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█ Subjects and Methods 

Gene-Environment of Interaction and phenotype (GENIE) cohort 

The Gene-Environment of Interaction and phenotype (GENIE) cohort provides a 

comprehensive database of biomarkers related to non-communicable diseases, lifestyle, 

medical history, environmental factors, and individual genetic information. The details of the 

cohort have been described previously 1. Briefly, the SNUH Gangnam Center provides 

comprehensive health check-ups and screening, with nearly 20,000 people visiting this center 

annually. All participants go through complete questionnaires, physical examinations, laboratory 

blood and urine tests, abdominal sonography, and gastroscopy. Selectively and on participant 

request, they also receive advanced tests such as coronary computed tomography (CT), 

gastroscopy, abdominal CT, and brain magnetic resonance Imaging/magnetic resonance 

angiography (MRI/MRA). The study population is predominantly Korean. As per consent, we 

collected blood samples and aliquoted several blood specimens. We also annotated the H-

PEACE cohort as an electrical health record (EHR) database of comprehensive health check-

ups from the Korean population and the GENIE cohort as a genotype database linked to the 

EHR database. Further preprocessing was conducted for the information in the EHR database. 

Free text records and questionnaire answers were manually curated by clinicians based on the 

definitions shown in Table S1. Logical errors and artifacts in the results were manually probed 

and corrected.  

Genotype data quality control and imputation 



At the time of this study, a total of 10,349 individuals had been genotyped using the 

Affymetrix Axiom KORV 1.0-96 Array (Thermo Fisher Scientific, Santa Clara, CA, USA) by DNA 

Link, Inc. This array, referred to as the Korean Chip, was designed by the Center for Genome 

Science, Korea National Institute of Health; optimized for the Korean population; and available 

through the K-CHIP consortium. A Korean Chip comprises >833,000 markers, including 

>247,000 rare-frequency or functional variants estimated from the sequencing data of >2,500 

Koreans 2.  

We performed systematic quality control (QC) on the raw genotype data. SNPs with 

minor allele frequencies <1%, low marker call rate (<5%), and significant deviation from Hardy-

Weinberg equilibrium in controls (HWE < 1e-05) were excluded. Samples with discordant sex 

info (0.3 < X-chr homozygosity < 0.8, = PROBLEM), low sample call rate (call rate < 0.9, mind 

0.1), or extreme heterozygosity (heterozygosity rate > mean +/- 3 SD), along with one individual 

from any related pairs identified (IBD >= 0.125), were excluded. After quality control was 

performed, 548,755 SNPs remained. GWAS imputation was carried out using Eagle 2.4.1 

(https://data.broadinstitute.org/alkesgroup/Eagle/) and Minimac3 

(https://genome.sph.umich.edu/wiki/Minimac3). We used the Northeast Asian Reference 

Database (NARD) + 1000 Genome Phase 3 database (1KG) re-phased panel as the reference 

panel and the NARD imputation server (https://nard.macrogen.com) for imputation. NARD 3 

includes the whole-genome sequencing data of 1,779 individuals from Korea, Mongolia, Japan, 

China, and Hong Kong, which are not present in 1KG. We compared the imputation quality of 

chromosome 22 using different reference panels, such as NARD vs. 1KG vs. NARD + 1KG, and 

determined that the NARD + 1KG panel had the best accuracy (Table S2). Analysis included 

only high-quality imputed common SNPs, which were those having minor allele frequency >0.01 

and imputation R2 (Minimac3's r-squared metric) >0.7 (Figure S1). After sample-level QC, 

genotype-level QC, and imputation, a total of 6,860,342 SNPs from 9,742 individuals were 



included in the analysis. LD pruning was done using plink (–show-tags --list-all --tag-r2 0.2 --tag-

kb 250) to calculate the degree of loci shared by different phenotypes. 

The influence of ethnicity was assessed through analysis of population stratification 

using principal component analysis (PCA) implemented in EIGENSOFT package v6.1.4. We 

used the first three principal components (PCs) to adjust for population stratification (Figure S2). 

