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Appendix A: Data encoding 

The idea behind data encoding is to use sequences of the multi-controlled rotations. Given a 

classical normalized data vector �⃗� = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8), the problem is how to build the 

quantum circuit to encode the 8-dimensional vector �⃗� into a state vector of three qubit register, 

∑𝑎𝑖+1|𝑖⟩,

7

𝑖=0

 
(A1) 

where, in our case, 𝑎𝑖+1 are real numbers. In 1, the reverse problem is considered which is about 

mapping |𝜓⟩ to the ground state |0…0⟩ by using multi-controlled rotations. Since quantum gate 

operations are unitary and reversible, we can use the routine in 1 for data encoding by inverting 

each gate operation 2. Fig. S1 shows the quantum circuit for mapping |𝜓⟩ of equation (A1) to 

|000⟩. In order to implement the quantum circuit of Fig. S1 on NISQ efficiently, we need to 

decompose controlled 𝑅𝑦-rotations into single 𝑅𝑦-rotations and 𝐶𝑁𝑂𝑇 gates as shown in Fig. S2. 

To implement a uniformly multi controlled rotation using single qubit rotations and 𝐶𝑁𝑂𝑇 gates, a 

decomposition based on Gray codes is used 1,3. For this purpose, the multi-controlled rotation 
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angles 𝛽 in Fig. S1 have to be converted into a set of non-controlled rotation angles 𝜃 in Fig. S2 

(see equation (A3)). To this end, first, equation (A2) computes the rotation angles required to 

implement the uniformly controlled 𝑅𝑦-rotations applied to the qubits in Fig. S1. 

 

𝛽𝑗
𝑘 = 2 sin−1 [

√∑ |𝑎(2𝑗−1)2𝑘−1+𝑙|
2

2𝑘−1
𝑙=0

√∑ |𝑎(𝑗−1)2𝑘+𝑙|
2

2𝑘
𝑙=0

],                                                 

(A2)  

where 𝑗 = 1, 2, … , 2𝑛−𝑘, 𝑘 = 1, 2 3, and 𝑛(= 3) is the number of qubits1. The angles 𝜃 are obtained  

from 𝛽: 
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(A3) 

where 𝑀𝑖𝑗
(𝑘) = 2−𝑘(−1)𝑔𝑖−1.𝑏𝑗−1, 𝑏𝑗 is the binary representation of the decimal 𝑗, and 𝑔𝑗 is the grey 

code. Moreover, the dot product 𝑔𝑖−1. 𝑏𝑗−1 is the bitwise inner product, for example, (01). (11) =

0 × 1 + 1 × 1 = 1. Table S1 shows the values 𝑏𝑗 the binary decimal, and the values of 𝑔𝑖 the grey 

code.  

𝑖 𝑔𝑖 

0 000 

 1 001 

2 011 

3 010 

4 110 

5 111 

6 101 

7 100 
 

𝑗 𝑏𝑗 

0 000 

1 001 

2 010 

3 011 

4 100 

5 101 

6 110 

7 111 
 

Table S1. The value of grey code (left) and the value of the binary decimal (right) for three-bit version. 
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Figure S1. Gate operations for mapping |𝝍⟩ to the ground state |𝟎𝟎𝟎⟩. The white circle indicates a control on 

qubit being in state |0⟩, and the full circle a control on qubit being in state |1⟩. 𝛽𝑗
𝑘s are angles for 𝑅𝑦-rotation gates, 

which can be obtained from equation (A2). 

 

Figure S2. Quantum circuit for mapping |𝝍⟩ to the ground state |𝟎𝟎𝟎⟩ after gate decomposition. 𝜃𝑗
𝑘s are angles 

for 𝑅𝑦-rotation gates. Equation (A3) shows the relationship between 𝛽𝑗
𝑘 and 𝜃𝑗

𝑘 angles. 

Now the reverse can generate the two-qubit state |𝜓⟩ (equation (A1)) from the ground state |000⟩ 

as shown in Fig. S3.  

