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Table S1 Summary of subject participation in the flickering checkerboard experiments with two 
graded luminance levels (section 2.1.1 in the main text). ‘X’ marks the data included for reports. 
A total of 10 subjects participated in this experiment and underwent simultaneous EEG/fMRI 
scans of 6-s visual stimuli. Among whom, the fMRI data of 1 subject were not successfully 
collected; the EEG data of a few subjects demonstrated no clear SSVEP (clear narrow peaks at 
the checkerboard flickering frequency) or alpha activity in the neural electrodes (see below, with 
no ‘X’), and were hence excluded for ensuing characterization of contrast-dependent modulation. 
A subset of 6 subjects returned for another fMRI-only experiment that consisted of 1-s visual 
stimuli.  
 

Subject Index 6-s trials (EEG/fMRI) 1-s trials 
(fMRI) fMRI SSVEP alpha 

01 X   X 
02 X    
03 X X X X 
04 X  X X 
05 X  X X 
06  X X  
07 X X X  
08 X X X X 
09 X X X  
10 X X X X 
11 X    
12 X    
13 X    
14 X   X 
15 X    

# of trials 
(mean±stdev 

across subjects) 

‘High’: 51±17 
‘Low’: 79±26 

‘High’: 72±23 
‘Low’:113±36 

‘High’: 57±28 
‘Low’: 90±44 

‘High’: 69±17 
‘Low’: 108±26 

 
 
SM 1 Modelling contrast-dependent HRF patterns based on EEG measurements    
 
Model I: Forward biophysical modeling of BOLD dynamics predicted by SSVEP/alpha wave 
activity. 
 
Neurovascular coupling: Neurally-driven CBF changes 𝑓(𝑡) were simulated by linearly convolving 
task-evoked SSVEP or alpha patterns 𝑁(𝑡) with a Gamma-variate function ℎ(𝑡) as follows:  
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eqn. (1) 

𝑓(𝑡) = 1 + 𝑘'ℎ(𝑡 − 𝛿$') ∗ 𝑁(𝑡) 
 
where 𝑘 = 3, 𝜏! = 0.968	s (corresponding to a FWHM of 4 s for ℎ(𝑡)), the temporal delay in CBF 
𝛿$' = 1	s . 𝑘'  is the scaling factor that normalizes 𝑓(𝑡)—with 𝑘'

(.*%,--./0 = 7.7, 𝑘'
12%,--./0 =

11, 𝑘'
(.*%,345!3 = 0.086, 𝑘'

12%,345!3 = 0.17, the simulated BOLD percent signal change (PSC) is 1.6% 
for the lower luminance level and 4% for the higher luminance level. Note that we have scaled 



down the PSC in contrast to the empirical observation in Fig. 1B (~4% for the lower luminance 
level and 10% for the higher luminance level), in order to approach the PSC level conventionally 
modeled under the balloon model; this compatibility can be alternatively achieved by altering the 
dimensionless parameters that define intra- and extra-vascular BOLD contributions in eqn. (5) 
below.  
 
Flow-volume dynamics (the balloon model): The transformation of CBF to BOLD dynamics follows 
the balloon model [cite], with the volume of the balloon 𝑣(𝑡) and the total deoxyhemoglobin 𝑞(𝑡) 
simulated as:     
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1
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𝑣̇(𝑡) =
1
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where 𝜏677 = 2	s is the mean transit time through the balloon (the ratio of the resting-state blood 
volume to blood flow), and 𝜏: = 30	𝑠 is the viscoelastic time constant of the rapid volume change 
(identical values are used for inflation and deflation). The CMRO2 response 𝑚(𝑡) is modeled via 
𝑓(𝑡) by a coupling ratio 𝑛 and a temporal delay 𝛿$; = 1	s: 
 

𝑚(𝑡) = 1 +
𝑓(𝑡 − 𝛿$;) − 1

𝑛
 eqn. (3) 

 
The output flow is additionally modeled as:  

𝑓89$(𝑣, 𝑡) = 	
1

𝜏: + 𝜏677
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with the steady-state flow-volume coupling ratio 𝛼 = 0.4.  
 
BOLD percent signal change takes the following form:  
 

∆𝑆
𝑆
= 	𝑉2 	N𝑘((1 − 𝑞) + 𝑘= O1 −

𝑞
𝑣
P + 𝑘1(1 − 𝑣)Q eqn. (5) 

  
where baseline blood volume 𝑉2 = 0.03, dimensionless parameters 𝑘( = 6.7, 𝑘= = 2.73, and 𝑘1 =
0.57.  
 