The steps by which the raw data was preprocessed are shown in Figure S3. 

 

█ Supplementary Results 

Phenome-wide association analysis for 136 phenotypes 

GENIE cohort (Korean population) 

From the PheWAS on 136 phenotypes, we found significant associations for 65 

phenotypes (50 from continuous variables, 13 from categorical variables) and 14,101 SNPs at P 

<= 4.92x10-10. The counts of significant loci and genes associated with each phenotype are 

given in Table S5.  Among continuous phenotypes, the top five most significant were activated 

partial thromboplastin time (aPTT), LDL cholesterol, serum total bilirubin, uric acid, and 

carcinoembryonic antigen (CEA). Among categorical phenotypes, the top five most significant 

were alcohol consumption, fatty liver, duodenal ulcer, coffee consumption, and Hepatitis B virus 

surface antigen (Table S6, Figure S5). In the Manhattan plot, aPTT had two top signal loci, in 

chromosome 5 (rs1801020&CR982412, P = 2.85x10-214) and chromosome 9 (rs676996, P = 

8.99x10-72). Table S7 lists the top five signals from the GWAS results for each phenotype.   

  We further performed functional annotation for 221,462 unique loci passing the less 

stringent p-value threshold of 1x10-4 using Ensembl Variant Effect Predictor (VEP) 4. 

Approximately 1% of variants were in coding regions and 98.885% were in non-coding regions 



(Figure S6), which result is similar to other large-scale PheWAS 5. In coding regions, this 

annotation identified 22 stop-gained variants, six splice acceptor variants, ten splice donor 

variants, and 1103 missense variants (Table S8 and S9).   

Among the 22 stop-gained variants, we replicated an association between rs121907892 

and uric acid that is a well-reported finding unique to the east Asian population (EAS) 6, 

including Koreans 7. We further identified the stop-gained variant rs200340875 to be 

significantly associated with blood urea nitrogen (BUN; P = 2.75x10-07, beta = -0.373), calcium 

(P = 7.15x10-08, beta = -0.044), glutamic oxaloacetic transaminase (GOT; P = 9.65x10-6, beta = 

1.189), mean corpuscular hemoglobin (MCH; P = 4.93x10-7, beta = 0.21), mean corpuscular 

hemoglobin concentration (MCHC; P = 8.53x10-16, beta = 0.228), mean platelet volume (MPV; P 

= 8.06x10-7, beta = -0.088), urine protein (P = 1.16x10-10, beta = -0.135), and sodium (Na; P = 

1.92x10-15, beta = -0.371). According to 1000 Genomes, the minor allele of rs200340875 is 

reported in African populations (AFR) but not in EAS. The locus of this variant is associated with 

CD109 Molecule (CD109), which has been previously reported with diffuse large B-cell 

lymphoma 8, psoriasis 9, and gallbladder malignancy 10. Another stop-gained variant identified 

was rs145035679, which showed a protective effect for CEA (P = 1.07x10-8, beta = -0.166) and 

increased risk for carbohydrate antigen 19-9 (CA 19-9; P = 5.81x10-5, beta = 2.178); this variant 

is associated with Fucosyltransferase 6 (FUT6). FUT6 has previously reported associations with 

pancreatic cancer 11, breast cancer 12, and colorectal cancer 13. Among splice acceptor variants, 

rs112911835 was significantly associated with prothrombin time (PT; P = 1.12x10-10, beta = -

0.031), while rs112911835 was associated with Long Intergenic Non-Protein Coding RNA 1933 

(LINC01933), which has no known relationship with disease as of yet. The splice donor variant 

rs140944893 showed significant association with coronary vessel calcium scoring (P = 4.29x10-

5, beta = -127.7), and is associated with Phospholipase D3 (PLD3). This gene is reported to be 

related to Alzheimer’s disease in EAS 14 and EUR 15.  