 

Figure S3. Quantum circuit for mapping |𝟎𝟎𝟎⟩ to |𝝍⟩. This quantum circuit can encode a vector with 8-components 

into a quantum state with three qubits. 

three-controlled rotations are also required, as shown in Fig. S4.  

Equation (A2) computes the rotation angles required to implement the uniformly controlled 𝑅𝑦-

rotations applied to the qubits in Fig. S4 for 𝑘 = 1, 2, 3, 4, and 𝑛(= 4) is the number of qubits1. 
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Figure S4. Quantum circuit of the uniformly three-controlled rotations about 𝒚 axis. The white circles indicate a 

control on qubit being in state |0⟩, and the full circles a control on qubit being in state |1⟩. 

Fig. S5 shows the efficient gate decompositions for the uniformly controlled rotations in Fig. S4 

based on Grey code 1.The angles 𝜃 are obtained from 𝛽 with equation (A3). Table S2 shows the 

values 𝑏𝑗 the binary decimal 𝑗, and the grey values 𝑔𝑖.  

 

𝑖 𝑔𝑖 

0 0000 

 1 0001 

2 0011 

3 0010 

4 0110 

5 0111 

6 0101 

7 0100 

8 1100 

9 1101 

10 1111 

11 1110 

12 1010 

13 1011 

14 1001 

15 1000 
 

𝑗 𝑏𝑗 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

10 1010 

11 1011 

12 1100 

13 1101 

14 1110 

15 1111 
 

Table S2. The value of grey code (left) and the value of the binary decimal (right) for four-bit version. 
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Figure S5. Gate decomposition for uniformly three-controlled rotations of Fig. S4. The quantum circuit only 

includes single 𝑅𝑦- rotations and 𝐶𝑁𝑂𝑇 gates.  

 

Appendix B: Gate decompositions 

Compilation of the Hadamard Test and the Swap Test are computationally expensive on NISQ 

devices due to existence of Toffoli gate, single control 𝑅𝑦 rotations, and three-qubits controlled 

swap gates. Fig. S6(b) shows the efficient decomposition of Toffoli gate (Fig. S6(a)) into 

Hadamard (𝐻), 𝑇, 𝑇†, and 𝐶𝑁𝑂𝑇 gates. In Fig. S7(a), one single control 𝑅𝑦-rotation gate is 

decomposed into 8 single 𝑅𝑍 and 𝑅𝑋 rotations and 2 𝐶𝑁𝑂𝑇s. 

 

(a)                              (b) 

 

 

Figure S6. (a) Shows Toffoli gate 𝐶𝐶𝑁𝑂𝑇(𝑞0, 𝑞1, 𝑞3). (b) A decomposition of 𝐶𝐶𝑁𝑂𝑇(𝑞0, 𝑞1, 𝑞3). 
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(a)                             (b) 

 

 

Figure S7. (a) shows single control 𝑅𝑦-rotation gate. (b) A decomposition of single control 𝑅𝑦-rotation gate. 

 

For datasets with 16 features, there are some 𝐶𝑁𝑂𝑇 which cannot be implemented directly on 

IBMQ Melbourne machine due to coupling constraints. For example, 𝐶𝑁𝑂𝑇(𝑞0, 𝑞4) must be 

decomposed before execution the quantum circuit on quantum computer as shown in Fig. 

S8(b). 

(a)                                                                             (b) 

  

Figure S8. (a) Shows 𝐶𝑁𝑂𝑇(𝑞0, 𝑞4) generated from decomposition Toffoli gate for dataset with 16 features. (b) A 

decomposition of 𝐶𝑁𝑂𝑇(𝑞0, 𝑞4) into executable 𝐶𝑁𝑂𝑇s. 

