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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

This manuscript applied a recently proposed TWAS method to identify gene-trait associations that 

are potentially mediated through multi-omics of placenta, while accounting for distal eQTL. 

Significant gene-trait associations were identified, mostly for neonatal and metabolic traits. Follow-

up studies show these significant gene-trait associations were enriched in cell growth and 

immunological pathways. The authors conducted comprehensive analyses to investigate these 

significant gene-trait associations. Overall, the findings are profound. But it is not clear what is the 

cohesive key contribution of this paper to our understanding of these investigated traits with 

respect to placental multi-omics variations. Here are my major concerns: 

 

1. It is not clear how multi-omics data besides mRNA expression, like CpG methylation cites and 

miRNA expression data, were considered by MOSTWAS method. 

 

2. The number of ~2,994 significant gene models seems quite a small proportion comparing to the 

total ~20K genes. Would a different method for training the gene expression prediction model be 

able to provide a greater number of significant gene models, like TIGAR (PMCID: PMC6698804), 

PMR (https://www.nature.com/articles/s41467-020-17668-6). 

 

3. Please state clearly which tool/method was used to estimate heritability in this manuscript and 

plot the 95% confidence intervals of the heritability estimates. 

 

4. A heatmap with all pair-wise correlation test results would be better than the current Figure 3C 

plot. 

 

5. A phewas-like Manhattan plot with respect to each of the examined genes would provide a more 

complete view of the analysis results for the phenome-wide association study in early- and later-

life traits. 

 

6. Please state if the LD matrix Σ_(S,S) is the genotype correlation matrix or covariance matrix. 

Actually, for using the Z-score statistic as mentioned in the Methods for TWAS, the genotype 

correlation matrix should be used. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

The overall goal of this paper was to characterize placental gene-trait associations relevant to the 

DOHAD hypothesis using the newly developed MOSTWAS method for EQTL analysis. The major 

strengths of this paper are the robust transcriptomics data and efforts to integrate this data using 

novel computational approaches. This paper is significant as it provides evidence of changes in 

placental gene expression related to genetic polymorphisms associated with metabolic and 

childhood/neonatal traits, supporting the DOHAD hypotheses. Overall, this paper is very ambitious 

and tackles many aspects of genetic control of placental gene expression, but is challenging to 

follow due to the sheer number of analyses being performed (RHOGE, MOSTWAS, FOCUS, GBAT, 

Mouse Diversity Panel, GREML-LDMS, MatrixQTL…). Overall, It would be helpful if the authors 

could go through and further clarify the goals of each analysis. There are some additional areas 

that could be further explained in this paper, which are highlighted in the following comments: 

 

1. Demographic data on the ELGAN cohort is presented in Supplemental Table S4, but there is no 

demographic data provided on the RICHs cohort, which was used to validate the findings of gene 

expression prediction. How do the RICHs and ELGAN cohorts compare in terms of race, ethnicity, 

SES, rates of premature birth, and other key perinatal outcomes? It would be helpful to mention in 

the discussion about the differences in these cohorts and the validity of the RICHs cohort as an 

independent validation cohort. 

 

2. Did the RNA sequencing data from the RICHs cohort undergo the same preprocessing steps as 



the ELGAN cohort? (such as RUV-seq) This information is not described in the methods. 

 

3. How did the authors handle cross-reactive/polymorphic probes in their analysis? These probes 

introduce bias in studies utilizing Illumina EPIC arrays (doi: 

https://doi.org/10.1093/nargab/lqaa105), and are frequently removed prior to downstream 

analyses. 

 

4. How were the X and Y chromosome handled in this analysis? 

 

5. How did the authors define transcription factors for MOSTWAS? 

 

6. The authors address cellular heterogeneity present in placental omics data by adjusting for 

unwanted biological variation using RUVSeq. However, the authors do not adjust for this same 

variability in the DNA methylation data, and there are established methods to do this in 

methylation data (Houseman et al, 2015, Yuan et al, 2020) 

 

7. For the heritable traits, can you provide some clarity if the GWAS results (HDL, Glucose, 

Cholesterol) that directly related to blood markers/metabolites were quantified in adults or children 

in the studies which they were derived? Also, the way this is presented may make it seem to a 

casual reader that these measurements were collected in the same population based on the 

labeling in some of the tables/figures (such as supplemental figure S9) and some of the wording 

(For example page 8 line 27-page 9 line 1). Readability could be improved by slight rewording. 

 

How was the threshold of adjusted R2 > 0.01 selected? These values of the cross validation and 

out of sample R2 seem low-is there an example of another paper that uses this threshold? Also, in 

Page 5 Line 25, the authors refer to an “adjusted” R2-How was this adjusted? 