Comparison with BBJ (Japanese) and UKBB (European) 

We systematically compared the significant associations of loci and their genes with 

phenotypes (P < 1x10-4) to results from the BBJ and UKBB to determine if our results were 

replicated in other populations and also to look for novel findings. Originally, each population 

used a different SNP array platform and a variety of different phenotypes. Accordingly, we first 

filtered the examined loci and phenotypes to determine overlap with our data, then identified 

replicated and novel genes and loci. The schematic structures of the trans-ethnical and trans-

nationality comparisons are shown in Figure S7. We identified 52 phenotypes overlapping the 

Japanese biobank results (42 phenotypes had replicated loci) and 101 phenotypes overlapping 

with the UK Biobank results (59 phenotypes had replicated loci). Gene-level and locus-level 

comparisons are respectively given in Table S10 and Table S11. 

In the comparison between Korean and Japanese populations, aPTT and serum total 

bilirubin had high overlap of significant loci. Among the 4,016 loci significantly associated with 

aPTT in Koreans or Japanese, 920 loci (22.91%) were significant in both; among the 6,159 loci 

associated with total bilirubin in those populations, 1,263 (20.51%) likewise overlapped. Notably, 

loci associated with the ophthalmic system (cataract and optic fiber loss), cerebrovascular 

system (brain stenosis, aneurysm, and atherosclerosis), smoking habit, hepatitis C virus 

antibody, renal stone, gastric cancer, and bone mineral density were mutually exclusive 

between Koreans and Japanese.   

In the comparison between Korean and UK populations, fewer overlapping loci were 

identified, with the highest overlap ratio being 9.15% in fatty liver disease; 42 phenotypes did 

not have any overlap (Figure 2, Figure S8).  

Population comparisons were further investigated for body mass index (BMI) in 

particular. For this phenotype, 136 loci (0.42% of significant loci) were replicated in the 



Japanese population and 105 loci (0.07%) in the European population, respectively. Our 

population showed 583 exclusive loci (1.82%) when compared to the Japanese population, and 

669 exclusive loci (0.45%) when compared to the European population. We then looked more 

deeply into the BMI genes unique to the Korean population. Relative to the Japanese 

population, 73 genes were exclusively associated with the Korean population; meanwhile, 

relative to the European population, 53 genes were exclusively associated with the Korean 

population. Of these genes, 34 (714 loci) were unique relative to both Japanese and European 

populations (Table S12, Figure S9). Of those unique genes, 23 have previously reported 

associations with obesity or body weight; the corresponding literature review and references are 

given in Table S13. The other 11 genes have not been previously reported as associated with 

obesity in humans, and could be candidate novel genes for BMI or obesity; these were Vesicle 

Amine Transport 1-Like (VAT1L), Uromodulin-like 1 (UMODL1), Telomeric Repeat-Binding 

Factor 2-Interacting Protein 1 (TERF2IP), Proline-rich Transmembrane Protein 3 (PRRT3), 

PRRT3 Antisense RNA 1 (PRRT3-AS1), Long Intergenic Non-protein Coding RNA 578 

(LINC00578), Family with Sequence Similarity 225 Member B (FAM225B), Cation Channel 

Sperm-associated 1 (CATSPER1), Barrier To Autointegration Factor 1 (BANF1), Attractin-Like 

Protein 1 (ATRNL1), and Adherens Junctions-associated Protein 1 (AJAP1). Among those 

genes, TERF2IP is known from a mouse study to have roles in regulating adipose function and 

excess fat accumulation, and also protecting against obesity 16. ATRNL1 has no previous report 

related to obesity, but Attractin (ATRN) has similarity with the mouse mahogany protein, which 

is involved in controlling obesity 17,18. BANF1 has no known direct association for obesity, but it 

is reported to suppress expression of S100 calcium-binding protein A9 (S100A9) 19, which is a 

candidate marker for obesity in non-type 2 diabetes mellitus 20.  

 

Systematic analysis of the PheWAS results 



GENIE cohort (Korean population) 

To perform a systematic analysis of the PheWAS results, we leveraged cross-phenotype 

associations, where one locus is significantly associated with multiple phenotypes. For this 

analysis, significant loci were filtered by a less-stringent threshold, P < 1x10-4 (loci count = 

260,922, gene count = 14,907). The schematic structure for this analysis is shown in Figure S4. 

