SUPPLEMENTARY INFORMATION Supporting and additional information of our findings. This file contains images and data

1

2

3	which are meant to give a better idea of our experiment and findings as well as results of side
4	and evaluating experiments.
5	
6	Journal name: Applied Microbiology and Biotechnology
7	
8	Article title: Enrichment of phosphate-accumulating organisms (PAOs) in a microfluidic
9	model biofilm system by mimicking a typical aerobic granular sludge feast/famine regime
10	
11	Edina Klein ^{1,2} , Janek Weiler ¹ , Michael Wagner ^{2,3} , Minja Čelikić ² , Christof M. Niemeyer ² , Harald Horn ³ , Johannes
12	Gescher ^{1,2*}
13	
14	¹ Institute for Technical Microbiology (TMI), Hamburg University of Technology (TUHH), Kasernenstr. 12, 21073
15	Hamburg, Germany
16	² Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz
17	Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
18	³ Engler-Bunte-Institut (EBI), Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT),
19	Engler-Bunte-Ring 9a, 76131 Karlsruhe
20	
21	

22 *Correspondence and requests for materials should be addressed to J.G. (email: johannes.gescher@tuhh.de).

S1. Schematic diagram of the medium supply and gas flow during the anoxic and oxic phases. During the anoxic phase (left), the anaerobic carbon-containing medium is pumped into the microfluidic chips and the oxic medium into waste bottles. During the oxic phase (right), it is reversed. In addition, the separate side port used for inoculation (see syringe) is visible.

- _0

S2. Rarefaction curves of alpha diversity shown as Shannon entropy (Shannon 1997) of the microbial communities. Since our samples showed unequal sampling depth, we investigated alpha diversity of the microbial communities of the samples. Diversity analyses were carried out using CLC Genomic Workbench software 20.0.4 equipped with the additional microbial genomic module (Qiagen, Hilden, Germany).

35

36

S3. Mapping statistics of the metagenome. A) Total and mapped reads are shown as well as B) relevant numbers for mapping statistics.

37 38 39 40

S4. Taxa within the inoculum that contain at least one of the following genes: *ppk1*, *ppk2*, *phaC*, *phaZ*. Note that the nomenclature transcripts per million (TPM) is not the correct term, as this is a metagenomic evaluation. Nevertheless, since this is an established term and to remain consistent with previous work, we follow the argumentation of Tamames and Puente-Sánchez and maintain the nomenclature "TPM" (Tamames and Puente-Sánchez 2019).

Г

			"ТРМ"				
Family	ppk1 (K00937)	ppk2 (K22468)	phaZ (K03821)	<i>рһаС</i> (К05973)	Total		
Bradyrhizobiaceae	0.557	0	0.482	0.479	1.518		
Comamonadaceae	2.895	2.19	5.053	7.625	17.763		
Hyphomicrobiaceae	0.914	0.753	2.387	0.969	5.023	haZ	е 3 с
Phyllobacteriaceae	0.454	0	0.422	0.429	1.305	and <i>p</i>	n figuı
Rhodanobacteraceae	5.237	2.578	6.917	2.36	17.092	ohaC	ded ir
Rhodobacteraceae	0.751	0.129	0.673	0.527	2.08	and	inclu
Rhodocyclaceae	8.939	0	5.402	5.332	19.673	gene	nilies
Rhodospirillaceae	0.395	0	0.212	0.457	1.064	e <i>ppk</i>	Far
Burkholderiaceae	0	0.101	0.368	0.175	0.644	st on	
Unspecified Alphaproteobacteria	3.195	1.118	2.368	9.373	16.054	at lea	
Unspecified Betaproteobacteria	2.644	13.283	2.996	12.887	31.81	aving	
Unspecified Burkholderiales	0.669	3.897	11.883	9.993	26.442	ixa ha	
Unspecified Proteobacteria	6.344	8.82	1.101	16.665	32.93	Ë	
Unspecified Rhizobiales	3.561	1.359	2.432	1.74	9.092		
Acetobacteraceae	0.397	0	0	0.158			1
Alcanivoracaceae	0.369	0	0	0.184			
Bdellovibrionaceae	0.344	0	0	0			
Campylobacteraceae	0.136	0	0	0			
Caulobacteraceae	0.084	0	0.069	0			
Chitinophagaceae	0.059	0	0	0			
Dietziaceae	0.142	0	0	0			
Moraxellaceae	0.515	0.219	0	0.722			
Ectothiorhodospiraceae	0.078	0	0	0			
Intrasporangiaceae	2.057	0.32	0	0			
Flavobacteriaceae	0.225	0	0	0			
Gaiellaceae	0.254	0	0	0			
Mycobacteriaceae	0.12	0.791	0	0			
Ignavibacteriaceae	10.437	0	0	0			
Propionibacteriaceae	1.021	1.945	0	0			
Isosphaeraceae	0.097	0	0	0			
Unspecified Actinobacteria	7.251	7.656	0	3.644			