The only computationally expensive gate operations for the SWAP Test are three-qubits 

controlled swap gates (See Fig. S9(a)). One single 𝐶𝑆𝑊𝐴𝑃(𝑞0, 𝑞3, 𝑞6) is decomposed into 11 

single-qubit gates and 7 𝐶𝑁𝑂𝑇s which is shown in Fig. S9(b). Some 𝐶𝑁𝑂𝑇s, which have been 

highlighted with the dash box in Fig. S9(b), don’t fulfil the coupling map constraints of IBMQ 

Melbourne machine. They must be decomposed into executable 𝐶𝑁𝑂𝑇s as shown in Fig. S8(b). 
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(a) (b) 

 

 

 

Figure S9. (a) shows control swap gate 𝐶𝑆𝑊𝐴𝑃(𝑞0, 𝑞3, 𝑞6) for dataset with 8 features. (b) A decomposition of 

𝐶𝑆𝑊𝐴𝑃(𝑞0, 𝑞3, 𝑞6). 

 

Appendix C: quantum Kernel Support Vector Machine (qKSVM) algorithm 

Fig. S10 shows the schematic of qKSVM algorithm 4,5. In this protocol, the NISQ device is used 

twice. Given 𝑀 training data samples 𝐷 = {(�⃗�𝑖, 𝑦𝑖): �⃗�𝑖 ∈  𝑅
𝑀, 𝑦𝑖 ∈ {−1, 1} }𝑖=1,…,𝑀, the task is to find 

label �̃� of a given test data vector �̃�. First the original training data vector �⃗� and their labels are 

prepared on the classical computer. Next, the original training data are encoded into quantum 

states using quantum gate operations followed by computing kernel matrix of all pair of the training 

data (𝐾(�⃗�𝑖 , �⃗�𝑗)). This step runs on the NISQ computer. Then the computed quantum kernel matrix 

𝐾(�⃗�𝑖, �⃗�𝑗) is fed into the classical computer to find the support vector based on the quantum kernel 

matrix of the training data and the training labels by maximizing 5, 

𝐿𝐷(𝛼) =∑𝛼𝑖 −
1

2
∑ 𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝐾(�⃗�𝑖, �⃗�𝑗),

𝑀

𝑖,𝑗=1

𝑀

𝑖=1

 
(C1) 

subjected to these two constraints ∑ 𝛼𝑖𝑦𝑖 = 0
𝑁
𝑖=1  and 𝛼𝑖 ≥ 0 for each 𝑖. In equation (C1), 𝑦𝑖, 𝑦𝑗 , 

𝐾(�⃗�𝑖, �⃗�𝑗), and 𝑀 are the label of 𝑖𝑡ℎ training sample, the label 𝑗𝑡ℎtraining sample, the kernel matrix 
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of training data, and the number of training samples, respectively. If the support vector 𝛼∗ =

 (𝛼1
∗, 𝛼2

∗, … , 𝛼𝑀
∗) is considered to be a solution of equation (C1), the binary classifier can be 

constructed, 

�̃� = 𝑠𝑔𝑛 (∑𝑦𝑖𝛼𝑖
∗𝐾(�⃗�𝑖, �⃗̃� ) + 𝑏

𝑀

𝑖=1

) 
(C2) 

where 𝐾(�⃗�𝑖, �̃� ) is the quantum kernel matrix of the training-test pairs and 𝑏 can be obtained by 

solving ∑ 𝑦𝑗𝛼𝑗
∗𝐾(�⃗�𝑖 , �⃗�𝑗 ) + 𝑏 = 𝑦𝑖𝑗 . Equation (C2) predicts the label �̃� for the given test data. 

Quantum computer is used for the second time to evaluate 𝐾(�⃗�𝑖, �̃� ).  

 

Figure S10. Schematic of qKSVM algorithm for data classification. NISQ device must run twice to estimate 

𝐾(�⃗�𝑖 , �⃗�𝑗 ) and 𝐾(�⃗�𝑖 , �⃗̃� ). 