 

8. The authors perform in vitro validation using JEG-3 Cells, which are not immortalized 

trophoblast cell lines. The JEG-3 cells are derived from a choriocarcinoma cell line that is used to 

model the placental trophoblast because they synthesize placental hormones and express key 

placental hormones including HLA-G. There are other cell lines, such as SWAN-71 and HTR8-

SV/neo cells, which are derived from immortalized trophoblast cells. Thus, this cell line should be 

referred to appropriately in the manuscript text. What was the justification for using this particular 

cell line? 

 

9. Can the authors comment more on the logic of selecting the gene EPS15 for experimental 

validation, out of the 9 TFs they identified? The authors state that this gene is highly expressed in 

the placenta, but the citation they reference (#45 https://doi.org/10.1093/humupd/dmq052) only 

mentions EPS15 once in a table of imprinted genes, using data derived from an imprinted gene 

catalogue (www.geneimprint.com). The fact that it is imprinted raises additional questions about 

how this is incorporated in the results. From what I can discern, EPS15 is a substrate for the EGFR 

receptor, and has been shown to localize within the nucleus (doi:10.1186/1478-811X-7-24), but I 

cannot find any literature directly implicating it as a transcription factor. Moreover, it is not 

included in commonly utilized database of transcription factors 

(https://doi.org/10.1016/j.cell.2018.01.029 , https://doi.org/10.1038/s41588-019-0411-1). More 

insight into the function of this gene in the placenta and its role in transcriptional regulation 

(overall) is warranted, as it was highlighted as one of the main findings in the abstract. 

 

10. The authors describe experiments where EPS15 knockdown causes increased expression of 

genes SPATA13 and FAM214A (Page 13, Line 2, and in Figure 5B). This would indicate that this 

gene is a negative regulator, since less activity of this TF is leading to increased expression. 

However, in supplemental figure 13, they show positive correlations between EPS15 and SPATA13 

and FAM214A in the RICHS cohort, which would implicate it as a positive regulator (Increased TF 

expression, Increased expression of downstream genes) So the data they are presenting here 

appears contradictory. Can the authors explain this? 

 

11. In the methods, the authors describe confirming gene expression changes in JEG-3 cells 

through RT-PCR (Page 23, Lines 4-5). However, it appears later in the methods (Page 23, Lines 

13-16) that differential gene expression was performed, which is presented in the results and in 



Figure 5B. However, in the methods there isn’t any information provided about how RNA was 

isolated from the JEG-3 cells, or any details about the sequencing (i.e library prep method, 

sequencer, QC). Please provide this information. 

 

12. As a follow up to this, the authors plated cells in duplicate, then performed siRNA isolation in 

duplicate. For the real time PCR, the samples were also run in technical duplicate (Page 23, line 

2).The authors then had 3 degrees of freedom for their biological and technical duplicates (Page 

23 Line 10) for pairwise T tests. Can the authors describe in more detail how the technical and 

biological duplicates were used to calculate the fold change using the Delta Delta CT method. Was 

this calculated separately for each sample? Also, if the authors also did RNA sequencing, was this 

performed only in duplicate? Normally the minimum number of samples presented in RNA 

sequencing experiments with in vitro samples are triplicates. (Example: 

https://doi.org/10.1111/aji.12722) 

 

13. The authors include an analysis using the Hybrid Mouse diversity panel to look at correlations 

with obesity related traits However, the authors should mention in the discussion the limitations of 

generalizing between mouse and human studies of the placenta, given that the biology is so 

different. 

 

14. What do the authors mean when they say “collection of negative control variables”-page 15, 

line 12. 

 

15. Moreover, in the discussion, the authors should discuss the assumptions made in this analysis, 

particularly the assumption that TF expression is a proxy for abundance and activity. 
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Reviewer #1 (Remarks to the Author): 
 
This manuscript applied a recently proposed TWAS method to identify gene-trait associations that are 
potentially mediated through multi-omics of placenta, while accounting for distal eQTL. Significant gene-
trait associations were identified, mostly for neonatal and metabolic traits. Follow-up studies show these 
significant gene-trait associations were enriched in cell growth and immunological pathways. The authors 
conducted comprehensive analyses to investigate these significant gene-trait associations. Overall, the 
findings are profound. But it is not clear what is the cohesive key contribution of this paper to our 
understanding of these investigated traits with respect to placental multi-omics variations. Here are my 
major concerns: 
 

We are glad the reviewer found our analyses comprehensive and the results profound. 
 