 
Model II: Impulse HRFs responsive to 1.8% and 30% contrast levels.   
 
Impulse HRF changes were characterized under a linear regression paradigm illustrated in Fig. 
S1 below. The set of bases functions (v) introduced in SM3 were employed for 𝑖𝐻𝑅𝐹(𝑡) fitting.  
 
 
 
 



        
Fig. S1 Illustration of waveforms included in the regression model. 𝑁(𝑡): mean SSVEP/alpha 
envelope of all subjects (Fig. 4); 𝐻𝑅𝐹>?(𝑡): mean HRFs (‘raw’) elicited by 6-s task trials across all 
subjects (Fig. 1B) and fitted curves (‘fit’) by the HRF basis (v).  
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SM2 Influence of selected HRF bases on quantified dispersion of TTPs, FWHMs and 
frequency responses of voxel-wise HRFs (section 2.2.4 of the main text)   
 
To alleviate the bias of specific HRF basis functions, we evaluated the fMRI results with five 
different sets of HRF bases:  
(i) The canonical SPM HRF with its temporal and dispersive derivatives (3 functions);   
(ii) Three Gamma-variate functions;   
(iii) The first 3 principal components of HRF functions constructed following the FSL FLOBS 
concept (the ranges of parameters are listed below):    
(iv) The first 6 principal components of HRF functions constructed following the FLOBS approach.    
 
 
 
 
 
 
 
 
 
 
 
 
 
(v) The canonical SPM HRF (eqn. 6) and its derivatives with respect to 𝑎, 𝑏, 𝑐, 𝑑, 𝑘:   
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with 𝑎 = 6, 𝑏 = 1, 𝑐 = 16, 𝑑 = 1, 𝑘 = 1/6. 
 
As shown in Fig. S2 below, although the specific ranges of quantified HRF features varied across 
different basis functions, remarkable inter-voxel variability of TTPs, FWHMs and A0.2/A0.1, as well 
as the negative influence of effective voxel size on HRF variability was consistently observed, 
suggesting that our findings were not biased by the specific HRF bases we chose. We reported 
the basis set (v) in the main text, because it resulted in the best fitting results when inspecting 
individual voxel’s time series (not shown).   
 
  



Figure S2 Dispersions of voxel-wise TTPs, FWHMs and A0.2/A0.1, and the influence exerted by 
spatial smoothing (each column shows the results fitted by one set of HRF bases).  
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SM 3 Subject-level results of contrast-dependent sensorimotor HRFs 
 
Figure S3 Subject-level HRFs evoked by graded vibrotactile stimuli (mean and standard errors 
across trials). The mean HRF of voxels within a left postcentral gyrus region of interest (bottom 
right, derived by projecting the group-level activation map to each subject’s native image space) 
is displayed; and the black curve in each panel shows the response modeled by the SPM 
canonical function (scaled to match the peak percent signal change induced by the highest 
contrast). Indexes of individual results included for reports in Fig. 2B are highlighted in purple.  
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SM 4 Potential vascular mechanisms underlying contrast-dependent HRF changes.       
 
The biophysical model (Model I) described in SM1 was used to simulate the influence of contrast-
dependent neurovascular and flow-volume coupling patterns on resultant HRF changes. As 
shown in Fig. S4 below, these vascular aspects can also account for diminished PSUs in lower-
contrast HRFs, and narrower FWHMs that cannot be explained by the EEG signatures, 
suggesting that contrast-dependent hemodynamic patterns may arise partly from vascular 
mechanisms.    
 

 
 
Figure S4 (A) Influence of contrast-dependent flow-volume coupling was simulated by scaling the 
envelope of SSVEP1.8% (proportionally, the CBF changes) with varying folds; smaller task intensity 
corresponds to narrower FWHMs and diminished PSUs; (B) Smaller flow-metabolism coupling 
ratio associated with the lower task contrast predicts a narrower FWHM; (C) CBF ceiling effects 
can yield apparently wider FWHMs. All simulated HRFs are normalized by their maximum 
intensities for comparisons.      
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SM 5 Acquisition and experiments of the data presented in Fig. 6.  
 