 

Appendix D: Implementation of the Swap Test on IBMQ Melbourne machine 

In order to map the circuit for the Swap Test on IBMQ Melbourne machine, first, we design the 

circuit of the Swap Test in a simulator 6. Then all single control swap gates must be 

Processing Data vector training �⃗�  

Initial State |0⟩
⊗log2𝑁 

Encoding: |𝑢⟩ 

Estimation of kernel 

𝐾(�⃗�𝑖 , �⃗�𝑗 ) 

Optimizer: computing optimal 𝛼𝑖
∗ 

𝐿𝐷(𝛼) =  ∑𝛼𝑖 −
1

2
∑ 𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝐾(�⃗�𝑖 , �⃗�𝑗),

𝑀

𝑖,𝑗=1

𝑀

𝑖=1

 

Classical computer NISQ 

Initial State |0⟩
⊗log2𝑁 

Encoding: |𝑢⟩, |𝑣⟩ 

Estimation of kernel 

𝐾(�⃗�𝑖 , �⃗̃� ) 

Processing Data vector test �⃗̃� 

Prediction new label for test data 

�̃� = 𝑠𝑔𝑛(∑𝑦𝑖𝛼𝑖
∗𝐾(�⃗�𝑖 , �⃗̃� )

𝑀

𝑖=1

) 
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decomposed into the basis gates 𝑈3, 𝐶𝑁𝑂𝑇, 𝑇†, 𝐻, and 𝑇. 𝐶𝑁𝑂𝑇(𝑞𝑖, 𝑞𝑗)s with the distance 𝑑 =

|𝑞𝑖 − 𝑞𝑗| > 3 don’t satisfy the coupling constraints of IBMQ Melbourne machine 7,8. The efficient 

decomposition approach is to consider physical qubits path 𝑄2 (as root), 𝑄12, 𝑄11, 𝑄10, 𝑄9, 𝑄8, 

and 𝑄7 (goal node) from Fig. 4 of the manuscript as simulator qubits 𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, and 

𝑞6. The decomposition of 𝐶𝑁𝑂𝑇(𝑞0, 𝑞6) is given by 

𝐶𝑁𝑂𝑇(𝑄2, 𝑄7) = 𝐶𝑁𝑂𝑇(𝑄2, 𝑄12)𝐶𝑁𝑂𝑇(𝑄12, 𝑄7)𝐶𝑁𝑂𝑇(𝑄2, 𝑄12)𝐶𝑁𝑂𝑇(𝑄12, 𝑄7) (D1) 

 

With more decomposition for 𝐶𝑁𝑂𝑇(𝑄12, 𝑄7) in equation (D1) 

𝐶𝑁𝑂𝑇(𝑄12, 𝑄7) = 𝐶𝑁𝑂𝑇(𝑄12, 𝑄11)𝐶𝑁𝑂𝑇(𝑄11, 𝑄7)𝐶𝑁𝑂𝑇(𝑄12, 𝑄11)𝐶𝑁𝑂𝑇(𝑄11, 𝑄7),  (D2) 

 

and from equation (D2) 𝐶𝑁𝑂𝑇(𝑄11, 𝑄7) must be decomposed to fulfil the coupling constraints 

𝐶𝑁𝑂𝑇(𝑄11, 𝑄7) = 𝐶𝑁𝑂𝑇(𝑄11, 𝑄10)𝐶𝑁𝑂𝑇(𝑄10, 𝑄7)𝐶𝑁𝑂𝑇(𝑄11, 𝑄10)𝐶𝑁𝑂𝑇(𝑄10, 𝑄7) (D3) 

 

Appendix E:  Estimation of the quantum advantage score for kernel-based algorithms 

In order to link data encoding and the quantum kernel function to the quantum prediction 

advantage, the quantum advantage score (the geometric difference) is used which only 

depends on the dataset, but is independent of the labels. The geometric difference measures the 

similarities of different kernel functions of the same dataset. 

The geometric difference machine learning models based on classical kernel and quantum kernel 

is defined by 9: 

𝑔𝐶𝑄 = 𝑔(𝐾
𝐶‖𝐾𝑄) = √‖√𝐾𝑄(𝐾𝐶)−1√𝐾𝑄‖

∞
, 

(E1) 

where 𝐾𝐶, 𝐾𝑄, and ‖. ‖∞are, the classical kernel matrix, the quantum kernel, and the spectral 

norm of the resulting matrix √𝐾𝑄(𝐾𝐶)−1√𝐾𝑄, respectively.  