1. It is not clear how multi-omics data besides mRNA expression, like CpG methylation cites and miRNA 
expression data, were considered by MOSTWAS method. 
 

This is an important point, and we have clarified this in two locations in the manuscript. First, 
in the Results section (Multiple placental gene-trait associations detected across the life 
course subsection; Page 6, Lines 7-11), we add: 
 
“In this analysis, these regulatory biomarkers include potential regulatory protein (RP) 
encoding genes (as curated by TFcheckpoint33), miRNAs, and CpG methylation sites from the 
ELGAN Study. we assume that these RP genes, miRNAs, and genes and other regulatory 
features local to these CpG methylation sites have distal effects on the transcription of genes 
of interest and thus potentially mediate distal-eQTLs to the gene of interest (Methods).” 
 
In the Methods section (Gene expression models subsection; Page 21, Lines 25 to Page 22 
Line 1), we add: 
 
“Our assumption here is that distal-eQTLs of a gene that are local to transcription factor-
encoding genes, miRNAs, or regulatory features local to CpG methylation sites may be 
potentially mediated by cis-QTLs to these local features. This assumption has been employed 
by multiple studies previously to identify trans-eQTLs in multiple tissues107–110.” 
 
We also have included several references to previous trans-eQTL mapping papers that employ 
similar ideas, which we leverage in the MOSTWAS models (Pierce et al 2014, PLOS Genetics; 
Hawe et al 2020, bioRxiv; Yang et al 2017, Genome Research; Yang et al 2019, bioRxiv). 

 
2. The number of ~2,994 significant gene models seems quite a small proportion comparing to the total 
~20K genes. Would a different method for training the gene expression prediction model be able to 
provide a greater number of significant gene models, like TIGAR (PMCID: PMC6698804), PMR 
(https://www.nature.com/articles/s41467-020-17668-6). 
 

We appreciate that the reviewer directs us to the TIGAR and PMR methods; both of these 
methods are interesting and valuable extensions to local-only TWAS methods. There are 
multiple points here, however. 
 
First, after a liberal filtering of low count genes from the RNA-seq panel (due to difficulties in 
extracting RNA from the placenta and degradation), we were only left with 12,020 genes, far 
less than 20,000 genes. Second, we do believe that more predictive gene models could be 
built if we integrated all possible TWAS methods (BSLMM from FUSION, DPR from TIGAR, 
PMR, etc). However, our main goal here was to integrate the rich multiomics data from the 
ELGAN study to identify genetic variants distal to genes to incorporate into the TWAS 
framework. As we mention in the paper and the MOSTWAS manuscript (Bhattacharya et al 
2021, PLOS Genetics), one of the advantages of this framework are the prioritization of 
functional hypotheses for distal regulation of gene-trait associations. Lastly, we would also 
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like to point out that the inclusion criterion for MOSTWAS is conservative. Unlike the TIGAR 
and PMR methods, we have two feature selection criterion: (1) SNP heritability of expression 
and (2) predictive power through cross-validation. As Cao et al shows (Cao et al 2021, PLOS 
Genetics), both SNP heritability of expression and predictive power are important in 
determining TWAS power. In our TWAS, we only consider those genes with significantly 
positive SNP heritability (estimated with GREML-LDMS and assessed using a likelihood ratio 
test) and McNemar’s cross-validation adjusted-R2 ≥	0.01. Only approximately 4,000 genes 
showed significantly positive SNP heritability in the ELGAN dataset, and we built highly 
predictive models for nearly 75% of these genes. We believe these feature selection steps are 
necessary, steps which are not included in the TIGAR and PMR pipelines. 

 
3. Please state clearly which tool/method was used to estimate heritability in this manuscript and plot the 
95% confidence intervals of the heritability estimates. 
 

There are three heritability estimations that we conduct here. First, we estimate the SNP 
heritability of gene expression. We use GREML-LDMS of this estimation, as detailed in the 
Methods section (Estimation of SNP heritability of gene estimation subsection; Page 21, Lines 
13-20): 
 
“Heritability using genotypes within 1 Megabase of the gene of interest and any prioritized 
distal loci was estimated using the GREML-LDMS method, proposed to estimate heritability by 
correction for bias in LD in estimated SNP-based heritability105. Analysis was conducted using 
GCTA v1.93.1106. Briefly, Yang et al shows that estimates of heritability are often biased if 
causal variants have a different minor allele frequency (MAF) spectrums or LD structures from 
variants used in analysis. They proposed an LD and MAF-stratified GREML analysis, where 
variants are stratified into groups by MAF and LD, and genetic relationship matrices (GRMs) 
from these variants in each group are jointly fit in a multi-component GREML analysis.” 
 