Methanosarcinaceae	0.278	0	0	0
Unspecified Bacteria	70.205	21.202	0	5.098
Methylocystaceae	0.208	0	0	0
Unspecified Bacteroidetes	7.859	1.864	0	2.866
Unspecified Acidimicrobiia	1.724	0.185	0	0
Unspecified Acidobacteria	20.408	2.054	0	0
Nitrosomonadaceae	11.756	0	0	0
Unspecified Chloroflexi	18.221	6.798	0	1.804
Unspecified Anaerolineae	0.527	2.114	0	0
Planctomycetaceae	0.563	0	0	0
Unspecified Cyanobacteria	1.526	0.683	0	0.113
Porphyromonadaceae	0.195	0	0	0
Unspecified Dehalococcoidia	0.219	1.881	0	0.104
Unspecified Deltaproteobacteria	0.09	0	0	5.292
Porticoccaceae	0.075	0	0	0
Unspecified Gammaproteobacteria	7.899	0.626	0	27.218
Unspecified Bacteroidales	0.838	0.237	0	0
Spirochaetaceae	0.394	0	0	0
"Candidatus Sumerlaeota"	0.078	0.057	0	0
Unspecified Euryarchaeota	0.214	0.086	0	0
Unspecified Bdellovibrionales	0.093	0	0.306	0
Unspecified Caldilineae	0.078	0	0	0
"Candidatus Omnitrophica"	4.87	0	0	0
Unspecified Cellvibrionales	0.159	0	0	0
Unspecified Chlorobi	0.572	0	0	0
Unspecified Clostridiales	0.439	0	0	0
Unspecified Flavobacteriales	0.052	0	0	0
Unspecified Ignavibacteria	0.132	0	0	0
Unspecified Ignavibacteriae	0.265	0	0	0
Unspecified Ignavibacteriales	0.681	0.373	0	0
Unspecified Lentisphaerae	0.375	0.265	0	0
Unspecified Methanomassiliicoccales	0.42	0.16	0	0
Unspecified Methanomicrobiales	0.889	0	0	0
Unspecified Myxococcales	0.88	0	0	0
Unspecified Phycisphaerae	0.3	0.137	0	0.141
Unspecified Planctomycetales	0.07	0	0	0