The physical meaning of 𝑔𝐶𝑄 is explained as follows: 

A kernel matrix is a semi definite matrix whose diagonal entries are 1 and off-diagonal entries are 

less than 1. The off-diagonal entries of a kernel matrix can be seen as measures of distance 

between data points in the same feature space. Mathematically, if 𝐾(𝑥𝑖 , 𝑥𝑗), an off-diagonal entry 

of a kernel matrix, is large when the distance between 𝑥𝑖 and 𝑥𝑗 is small.  
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Fig. S11(a) and S11(b) show the positions of three data points A, B, and C in classical and 

quantum feature spaces, respectively, with the arrows representing the distances between data 

points. 

 

After encoding data from classical Euclidean space into quantum Hilbert space, the distance 

between data points increases. From the kernel point of view, the entries of classical kernel matrix 

are larger compared to the entries of the quantum kernel matrix. For example, if the classical 

kernel matrix corresponds to Fig. S11(a) is 

𝐾𝐶 = (
1 0.9 0.8
0.9 1 0.7
0.8 0.7 1

) 

 

and the quantum kernel matrix corresponds to Fig. S11(b) is 

𝐾𝑄 = (
1 0.3 0.6
0.3 1 0.5
0.6 0.5 1

) 

then the 𝑔𝐶𝑄 = 2.6.  

 

Figure S11. a) The position of three different data points A, B, and C in the classical space. b) After encoding classical 

data into quantum Hilbert space, the kernel entries corresponds to the data points in the quantum space decrease 

(distances increase). In this case the quantum advantage score 𝑔𝐶𝑄 grows.   

 

  

a) b) Classical space  

Encoding data 

into Hilbert Space  

Quantum Space 

A 

B 

C 

A 

B 

C 
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In the second case, if the classical kernel matrix corresponds to Fig. S12(a) is 

𝐾𝐶 = (
1 0.3 0.6
0.3 1 0.5
0.6 0.5 1

) 

 

and the quantum kernel matrix corresponds to Fig. S12(b) is 

𝐾𝑄 = (
1 0.9 0.8
0.9 1 0.7
0.8 0.7 1

) 

then the 𝑔𝐶𝑄 = 1.2.  

 

 

Figure S12. a) The position of three different data points A, B, and C in the classical space. b) After encoding classical 

data into quantum Hilbert space, the kernel entries correspond to the data points in the quantum space increase 

(distances decrease). In this case the quantum advantage score 𝑔𝐶𝑄 decline.   

 

 

  

a) b) 
Classical space  

Encoding data into 

quantum Hilbert 

Space  

Quantum Space 

A 

B 

C 
A 

B 

C 
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Appendix F: Another method for estimation of |⟨𝒖|𝒗⟩|𝟐 with 𝐥𝐨𝐠𝟐𝑵 encoding in Pennylane 

simulator 

To estimate the overlap |⟨𝑢|𝑣⟩|2, one can prepare the two states |𝑢⟩ and |𝑣⟩ on different sets of 

qubits with the log2𝑁 routines and then measure their overlap with the Swap Test (See equation 

(12) and Fig. 2 in manuscript). In general, if 𝑁 = 2𝑛(𝑁 number of feature counts), the number of 

qubits is required to estimate |⟨𝑢|𝑣⟩|2 with the Swap Test are 1 +  2 log2𝑁 = 1 + 2𝑛. However, 

with the Pennylane simulator, one need only 𝑛 number of qubits instead of 1 + 2𝑛If 𝑈 is a data-

encoding feature map, 𝐾(�⃗�𝑖, �⃗̃� ) is defined as the inner product between two data encoding feature 

vectors 𝜌(�⃗�𝑖) = |𝑢⟩⟨𝑢| and 𝜌(�⃗̃�) = |𝑣⟩⟨𝑣| as following   

𝐾(�⃗�𝑖, �⃗̃� ) = 𝑡𝑟[𝜌(�⃗�𝑖)𝜌(�⃗̃�)] = |⟨𝑢|𝑣⟩|
2, (F1) 