Briefly, we constructed: “Possible polygenicity”, in which a phenotype is influenced by more than 

one gene (Figure S4A, Table S14); “Possible pleiotropy”, in which a locus or gene affects 

multiple phenotypes (Figure S4B, Table S15); a “bipartite phenotype network” based on the 

connections among phenotypes sharing at least one locus (Figure S4C, Table S16); and a 

“bipartite gene network” as the connections among genes shared by at least one phenotype 

(Figure S4D).  

Of the 260,922 significant PheWAS loci, the bipartite phenotype network comprised 

23,580 loci (2,902 genes) with 135 phenotypes. There were 1,926 distinct pairs of phenotypes. 

We calculated the degree properties of core phenotypes in this network (Table S17), where core 

phenotypes were those nodes connected to several phenotypes by shared variants; an example 

is phenotype 4 in Figure S4C. Notably, phenotypes in the tumor markers category had relatively 

high degree of phenotype connection. The highest phenotype degree was obtained for a 

representative tumor marker for pancreas cancer, CA 19-9, with 110 phenotypes connected 

through sharing of significant loci. Meanwhile, the highest possible polygenicity was observed 

for mean corpuscular hemoglobin concentration (MCHC), with 782 genes. 

The bipartite gene network comprised 14,907 genes, which were connected through 

sharing associations with the same phenotypes. Table S18 give the gene degree and 

phenotype degree values for this network. The three genes with the highest phenotype degrees 

were; CUB and Sushi Multiple Domains 1 Protein (CSMD1), RNA-binding Fox-1 Homolog 1 

(RBFOX1), and Protein Tyrosine Phosphatase Receptor Type D (PTPRD); this could be due to 



possible pleiotropy. The same three genes had the highest gene degree values; gene degree 

comprises the edges in bipartite gene networks. Notably, CSMD1 was significantly associated 

with 58 phenotypes (showing possible pleiotropy) and connected to 12,602 genes through 

common associations with phenotypes. CSMD1 has been reported to function as a complement 

control protein 21; complement is implicated in many diseases through the mechanisms of 

inflammation and autoimmunity 22. In some cancers, it functions as a tumor suppressor gene 

23,24.  

Bipartite phenotype network comparison with BBJ and UKBB  

We compared the bipartite phenotype networks of the GENIE (Korea), BBJ (Japanese), 

and UKBB (European) cohorts. There were 49 GENIE phenotypes in common among all 

datasets, which were used to generate the bipartite phenotype network. Figure S10 shows a 

Venn diagram of the phenotype-phenotype pairs observed in each population; 288 pairs were 

simultaneously observed in all three populations (Table S19). Notably, these included the 

pairing of red blood cell count (RBC) and brain vascular atherosclerosis. There are reports of 

RBC having relation to coronary artery disease 25 and  stroke mortality 26, but not directly to 

brain vascular atherosclerosis.  

 

Secondary analysis of the PheWAS results, Post-PheWAS analysis 

Heritability analysis 

Heritability was calculated for each of the 136 phenotypes by regression of LD scores 

(Table S20). The top heritability values were obtained for compression fracture (h2 = 0.459), 

spondylolisthesis (h2 =0.425), height (h2 = 0.322), and bone mineral density (h2 = 0.298). In 

terms of biological categories and body systems, the highest heritability values were obtained 

for the musculoskeletal system (mean h2 = 0.244), the pulmonary system (mean h2 = 0.225), 



anthropometric measures (mean h2 = 0.213), and the hematologic system (mean h2 = 0.188) 

(Table S21). Though spondylolisthesis and spondylosis involve spinal condition, 

spondylolisthesis (mean h2 = 0.425) had high heritability but spondylosis had very low 

heritability (mean h2 = 0.000). Spondylolisthesis is defined as displacement of the vertebral 

body anteriorly, whereas spondylosis involves a defect in the pars interarticularis of the vertebral 

arch, which is degeneration in spine27. It is reported that around 15% of spondylosis patients 

have progression to spondylolisthesis, which could be postulated that some portion of the 

spondylosis might have progressed to spondylolisthesis in our study participants28,29. 