Next, we estimate SNP heritability of each trait using LD score regression. The 95% 
confidence intervals for these estimates are included in Supplemental Figure S1. We include 
in the Results section (Complex traits are genetically heritable and correlated subsection; 
Page 5, Lines 13-16) the following sentence: 
 
“To quantify the total genetic contribution to each trait and the genetic associations shared 
between traits, using linkage disequilibrium (LD) score regression with LD scores generated 
for individuals of European ancestry from the 1000 Genomes projects31,32, we estimated the 
SNP heritability (ࢎ૛) and genetic correlation (࢘ࢍ) of these traits, respectively (Supplemental 
Figure S1 and S2).” 
 
In the Methods section (GWAS summary statistics subsection; Page 20, Lines 21-23), we also 
add: 
 
“SNP heritability for each trait and genetic correlations for all pairwise combinations of traits 
were estimated using LD score regression with the European ancestry sample from the 1000 
Genomes Project as a reference for LD scores31,32.” 
 
Lastly, we also use a modified approach to LD score regression to estimate placental GReX-
mediated heritability of traits, as detailed in the FUSION and RHOGE papers, respectively 
(Gusev et al 2016, Nature Genetics; Mancuso et al 2017, American Journal of Human 
Genetics). We describe this approach in the Methods section (Genetic heritability and 
correlation estimation subsection; Page 24, Lines 5-16): 
 
“At the genome-wide genetic level, we estimated the heritability of and genetic correlation 
between traits via summary statistics using LD score regression31. On the predicted 
expression level, we adopted approaches from Gusev et al and Mancuso et al to quantify the 
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heritability (ࡱࡳࢎ૛ ) of and genetic correlations (࣋ࡱࡳ) between traits at the predicted placental 

expression level17,28. We assume that the expected ࣑૛ statistic under a complex trait is a linear 
function of the LD score31. The effect size of the LD score on the ࣑૛ is proportional to ࡱࡳࢎ૛ ሾ࣑૛ሿࡱ : = ૚ ൅ ൬ࡹ࢒ࢀࡺ ൰ࡱࡳࢎ૛ ൅  ,ࢇࢀࡺ
where ࢀࡺ is the GWAS sample size, ࡹ is the number of genes, ࢒ is the LD scores for genes, 
and ࢇ is the effect of population structure. We estimated the LD scores of each gene by 
predicting expression in European samples of 1000 Genomes and computing the sample 
correlations and inferred ࡱࡳࢎ૛  using ordinary least squares. We employed RHOGE to estimate 
and test for significant genetic correlations between traits at the predicted expression level28.” 
 
The reviewer is right about adding a figure that shows the precision of these heritability 
measurements. The new Supplemental Figure S10 now shows Wald-type confidence intervals 
for ࡱࡳࢎ૛ . We copy the figure below: 

 
4. A heatmap with all pair-wise correlation test results would be better than the current Figure 3C plot. 
 

We appreciate the reviewer’s comment about alternative approaches to plotting figures. We do 
include this heatmap in the original Supplemental Figure S11, but it is difficult to distinguish 
the significant correlations between traits of different categories. We believe the interesting 
results here are these cross-category correlations, and hence we provide the forest plot in the 
main Figure 3C. We did try to plot these cross-category correlations in Figure 3C as a 
heatmap, but this approach was the clearest approach. 
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5. A phewas-like Manhattan plot with respect to each of the examined genes would provide a more 
complete view of the analysis results for the phenome-wide association study in early- and later-life traits. 
 

We include the boxplots in the main Figure 4A mainly to prioritize organ systems and trait 
categories as a whole for these 9 genes that showed TWAS associations in 3 or more trait 
categories. However, we do provide PheWAS-like Miami plots for this phenome-wide scan in 
UKBB in the original Supplemental Figure S12 for 4 genes that showed multiple enrichments 
across organ systems: ATPAF2, IDI1, RPS25, and SEC11A.  

 
6. Please state if the LD matrix Σ_(S,S) is the genotype correlation matrix or covariance matrix. Actually, 
for using the Z-score statistic as mentioned in the Methods for TWAS, the genotype correlation matrix 
should be used. 
  