where |𝑢⟩ = 𝑈(�⃗�𝑖)|0⟩
⊗𝑛

and |𝑣⟩ = 𝑈(�⃗̃�)|0⟩
⊗𝑛

with �⃗�𝑖, �̃⃗� ∈ 𝑅, 

and  𝜌(�⃗�𝑖) = |𝑢⟩⟨𝑢|, and 𝜌(�⃗̃�) = |𝑣⟩⟨𝑣| are density matrices 6.Fig. S13 shows the execution of the 

quantum circuit for estimation of overlap |⟨𝑢|𝑣⟩|2 based on equation (F1) on IBMQ Melbourne 

machine for 16 feature counts.  

 

Figure S13. Quantum circuit to estimate the overlap |⟨𝒖|𝒗⟩|𝟐 . In our work, classical data are embedded in 4-qubit 

states. For mitigating the errors, instead of measuring the first qubit and compute the probability as the ratio of the 

number of times, IBMQ Melbourne machine measures all qubits.   
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Appendix G: Experimental vs. Simulator results in the Wisconsin Breast Dataset 

Table S3 and S4 demonstrate the result of the inner product of the train and test state vectors in 

the Wisconsin Breast Cancer dataset from the simulator and the NISQ device. This dataset was 

chosen as it was providing the highest predictive cross-validation performance. 

Simulator Experiment  

0.99731445  0.96112412   

0.99975586  0.96103537  

0.99804688 0.95926965  

0.99072266  0.94346566  

0.9987793   0.96225939  

0.99902344 0.96659979 

0.98510742 0.92951251   

0.99584961 0.95624028  

0.99780273 0.96399544  

0.99780273 0.96595994  

0.99804688 0.96006015  

0.99389648 0.95516533 

0.99755859 0.94856032   

0.99975586 0.96524602 

0.99951172 0.96814957 

0.99975586 0.96419696 

0.9987793   0.96087165 

0.99975586 0.96539174 

0.99780273 0.96595487 

0.99902344 0.95822572 

0.99975586 0.96650487 

0.99951172 0.96373871 

0.99951172 0.96193827 

0.99853516 0.96626416 

1. 0.96596886 

0.99414062 0.94053438 

0.99316406  0.94181723   

1. 0.95599433 

0.99731445 0.96254194 

0.9987793 0.96467032 

0.99975586 0.96855924    

0.99902344 0.96524826 

0.99902344 0.95855295 
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0.99536133 0.95312006 

0.99951172 0.96590859 

0.99926758 0.96571504 

0.99707031 0.94822447  

0.99951172 0.96891241  

0.99609375 0.94659031  

0.99926758 0.96632589  

0.99731445 0.95831742  

0.99804688 0.96289076 

 

Table S3. The values of the inner product of the train and test state vectors (Wisconsin Breast Cancer dataset, 

8 features, log2𝑁 encoding) 

 

Simulator Experiment 

0.99707031 0.92630438 

0.99267578 0.92135464 

0.99389648 0.92650787  

0.99243164 0.92750112 

0.99462891 0.92948507 

0.98608398 0.91441441 

0.99731445 0.91670529 

0.99072266 0.92623362 

0.99316406 0.92795809 

0.87133789 0.79162077 

0.99365234 0.91339712 

0.94775391 0.89294637 

0.99829102 0.93250948 

0.98828125 0.90181806 

0.97509766 0.90796459 

0.99487305 0.91907908 

0.9921875 0.92437216 

0.98413086 0.90482882 

0.94091797 0.88528044 

0.98730469 0.89584281 

0.99487305 0.90275101 

0.98144531 0.90580224 

0.9934082 0.90776304 

0.96777344 0.87167887 

0.95507812 0.85660504 
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0.99414062 0.9236293 

0.99121094 0.92107083 

0.99829102 0.92467406 

0.99609375 0.93314405 

0.9855957 0.92024353 

0.95336914 0.88968439 

0.984375 0.90325062 

0.99487305 0.91701626 

0.96655273 0.88973655 

0.98730469 0.90657753 

0.98657227 0.91612964 

0.99462891 0.91416633 

0.99243164 0.92495982 

0.98901367 0.91434396 

0.9519043 0.86707464 

0.98339844 0.91272665 

0.98876953 0.91759276 

 