Unspecified Planctomycetes	2.283	0.327	0	0.42
Unspecified Planctomycetia	0.364	0	0	0.08
Unspecified Propionibacteriales	1.046	0.303	0	0
Unspecified Rhodospirillales	0.288	0	0	1.302
Unspecified Solirubrobacterales	0.322	0.322	0	0
Unspecified Sphingobacteriales	1.249	0	0	0
Unspecified Sphingobacteriia	0.183	0	0	0
Unspecified Spirochaetales	0.105	0	0	0
Unspecified Spirochaetes	0.061	0	0	0
Unspecified Thermomicrobiales	0.569	0	0	0
Unknown	2.82	1.458	0	0.378
Unspecified Verrucomicrobia	2.355	0.715	0	0.062
Unspecified Verrucomicrobiales	0.815	0	0	0
Unspecified Xanthomonadales	0.091	0	0	0.042
Xanthomonadaceae	0.172	0	0	0
Actinomycetaceae	0	0.124	0	0
Aeromonadaceae	0	0.086	0	0
Anaerolineaceae	0	0.105	0	0
Caldilineaceae	0	0.096	0	0
Frankiaceae	0	0.142	0	0
Gordoniaceae	0	0.527	0	0
Microbacteriaceae	0	0.12	0	0
Streptomycetaceae	0	0.066	0	0
Unspecified Bacillales	0	2.248	0	0
"Candidatus Dadabacteria"	0	0.128	0	0.144
"Candidatus Gracilibacteria"	0	0.068	0	0
"Candidatus Melainabacteria"	0	0.069	0	0
Unspecified Corynebacteriales	0	0.139	0	0.128
Unspecified Firmicutes	0	0.17	0	0
Unspecified Nitrosomonadales	0	0.077	0	0
Unspecified Nitrospira	0	0.282	0	0
Unspecified Rhodocyclales	0	0.279	0	5.3
Unspecified Syntrophobacterales	0	0.091	0	0
Methylobacteriaceae	0	0	0.133	0.089
Legionellaceae	0	0	0	0.763
Oxalobacteraceae	0	0	0	0.11

Rhodobiaceae	0	0	0	0.183
Sphingobacteriaceae	0	0	0	0.957
Sphingomonadaceae	0	0	0	0.333
Syntrophomonadaceae	0	0	0	0.385
"Candidatus Rokubacteria"	0	0	0	0.091
Unspecified Clostridia	0	0	0	0.03
Unspecified Holophagae	0	0	0	0.992
Unspecified Oceanospirillales	0	0	0	0.152
Unspecified Sphingomonadales	0	0	0	0.197
Bacteriovoracaceae	0	0	0.172	0
Rhizobiaceae	0	0	0.054	0
Unspecified Oligoflexia	0	0	0.113	0
Unspecified Thermoleophilia	0	0	0.115	0

S5. Validation of the experimental setup for the cultivation in microfluidic chips, under cyclic change of two dye solutions. At time point t = 0 the solenoid valves (dark gray) were switched so that instead of blue fluid, red fluid was pumped into the chip. **A)** A scheme of the experimental setup is shown. Two flow rates (2 and 4 mL h⁻¹) with different distances of the valves to the chip (5 and 10 cm) were examined. **B)** 2 mL h⁻¹, 10 c m. **C)** 2 mL h⁻¹, 5 cm. **D)** 4 mL h⁻¹, 10 cm. **E)** 4 mL h⁻¹, 5 cm.

S6. Confirmation of anoxic conditions inside the cultivation channels. *Shewanella oneidensis* cells carrying a pMK-RQ plasmid with a red fluorescent protein (RFP) gene were grown for three days under anoxic conditions prior to the microscopic analysis (A). Following, the nitrogen replenishment was disconnected, and images were taken again (B) revealing clear RFP signals under oxic conditions.

Figure S7. Investigation of the mesoscopic biofilm structures using optical coherence tomography (OCT). A) The three different locations where data sets were obtained by OCT are shown schematically. B1) The biofilm volumes of the two flow regimes are plotted in comparison. One dataset was taken from each chip in the front, middle and rear section of each cultivation channel (B2) and the average biovolume of each part was subsequently calculated. Each bar results from the respective duplicate of the two flow rates and error bars show standard error.

43

44

45 Literature

- 46 1. Shannon CE (1997) The Mathematical Theory of Communication. MD Comput 27:379-423.
- 47 2. Tamames J, Puente-Sánchez F (2019) SqueezeMeta, A Highly Portable, Fully Automatic
- 48 Metagenomic Analysis Pipeline. Front Microbiol 9:3349.