Spondylosis is in some part a natural aging process 30. Since all the participants in our study are 

adults and the mean age is above 50 years, the prevalence of spondylosis was high (51.3%) 

compared to spondylolisthesis (3.5%). There are no genetics studies directly comparing the 

genetic characteristics between spondylosis and spondylolisthesis, because those who take 

spinal imaging test will be the patient with back pain. In our study, we were able to get the spine 

images in the mostly asymptomatic population. The difference in heritability might raise the 

needs to perform research on genetic etiology between these spinal conditions.  

The Ensembl variant effect predictor (VEP) provides information regarding the effect of 

loci on genes and protein sequences, categorized as modifier impact (usually for non-coding 

variants or variants affecting non-coding genes, where predictions are difficult or there is no 

evidence of impact), low impact (mostly harmless or unlikely to change protein behavior), 

moderate impact (non-disruptive variant that might change protein effectiveness), and high 

impact (high, disruptive impact on the protein) 

( https://useast.ensembl.org/Help/Glossary?id=535). We divided the significant loci (1x10-4) into 

two groups according to their annotated impacts, namely “modifier low” vs. “moderate, high”, 

and evaluated the correlation between impact group and heritability in each phenotype. A 

significant correlation was observed (P = 0.001, correlation (r) = 0.281, 95% CI = 0.117-0.429).   



We further compared the heritability in our population with that in the Japanese and 

European populations (Table S20). Of phenotypes that overlapped with ours, BBJ provides 

heritability for 35 and UKBB for 101. Since the provided heritability values were determined 

using different loci and methods, we normalized the heritability to make it comparable. 

Comparisons to each of the Japanese and UK populations are shown in Figure S11, while the 

three-way comparison among Korean, Japanese, and UK populations is shown in Figure S12 

(33 phenotypes overlapped among the three populations). Generally, most phenotypes had 

similar trends in heritability across populations. Noticeable differences were observed in percent 

eosinophils among white blood cell counts (BASOPHIL), prothrombin time in the international 

normalized ratio (PT), and activated partial thromboplastin time (aPTT). BASOPHIL had 

relatively high heritability in the Korean population relative to both others. Meanwhile, PT and 

aPTT, which are biomarkers of coagulation function, showed similar trends in the Korean and 

Japanese populations, but manifested relatively high heritability in Koreans relative to the UK 

population. 

Network analysis   

Using cross-phenotype association information, we constructed phenotype-phenotype 

and phenotype-genotype networks in order to find hidden relationships among phenotypes or 

genotypes and to discover hub genes or phenotypes.  

First, a network representation of gene-phenotype associations related to metabolic 

syndrome was constructed (Figure 3A).  We selected the nodes by filtering for genes associated 

with metabolic syndrome, which were identified by annotating the significant loci (P < 10-4). 

Then, we filtered for phenotypes significantly associated with those selected genes. In the 

process, edges corresponding to loci not annotated by VEP were not included. Ultimately, 132 

genes associated with metabolic syndrome and 128 phenotypes sharing 102 genes with 

metabolic syndrome were used to construct the network (Figure 3A). The nodes were colored 



with respect to gene and phenotype, while the edges are associations between phenotypes and 

genes. In the metabolic syndrome sub-network, five genes had high degrees of connection and 

could be considered hub genes: PTPRD, DCC Netrin 1 Receptor (DCC), Proprotein Convertase 

Subtilisin/kexin Type 6 (PCSK6), Unc-13 Homolog C (UNC13C), and Contactin 4 (CNTN4). The 

phenotypes in this network comprised: of cardiovascular diseases, of metabolic diseases, used 

as markers for obesity, and other various disease. The phenotype nodes included triglyceride 

(TG), HDL cholesterol (HDL), hypertension, diabetes, and waist circumference (WC). These 

results give a genetic rationale for the definition of metabolic syndrome in the PheWAS 

perspective.   