We appreciate this comment from the reviewer – it helps with the reader’s understanding, 
especially if they are not familiar with statistical genetic analyses. The reviewer is right that 
the LD matrix in the weight burden test is the genotype correlation matrix, as mentioned in the 
Gusev et al 2016 FUSION paper. We have now added to the Methods section (Overall TWAS 
test subsection; Page 23, Lines 11-13) the following sentence: 
 
“The vector ࢝ࡳ represents the vector of SNP-gene effects from MeTWAS or DePMA and ઱࢙,࢙ is 
the LD matrix (correlation matrix between genotypes) between the SNPs represented in ࢝ࡳ.” 
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Reviewer #2 (Remarks to the Author): 
 
Bhattacharya et al reported a comprehensive study integrating placenta molecular QTLs and summary 
level results of 40 GWASes. This work applied existing methods (e.g. TWAS) and detected 248 gene-trait 
associations (GTA). The authors interpret the observation as placental genomic regulation impacts 
developmental programming across the life course and increase risk of many diseases. The paper is well-
organized and presenting high quality data. I have the following concerns. 
 

We appreciate that the reviewer found our paper well-organized and our data and results high 
quality. 

 
1) A key conclusion of this paper is placental genomic regulation impacts developmental programming 
across the life course and disease risk, and such conclusion is based on the GTA detected by TWAS. 
However, the association between a pair of SNP and molecular trait, ie., molQTLs (e.g. expressional 
QTLs [eQTLs] or methylation QTLs [mQTLs]), could exist in multiple tissues. The data employed in the 
paper did not show the molQTLs underlying GTA were specific in placenta, therefore, caution will be 
needed in drawing the conclusion. 
 

The reviewer is correct that our study is specific to the placenta, and thus more caution 
should be taken when presenting conclusions. As we now address horizontal pleiotropy (see 
response to Comment 2) in our study, we have replaced the first limitation in the Discussion 
section (Page 17, Lines 9-13) with the following: 
 
“First, our analysis considers only placental tissue. Though many of our GTAs leverage distal-
eQTL architecture which tend to be tissue-specific, the QTLs we leverage in TWAS may not be 
placenta-specific. A similar analysis across developmental and adult tissues could reveal 
more widespread genetic signals associated with these traits.” 

 
2) In Discussion, it is mentioned, “instances of horizontal SNP pleiotropy, where SNPs influence the trait 
and expression independently, were not examined here.” But why? There are existing methods, such as 
coloc and eCAVIAR, to evaluate the probability that the placenta molecular trait and disease risk were 
controlled by the same variants. The data to apply these methods are basically the same as in TWAS. 
 

The reviewer makes an important point here. We note that colocalization methods like color 
and eCAVIAR are not built to test for horizontal pleiotropy, but rather coincidence of genetic 
associations between two traits for variants. As Wainberg et al points out (Wainberg et al 
2019, Nature Genetics), colocalization is an alternative to TWAS in gene prioritization for 
GWAS signal. A good figure that summarizes this is Figure 2 from the MRLink paper (van der 
Graaf et al 2020, Nature Communications); colocalization can only address the situation where 
the outcome is affected through two pathways with two different, correlated SNPs (or GReX of 
genes). Here, we are interested in the situation where the outcome is affected through two 
pathways from the same SNP/set of SNPs, where one pathway is unobserved. To test the 
degree of horizontal pleiotropy, we have now included an analysis using PMR-Egger (Yuan et 
al 2020, Nature Communications). Here, we test the null hypothesis that the horizontal 
pleiotropic effect is zero (see Equations 1-4 of Yuan et al) and report these results in 
Supplemental Table S6. We now add to the Results section (Multiple placental gene-trait 
associations detected across the life course subsection; Page 7, Line 26 to Page 8, Line 5): 
 
“Next, we tested for horizontal pleiotropic effects of the SNPs employed in the models for 
TWAS-prioritized genes; if SNPs affect the outcome through a pathway independent of 
expression of the gene, the TWAS association may be biased37,38. Here, using PMR-Summary-
Egger38, we test the magnitude of this null hypothesis for each of the 248 TWAS-prioritized 
GTAs. At FDR-adjusted ࡼ	 < 	૙. ૙૞, only three GTAs showed significant horizontal pleiotropic 
effects: MOV10, SLC35G2, and HLA-A, all associated with adult waist-hip ratio (Supplemental 
Table S6). These three genes may have upwardly biased TWAS associations, as the SNPs 
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used to construct their GReX may influence the outcome through a different molecular 
pathway.” 
 
Accordingly, we remove our first limitation, which we replace with the caution outlined in the 
response to Comment 1. 

 
3) TWAS was applied on GWAS summary data of 40 diseases (Table S1 and S2). Why limit to these 40 
diseases? Since it is not clear how authors determined diseases other than these 40 were not relevant to 
placenta and TWAS was unlikely to detect TGA. 
 