Acquisition: MR images were collected on a 3T Siemens Trio scanner with a vendor-supplied 32-
channel head coil. High-resolution angiography: A multi-gradient echo acquisition was used to 
derive the angiography information (voxel size 0.5 × 0.5 × 1.7 mm, TR = 315 ms, TE = 
4.05/9.54/15.03/20.52/26.01/31.50/36.99/42.48/47.97/53.46 ms, flip angle = 60o, FOV = 120´120 
mm, single slice, bandwidth = 300 Hz/Pixel). Images of the first two echoes (with the highest 
inflow contrasts) were averaged, yielding the angiography map shown in Fig. 6A. Functional 
images: A standard inter-leaved multi-slice EPI (voxel size = 1.5×1.5×1.7 mm, TR = 530 ms, TE 
= 30 ms, flip angle = 53o, FOV = 120´105 mm, 7 slices with no gap and the middle slice aligned 
to the angiography plane, phase partial Fourier factor = 7/8, echo spacing = 0.76 ms, bandwidth 
= 1562 Hz/Pixel) was used to map brain functional changes.   
 
Experiments: One subject participated in the block-design visual experiment (task ‘on’: radial 
checkerboard flickering at 12 Hz; task ‘off’: gray background). The experiment consists of three 
sessions, with five blocks per session, 25-s on and 35-s off per block. To achieve accurate 
registration between the angiography and EPI data, a customized head case (https://caseforge.co) 
was employed to minimize head motion.  
 
  



SM 6 Assessing the influence of white noise levels on estimated HRF variability   
 
To minimize the potential contamination from white noise, HRF fitting performed in Experiment 2 
was based on the mean fMRI time course across multiple sessions and very stringent statistical 
thresholds were chosen to include voxels demonstrating evident task effects. To further test 
whether the amplified HRF variability at higher spatial resolutions (Fig. 5 of the main text) mirrored 
the intrinsic heterogeneity of HRFs instead of noisier HRF fitting, we performed additional 
simulations. Briefly, we generated a set of sham datasets following the scheme outlined in Figure 
S5. The sham datasets had identical HRF distributions as the low-resolution fMRI data (post 3D 
spatial smoothing, FWHM = 8 mm), and comparable noise levels as the high-resolution fMRI data 
(without spatial smoothing). We then quantified and compared the HRF speed measures derived 
from the high-resolution fMRI data and those “sham” datasets, to test whether our observations 
in Fig. 5 were dominated by noise. The results are summarized in Table S2. Overall, the 
measured HRF variability of the raw high-resolution data was greater than that caused by noise, 
suggesting that our characterizations were not dominated by noise.   

 
Figure S5 The scheme of generating the “sham” high-res fMRI data based on a single-session 
fMRI data. The simulated “sham” dataset had identical noise levels as the raw high-resolution 
fMRI data (“high-res. data”), and consistent HRF distributions as the spatially-smoothed (3D 
isotropic Gaussian kernel FWHM = 8 mm) low-resolution data (“low-res. data”). To construct the 
null distributions of group-level HRF speed metrics (Table S2 below), the “sham” dataset was 
generated for every single-session dataset of each subject, and 500 group-level “sham” datasets 
were simulated.   
 
Table S2 Summary of HRF speed measures: raw vs. “sham” high-res fMRI data. TTP, FWHM 
and A0.2/A0.1were defined in section 2.2.4 of the main text. 'TTP faster/slower’: mean HRF across 
top/bottom 20% voxels demonstrating faster/slower TTPs; 'FWHM faster/slower’: mean HRF 
across top/bottom 20% voxels demonstrating narrower/broader FWHMs; 'A0.2/A0.1 faster/slower’: 
mean HRF across top/bottom 20% voxels demonstrating larger/smaller A0.2/A0.1 values. Overall, 
the empirical measurements ('raw’) exhibited greater variability than simulated sham data (95% 
confidence intervals were shown), contrasting the faster/slower values with the 95% CIs.     
 

HRF features 3 T 7 T 
raw  95% CI  raw 95% CI 

TTP (s) 
faster 3.4 [4.1 4.2] 3.5 [4.5 4.6] 
slower 6.4 [5.6 5.9] 6.6 [5.5 5.6] 

FWHM (s) faster 3.4 [3.7 3.9] 3.3 [4.1 4.3] 
slower 6.8 [5.8 6.5] 6.1 [4.8 4.9] 



A0.2/A0.1 
slower 0.10 [0.14 0.20] 0.07 [0.13 0.14] 
faster 0.34 [0.28 0.32] 0.34 [0.22 0.24] 

 
 
 
 