We also constructed a phenotype-phenotype network using 1,926 phenotype pairs 

based on shared loci (P < 1x10-4). Figure S13 shows the phenotype-phenotype network for the 

whole dataset, and an interactive visualization tool of the phenotype-phenotype network is 

available (https://hdpm.biomedinfolab.com/genie/). 

Relationships among obesity indices  

Ever since the American Medical Association (AMA) declared obesity to be a disease, 

interest in and research into obesity has been growing 31,32. However, definitions of pathological 

obesity make inconsistent use of variable traits such as body mass index (BMI), waist 

circumference (WC), total adipose tissue area (TAT), and visceral adipose tissue area (VAT). 

There are reports of an obesity paradox when defining obesity by BMI 33. The defining 

parameter for obesity also varies between researchers and with respect to the target disease. 

To investigate the relationships among these parameters, we constructed Venn diagrams 34 and 

visualized the overlap or exclusiveness among BMI, WC, TAT, and VAT based on the bipartite 

phenotype network (phenotype level) and pleiotropy/polygenicity potential of genes (gene level). 

As shown in Figure 3B, connections were observed as quadrant intersections among BMI, WC, 

TAT, and VAT for seven phenotypes: CA19-9, GOT, GPT, body fat mass, body fat percent, 



weight, and metabolic syndrome. There were 15 phenotypes connected exclusively with VAT 

and WC, and the intersection between these traits had two exclusive genes associated. Of the 

15 phenotypes, most were crucial intermediate phenotypes that link obesity with diseases. 

Accordingly, it can be postulated that when defining obesity, VAT or WC would better represent 

the characteristics of pathogenic obesity. The two genes that are exclusively overlapped 

between VAT and WC (Figure S14) could be candidate genes for explaining the pathogenic role 

of obesity. The elements in each set are listed in Table S22.   

Cross-phenotype mapping 

Cross-phenotype mappings were generated based on the bipartite phenotype network, 

in which the connected phenotypes shared at least one locus.  

First, we constructed a cross-phenotype mapping focused on tumor markers. Several tumor 

markers are used in screening for cancer, monitoring its recurrence, and evaluating its response 

to interventions. Commonly-used tumor markers include carcinoembryonic antigen (CEA), 

carbohydrate antigen 19-9 (CA19-9), alpha fetoprotein (AFP), and prostate-specific antigen 

(PSA); specifically, CEA serves as a marker for colorectal cancer 35, CA19-9 for pancreato-

biliary cancer 36, AFP for liver cancer 37, and PSA for prostate cancer 38.  However, the limitation 

of using the tumor markers is that it can have low sensitivity or specificity 39, such that a test 

result could be associated with or affected by various non-malignant conditions. For instance, 

CEA is known to be affected by hemoglobin level 40, and CA19-9 is reported to be elevated in 

nonmalignant respiratory disease 41. Table S23 shows the respective connected phenotypes we 

obtained for tumor markers; among these, CEA is associated with hemoglobin level and CA19-9 

with pulmonary function test, which are consistent with previous reports 40,41. Figure S15 shows 

the cross-phenotype mapping for CEA, which could be considered during oncological practice in 

order to take into consideration all the possible effects of phenotypes other than colorectal 

cancer progression itself. 



Second, we constructed a cross-phenotype mapping focused on lifestyle factors. The 

analyzed phenotypes included lifestyle factors such as coffee consumption and alcohol 

consumption. Several studies have shown genotype x environment interactions (G x E) in 

smoking behaviors 42. In this study, we visualized the cross-phenotype mapping for the coffee 

consumption as a starting point for G x E study in this phenotype. Coffee consumption had 27 

phenotypes connected through sharing of significant loci (Figure 3C). Several reports have 

documented relationships between coffee consumption and obesity 43, hypertension 44, diabetes 

45, renal function 46, and lipid metabolism 47. The phenotypes connected with coffee consumption 

in this mapping (Table S16) support the previous reports of clinical association studies. In the 

mapping for alcohol consumption, 38 phenotypes shared significant loci. Various studies have 

identified heavy alcohol consumption as a risk factor for renal disease 48 and coronary artery 

calcification 49. The results of these and other cross-phenotype mappings could provide the 

genetic background to explain interactions between environmental factors and disease, and 

might further provide basic knowledge necessary to conduct G x E analysis. 