Table S4. The values of the inner product of the train and test state vectors (Wisconsin Breast Cancer dataset, 

16 features, log2𝑁 encoding) 

 

In Table S5, we demonstrate the label of test dataset and the labels assigned to them by the 𝑘-

nearest neighbour and the qDC algorithm for the case of two classes 0 and 1 in the 8-dimensional 

Wisconsin Breast cancer dataset. It can be seen that our qDC with NISQ device provides the 

correct labels for 38 out of 42 for 8-dimensional points, or an accuracy of 90.4% while with the 

same qDC algorithm with simulator 39 correct labels out of 42 for 8-dimesnional points are 

assigned with an accuracy of 92.8%.  

 
 

1 1  1  1  1  1  1  0  0  0  0  0  0  0  1  1  1  0  1  0  1  1  1  1  0  1  0  0  0  1  1  1  1  0  0  1  0  0  1  0  0  0  0    

2 1  1  1  0  0  1  0  0  0  0  1  0  0  1  1  1  0  1  0  1  1  1  1  0  1  0  0  0  1  1  1  1  0  0  1  0  0  1  0  0  0  0    

3  1  1  1  0  0  1  0  0  0  1  1  0  0  1  1  1  0  1  0  1  1  1  1  0  1  0  0  0  1  1  1  1  0  0  1  0  0  1  0  0  0  0    

4  1  1  1  0  0  1  0  0  0  0  0  0  0  1  1  1  0  1  0  1  1  1  1  0  1  0  0  1  1  1  1  1  0  0  1  0  0  1  0  0  0  0    

 
Table S5. Comparison of labels assigned by quantum distance classifier (qDC) algorithm corresponds to 

Wisconsin Breast Cancer data with 8 features. The first line shows the labels of the test data. The second line shows 

the prediction results of qDC with simulator. The third line shows the labels assigned by the quantum distance classifier 

algorithm with NISQ device. The fourth line shows the result of classical 𝑘-nearest neighbour with 𝑘 = 5. The labels 

(label) in green show where the classification with NISQ device differs from the classification with simulator. The labels 
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(label) in red show where the classification with NISQ device and the simulator differs from the label of the test data. 

The labels in blue show where the classical 𝑘- nearest neighbour differs from the label of the test data.  

In Table S6 we demonstrate, the label of test dataset and the labels assigned to them by the 𝑘-

nearest neighbour and the qDC algorithm for the case of two classes 0 and 1 in the 16-

dimensional Wisconsin Breast cancer dataset. It can be seen that our qDC with NISQ device 

provides the correct labels for 38 out of 42 for 8-dimensional points, or an accuracy of 90.4% 

while with the same qDC algorithm with simulator 40 correct labels out of 42 for 16-dimesnional 

points are assigned with an accuracy of 95.2%.  

Owing to noisy qubits and the errors of gate operations, the predictive performance from NISQ 

device reduces by 5% for Wisconsin Breast Cancer with 16 features, while the predictive 

performance reduces by almost 2% for Wisconsin Breast Cancer with 8 features. 

 
 

1 1  1  0  1  0  0  1  1  0  1  1  0  1  1  1  1  1  1  1  1  0  0  0  0  0  1  1  1  1  0  0  0  0  1  0  0  0  0  1  0  0  0    

2 1  1  0  1  0  0  1  0  0  1  0  0  1  1  1  1  1  1  1  1  0  0  0  0  0  1  1  1  1  0  0  0  0  1  0  0  0  0  1  0  0  0       

3  1  1  0  1  0  1  1  0  0  1  0  0  1  1  1  1  1  1  1  1  0  0  0  0  1  1  1  1  1  0  0  0  0  1  0  0  0  0  1  0  0  0       

4 1  1  0  1  0  0  1  0  0  1  0  0  1  1  1  1  1  1  1  1  0  0  0  0  0  1  1  1  1  0  0  0  0  1  0  0  0  0  1  0  0  0       