The reviewer is correct in pointing out that the DOHaD hypothesis can be applied to many 
more traits than just the 40 traits we study in our analysis. We started with 5 broad categories 
of traits (autoimmune, metabolic, cardiovascular, early childhood, and neuropsychiatric) that 
have particular relevance to the placenta from previous genomic and morphological analyses 
(References 1-8). From here, we identified large-scale GWAS initiatives that studied traits that 
fall in these categories and included a large, representative sample of traits in our analysis. 
Our work can be easily extended to other traits that were not studied in our paper. An 
important part of this work is the placental expression models we openly provide to the 
community to run TWAS in other GWAS of interest, accessible from Zenodo. The ELGAN 
DOHaD Atlas (https://elgan-twas.shinyapps.io/dohad/) also enables researchers to submit 
TWAS summary statistics, so results from other traits may be consolidated in one location for 
the community to browse and investigate. 

 
4) The authors suggest “differing eQTL architectures in the datasets [ELGAN and RICHS] and different 
inclusion criteria for significant gene expression models”. It would be informative to systematically 
compare the eQTLs of these two placenta datasets. The difference in ELGAN and RICHS eQTLs could 
be of scientific importance reflecting the preterm status. 
 

The reviewer poses an interesting question that is worth exploring in a separate paper. We 
believe that the differences in genetic effects on placental transcriptomics with pre-term 
status using both the ELGAN and RICHS data will be an important paper for the field and 
could reveal effect modifications on these QTLs by variables that are correlated with pre-term 
status. We are currently planning an extensive mega-analysis across different placental eQTL 
cohorts to map genome-wide QTLs, but several pre-processing steps need to be taken first 
(i.e., impute genetic data to the same reference, same pre-processing steps for RNA-seq data, 
isoform-level expression estimation with inferential replicates, percent spliced in estimation, 
etc). This analysis would be beyond the scope of this paper, as it is not the focus of our paper 
and goes beyond our data use agreement for the pre-processed RICHS data. Without aligning 
data from these cohorts, interpretability of differences in QTLs will be difficult However, for 
added transparency, we expand the demographic and clinical summary statistic table in 
Supplemental Table S4 to both ELGAN and RICHS to highlight the difference in the cohorts. 
We also add at in the Results section (Multiple placental gene-trait associations detected 
across the life course subsection; Page 6, Lines 24-26):  
 
“Summary statistics of demographic and clinical variables for the RICHS show similar 
distributions of race, though RICHS excluded all pre-term babies, a clear difference in these 
two cohorts (Supplemental Table S4).” 
 
We also add in the Discussion section the following sentence to highlight the importance of 
this future analysis (Page 17, Lines 16-17): 
 
“An extensive comparison of genome-wide eQTL architecture between ELGAN and RICHS, 
highlighting differences in genetic effects on gene expression across pre-term status, could 
be of particular scientific importance.” 
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5) Does HMDP has placenta expression data, so TGA detected by TWAS in human can be replicated in 
mice? If HMDP has placenta expression data, the methods and results section should provide more 
details. 
 

The reviewer asks a relevant question. Unfortunately, HMDP does not have placental 
expression data from mice, which makes direct tissue-specific comparisons difficult. 
However, cis-eQTLs are employed in the predictive models MOSTWAS builds, and thus many 
of these are conserved across tissues. We use this idea to compare results from our human 
placenta TWAS with the results in other tissues from HMDP. We have adjusted the Results 
and Methods sections to mention that placental expression is not available in the HMDP. The 
Results section (Body size and metabolic placental GTAs show trait associations in mice; 
Page 12, Lines 3-4) now reads: 
 
“This panel includes 100 inbred mice strains with extensive collection of obesity-related 
phenotypes from over 12,000 genes, with expression measured in a variety of adult tissues.” 
 
Later in that same paragraph, we write (Lines 12-14): 
 
“Though generalizing these functional results from non-placental tissue in mice to humans is 
tenuous, we believe these 36 individually significant genes in the HMDP are fruitful targets for 
follow-up studies.” 
 
We add a new Methods section (Human Mouse Diversity Panel; Page 25, Lines 16-23), which 
reads: 
 
“To provide some functional evidence of gene associations with metabolic traits, we 
evaluated the 109 metabolic trait-associated genes from our human placental TWAS in the 
Hybrid Mouse Diversity Panel (HMDP) for correlations with obesity-related traits in mice47. 
This panel includes 100 inbred mice strains with extensive collection of obesity-related 
phenotypes (e.g., cholesterol, body fat percentage, insulin, etc) from over 12,000 genes, with 
expression measured in a variety of adult tissues (liver, adipose, aorta). We note that the 
HMDP only considers adult tissues and does not include placental gene expression. In the 
HMDP, we consider both trait correlation to tissue-specific gene expression and cis-GReX 
(genetically-regulated expression controlled by cis-eQTLs).” 
 
