0.01 and *denotes P<0.05)

Metabolites with significant abundance increase				
CT1	CT2			
1. CE_Un0002 (RT:15.648/QI:199//organic acid putatively)	1. glycerol			
2. glycerol	2. glycine_effective			
3. GABA	3. pyruvate			
4. ethanolamine-phosphate	4. putrescine (4TMS) (Un_0129)			
5. glycine_effective	5. serine_effective			
6. 3-phosphoglycerate	6. lactate			
7. myo-inositol	7. lysine (4TMS)			
8. trehalose	8. threonine_effective			
9.Un_0067 (P3458/a70/f_37// phospho- compound)	9. glycerol 3-phosphate			
10. fumarate	10.Un_0063 (a_39/x_2/U_032// RT:20.913/QI:263)			
11. beta-alanine	11. aminomalonic acid			
12. threonine effective	12. cysteine NNO (4TMS)			
13. aspartate (3TMS)	13. tryptophan_effective			
14. serine (3TMS)	14.Un_0055 MeOx1 (A_116/f_26// RT: 27.611/QI:217// sugar)			
15. lactate	15. Un_0017 (P1091/C_041)			
16. putrescine (4TMS) (Un_0129)	16. myo-inositol			
17. glutamate_effective	17. Unrev_289 (P3502// sugar phosphate)			
18. lysine (4TMS)	18. CE_Un0007 (RT:28.152/QI:117)			
19. Un_0088 (K_47/A_077// RT:22.282/QI:188)	19.Un_0102 (P3188/U_062// fatty acid putatively)			
20. malate	20. sorbitol			
21. Un_0017 (P1091/C_041)	21. A_052 (RT:17.309/QI:298)			
22. vitamin B5 (Un_0060/P3075/a_68/unknown no 114)	22. trehalose			
FDR-median = 0%	23. Un_0126 (A_170// RT:34.244/QI:339)			
23. threonate	24. threonate			
24. A_052 (RT:17.309/QI:298)	25. malate			
25. 2-hydroxyglutaric acid	FDR-median = 0%			
26. glycerol monostearate	26. CE_Un0002 (RT:15.648/QI:199//organic acid putatively)			
27. urea (2TMS)	27. vitamin B5 (Un_0060/P3075/a_68/unknown no 114)			
28. isoleucine (2TMS)	28. glucose_total			
29. citrate	29. glycerol monostearate			
30. Un_0136 (P3960// fatty acid putatively)	30. Un_0136 (P3960// fatty acid putatively)			
31. Unrev_289 (P3502// sugar phosphate)	31. CE_Un0008 (RT:29.068/QI:129)			
32. aminomalonic acid (3TMS)	32. CE_Un0004 (RT:24.276/QI:266)			
33. CE_Un0007 (RT:28.152/QI:117)	33. benzoate			
34. phosphate (4TMS)	34. myristate			

Supplementary Table 3. The metabolites identified with significantly higher abundance in the tomm40 (RNAi) compared to the control worms at CT1 and CT2, based on the SAM method.

35. sorbitol (6TMS)	35. octadecanoic acid
36. glucose-6P MeOx1	36. alanine_effective
FDR-median = 0.329 %	FDR-median = 0.486 %

The results for each collection time are separated into two groups: the first includes the positively significant metabolites for the smallest significance threshold for which the FDR-median is 0 and the second, the additional metabolites identified as positively significant for the smallest possible significant threshold for these datasets based on SAM, still corresponding to a very small FDR-median. The corresponding SAM curves are shown in Supplementary Figs 7c and 8c for CT1 and CT2, respectively. The relative abundances of these metabolites for CT1 and CT2 are shown in the heat maps of Fig. 5a and b.

Blots from Supplementary Figure 3e