 
Table S6. Comparison of labels assigned by quantum distance classifier (qDC) algorithm corresponds to 

Wisconsin Breast Cancer data with 16 features. The first line shows the labels of the test data. The second line 

shows the prediction results of qDC with simulator. The third line shows the labels assigned by the quantum distance 

classifier algorithm with NISQ device. The fourth line shows the result of classical 𝑘-nearest neighbour with 𝑘 = 5. The 

labels (label) in green show where the quantum classification with NISQ device differs from the quantum classification 

with simulator. The labels (label) in red show where the quantum classification with NISQ device and the simulator 

differs from the label of the test data. The labels in blue show where the classical 𝑘- nearest neighbour differs from the 

label of the test data.  

Appendix H: Implementation of the Hadamard Test on IBMQ Melbourne machine 

The Hadamard Test approach is used to estimate the inner product of two state vectors. To map 

the quantum circuit of the Hadamard Test on the IBMQ Melbourne machine, first, we design the 

circuit in the Pennylane-Qiskit 0.13.0 environment. As can be seen from Fig. S14, there are Toffoli 

gates (𝐶𝐶𝑁𝑂𝑇), and single control 𝑅𝑦 gates which are needed to be decomposed before mapping 

the circuit of Fig. S14 on the IBMQ Melbourne machine architecture. To this end, we decompose 

each Toffoli gate in Fig. S14 into Hadamard (𝐻), 𝑇, 𝑇†, and 𝐶𝑁𝑂𝑇 gates and each single control 

𝑅𝑦 gates into single qubit rotation gates and two 𝐶𝑁𝑂𝑇s (see Appendix B of the supplementary 

material). To design the Hadamard Test dataset with 16 features, 𝐶𝑁𝑂𝑇(𝑞0, 𝑞4) cannot be 

implemented on the IBMQ Melbourne machine directly due to coupling constraints 7. There are 
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two approaches to map 𝐶𝑁𝑂𝑇(𝑞0, 𝑞4) on the IBMQ Melbourne. Let’s first consider the physical 

qubits path 𝑄4 (root node), 𝑄10, 𝑄9, 𝑄8, and 𝑄7 (goal node) from Fig. 5 of manuscript as simulator 

qubits 𝑞0, 𝑞1, 𝑞2, 𝑞3, and 𝑞4, respectively. The first option is to use a SWAP gate between 𝑄4 and 

𝑄10, then, a 𝐶𝑁𝑂𝑇 between 𝑄4 and 𝑄7. To complete the effect, a final SWAP between 𝑄10 and 𝑄4 

is applied 7,8. Since each SWAP gate is implemented using three 𝐶𝑁𝑂𝑇 gates, seven 𝐶𝑁𝑂𝑇s are 

required to reproduce the effect of just one 𝐶𝑁𝑂𝑇(𝑞0, 𝑞4). Another more efficient way is to only 

use sequences of 𝐶𝑁𝑂𝑇 gates as following 8 

𝐶𝑁𝑂𝑇(𝑄4, 𝑄7) = 𝐶𝑁𝑂𝑇(𝑄4, 𝑄10)𝐶𝑁𝑂𝑇(𝑄10, 𝑄7)𝐶𝑁𝑂𝑇(𝑄4, 𝑄10)𝐶𝑁𝑂𝑇(𝑄10, 𝑄7), (H1) 

where 𝐶𝑁𝑂𝑇(𝑞0, 𝑞4) = 𝐶𝑁𝑂𝑇(𝑄4, 𝑄7). 

 

 
Figure S14. The Hadamard Test circuit to estimate the inner product of state vectors of the training and the 

test datasets with 8 features (3+1-qubit). The ancilla qubit (𝑞00) is measured to estimate ⟨𝑢|𝑣⟩. The blue boxes are 

the part of quantum circuit that encodes the train data into the quantum state and entangles the ancilla qubit with the 

quantum state vector of the train data. The quantum circuit in the green boxes encode the test data and also entangle 

quantum state vector of the test data with the ancilla qubit.  
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