Mendelian randomization analysis 

We estimated the causal inferences in phenotype pairs based on cross-phenotype 

associations using Mendelian randomization (MR). Table S24 shows the MR results for each 

pair having false discovery rate (FDR) < 0.05. Of the phenotype pairs, significant in the cross-

phenotype association, 1766 retained significant association after the Mendelian randomization 

analysis. As shown in Figure 3D, we drew a causal inference mapping centered on skeletal 

muscle mass. The network grid is based on information from the bipartite phenotype network of 

skeletal muscle mass. We excluded those pairs whose biological categories were 

anthropometric measurements, which category includes skeletal muscle mass. The Mendelian 

randomization analysis yielded nine significant phenotypes, of which one was causal for skeletal 

muscle mass, two phenotypes were outcomes from skeletal muscle mass, and six had 



bidirectional relationships with skeletal muscle mass. This analysis revealed that skeletal 

muscle mass was a significant causal factor for metabolic syndrome and alcohol consumption. 

Its bidirectional relationships were with bone mineral density, liver function (GPT), pulmonary 

function (FVC, FEV1), renal function (glomerular filtration rate), and triglyceride. 

We also performed Mendelian randomization with a focus on lifestyle factors that were 

causal exposures in cross-phenotype associations, such as alcohol consumption, coffee 

consumption, exercise amount, and smoking history. Table S25 shows the significant outcome 

phenotypes (FDR < 0.05) from this analysis. Alcohol consumption was a significant causal 

exposure for ten phenotypes, coffee consumption for three phenotypes, exercise amount for six 

phenotypes, and smoking history for two phenotypes. Coffee consumption was also a significant 

causal exposure for three anthropometric measurements: body fat mass, visceral adipose tissue 

area, and waist circumference. 

Comparison of the phenotype-phenotype pairs between PheWAS-driven vs. EHR-driven   

“Penetrance” in genetics is the proportion of those individuals carrying a certain genetic 

variant who also exhibit the associated phenotype, while “expressivity” measures the proportion 

of individuals that are carriers of a certain variant and show the associated phenotype to a 

certain extent 50. As an indirect method to investigate the penetrance or expressivity of the 

significant loci identified in our study, we repeated bipartite phenotype network construction 

using an electronic health records (EHR)-driven method. This clinical database consisted of 

81,086 distinct participants who went through comprehensive health check-ups from 2004 to 

2015 in the SNUH Gangnam Center (H-PEACE cohort). The tests and questionnaires included 

most of the phenotypes used in the PheWAS study; specifically, 76 phenotypes were also 

recorded for this cohort. PheWAS-driven pairs (1164 pairs) were selected based on shared 

SNPs with association P < 1x10-4, and EHR-driven pairs (1938 pairs) were selected based on 

correlation analysis with multi-test corrected P < 0.05. We compared these phenotype-



phenotype pairs (Table S26) and evaluated the overlap or exclusiveness of the pairs for each 

phenotype. Of the 1164 pairs identified in the PheWAS-driven approach, 834 (71.65%) also 

manifested significance in the EHR-driven analysis. As shown in Figure 5 and Table S27, high 

ratios of overlap were identified for skeletal muscle mass (95%) and alkaline phosphatase 

(93.48%), and low ratios for thyroid cancer (0%) and alpha fetoprotein (8%). When viewed in 

terms of biological category, the highest average % replication was obtained for anthropometric 

measurement (86.43%).  

Meta-analysis of PheWAS from Korean and Japanese populations  

We performed a PheWAS meta-analysis by incorporating our data with the BBJ data 

(Japanese population). The results are given in Table S28, Figure S16 and Figure S17. All 51 

phenotypes used in the meta-analysis had an increased number of significant variants in the 

Korean population, while 37 phenotypes had variants uniquely significant in the meta-analysis. 

Furthermore, height, diabetes and body mass index had more than 100 variants that were 

uniquely identified as significant in the meta-analysis. 
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