In the third paragraph of the Discussion (Page 17, Lines 3-5), we also mention that 
generalizing to humans from mouse models is tenuous: 
 
“Although these cis-GReX correlations from HMDP cannot be generalized from mice to 
humans, our in vitro assay provides valuable evidence for EPS15 genomic regulation in the 
placenta.”  
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Reviewer #3 (Remarks to the Author): 
 
The overall goal of this paper was to characterize placental gene-trait associations relevant to the 
DOHAD hypothesis using the newly developed MOSTWAS method for EQTL analysis. The major 
strengths of this paper are the robust transcriptomics data and efforts to integrate this data using novel 
computational approaches. This paper is significant as it provides evidence of changes in placental gene 
expression related to genetic polymorphisms associated with metabolic and childhood/neonatal traits, 
supporting the DOHAD hypotheses. Overall, this paper is very ambitious and tackles many aspects of 
genetic control of placental gene expression, but is challenging to follow due to the sheer number of 
analyses being performed (RHOGE, MOSTWAS, FOCUS, GBAT, Mouse Diversity Panel, GREML-
LDMS, MatrixQTL…). Overall, It would be helpful if the authors could go through and further clarify the 
goal's of each analysis. There are some additional areas that could be further explained in this paper, 
which are highlighted in the following comments: 
  

We appreciate that the reviewer finds our paper significant and ambitious. We understand that 
the paper may be difficult given the numerous analyses included. Accordingly, at the 
reviewer’s request, we have included an initial subsection in the Results section that outlines 
the different steps of the analysis with motivations for each leg of the analysis. We have also 
split Figure 1 into two figures to allow for more focus on the analytic pipeline in the new 
Figure 2. In the Methods sections, we have ensured that we include motivations for each 
analytic choice in the pipeline. 

 
1. Demographic data on the ELGAN cohort is presented in Supplemental Table S4, but there is no 
demographic data provided on the RICHs cohort, which was used to validate the findings of gene 
expression prediction. How do the RICHs and ELGAN cohorts compare in terms of race, ethnicity, SES, 
rates of premature birth, and other key perinatal outcomes? It would be helpful to mention in the 
discussion about the differences in these cohorts and the validity of the RICHs cohort as an independent 
validation cohort. 
 

We appreciate the reviewer asks about differences between the RICHS and ELGAN datasets. 
Supplemental Table S4 now includes a summary of more demographic and clinical variables 
about each dataset. Distributions of race are roughly similar across these two groups, thought 
there is one significant difference. The RICHS excluded all pre-term births, whereas the 
ELGAN study includes only pre-term births; this results in a large difference in mean 
gestational age. This is a major difference, which we now highlight in the Results section 
(Multiple placental gene-trait associations detected across the life course section; Page 6, 
Lines 24-26): 
 
“Summary statistics of demographic and clinical variables for the RICHS show similar 
distributions of race, though RICHS excluded all pre-term babies, a clear difference in these 
two cohorts (Supplemental Table S4).” 
 

2. Did the RNA sequencing data from the RICHs cohort undergo the same preprocessing steps as the 
ELGAN cohort? (such as RUV-seq) This information is not described in the methods. 
 

This is an important point raised by the reviewer. We received pre-processed expression data 
from the RICHS. We have included a reference to the paper that describe these pre-processing 
steps. For clarification, these pre-processing steps are different from those used in this 
analysis for the ELGAN data, and, in the Methods section (Expression data subsection), we 
add the following to make sure the reader is aware of differences in pre-processing: 
 
“We obtained pre-processed RNA expression data from the Rhode Island Children's Health 
Study, as described before36. Pre-processing steps for RNA expression data from the RICHS 
are different from those employed here in the ELGAN study.” 
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3. How did the authors handle cross-reactive/polymorphic probes in their analysis? These probes 
introduce bias in studies utilizing Illumina EPIC arrays (doi: https://doi.org/10.1093/nargab/lqaa105) and 
are frequently removed prior to downstream analyses. 
 

We thank the reviewer for pointing out this salient step in pre-processing methylation data. 
The software included with the paper cited by the reviewer seems to have some dependency 
issues. However, we use a different annotation to account for cross-reactive/polymorphic 
probes on the EPIC chip. Using the catalogue from the maxprobes R package from Max Chen 
(Pidsley et al 2016, Genome Biology; McCartney et al 2016, Genomics Data). Of the 1,072 CpG 
sites we leverage to train predictive models, only 52 are cross-reactive/polymorphic. 
Subsetting to those genes with TWAS associations, we found 4 cross-reactive CpGs that were 
prioritized as a mediator for the GTA. We re-estimated models for these genes, along with the 
TWAS test of association and distal-SNPs added last test. Here is a summary of the changes 
to results: 
 

• cg11299304 was tagged as a predicted mediator of the ZNF850 association with adult-
onset asthma. After re-fitting, the overall TWAS Z-score remained in the same direction 
(new Z = 7.51) and the distal Z-score remained in the same direction (new distal Z = 
6.21) 

• cg08856764 was tagged as a predicted mediator of the PLA2G2A association with 
allergic disease. After re-fitting, the overall TWAS Z-score remained in the same 
direction (new Z = -5.89) and the distal Z-score remained in the same direction (new 
distal Z = -3.24) 

• cg07424785 was tagged as a predicted mediator of the PRRC2A association with head 
circumference. After re-fitting, the overall TWAS Z-score remained in the same 
direction (new Z = 5.12) and the distal Z-score remained in the same direction (new 
distal Z = 2.20) 

• cg21948827 was tagged as a predicted mediator of the ZNF264 association with late 
puberty growth. This CpG site was the only predicted mediator for this TWAS 
association. The overall TWAS Z-score remained in the same direction (new TWAS Z = 
-5.21). However, we can no longer prioritized a distal functional hypothesis for this 
gene. 

 
Throughout the Results section and Supplemental Table S6, we have updated the results to 
reflect these 4 changes. In the Methods section (Page 22, Lines 1-2), we mention that we filter 
out cross-reactive probes for these TWAS-associated genes: 
 
“For CpG methylation sites, we used the maxprobes R package to filter out cross-reactive or 
polymorphic probes, which may induce bias111–113.” 

  
4. How were the X and Y chromosome handled in this analysis? 
 

This is an important clarification from the reviewer. Due to the difficulties in quality control for 
genetic data from sex chromosomes, we restrict our study to genetic variants, genes, CpG 
sites, or miRNAs on autosomes. We have added to the Methods section (Data acquisition and 
quality control subsection) that all genetic, transcriptomic, and methylomic data considered in 
this analysis are from autosomes.  

  
5. How did the authors define transcription factors for MOSTWAS? 
 

We appreciate the reviewer for raising this question, since we omitted a citation to 
TFcheckpoint as our source of potential transcription factors (Chawla et al 2013, 
Bioinformatics). This curated compendium included a set of 3,479 potential transcription 
factors with at least one experimental or computational source. Of these transcription factors, 
we were able to study 1,962 of them in the ELGAN RNA-seq panel. We contend that many of 
these 3,479 transcription factors from TFcheckpoint are not represented in the more recent 
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databases that the reviewer mentions in their Comment 9. However, we believe that there has 
been some evidence that these transcription factors may be involved in regulatory processes. 
Previous studies that conduct distal-eQTL mapping using mediation through cis-eQTLs use 
all genes in the transcriptome as potential mediators (Pierce et al 2014, PLOS Genetics; Hawe 
et al 2020, bioRxiv; Yang et al 2017, Genome Research; Yang et al 2019, bioRxiv). In an attempt 
to add some biological interpretation, we restrict to this superset of genes coding for 
regulatory proe.  
 
Accordingly, we have added a citation to TFcheckpoint and, to soften our language, call the 
genes we consider as mediators “potential regulatory protein (RP)-encoding genes.” 
Specifically, in the Results section (Multiple placental gene-trait associations detected across 
the life course subsection; Page 6, Lines 6-11), we now write: 
 
“In this analysis, these regulatory biomarkers include potential regulatory protein (RP) 
encoding genes (as curated by TFcheckpoint33), miRNAs, and CpG methylation sites from the 
ELGAN Study. we assume that these RP genes, miRNAs, and genes and other regulatory 
features local to these CpG methylation sites have distal effects on the transcription of genes 
of interest and thus potentially mediate distal-eQTLs to the gene of interest (Methods).” 

  
6. The authors address cellular heterogeneity present in placental omics data by adjusting for unwanted 
biological variation using RUVSeq. However, the authors do not adjust for this same variability in the DNA 
methylation data, and there are established methods to do this in methylation data (Houseman et al, 
2015, Yuan et al, 2020) 
 

We thank the reviewer for pointing this out. Our CpG methylation data does include an 
adjustment for cellular heterogeneity using surrogate variable analysis (Leek et al 2007, PLOS 
Genetics). We have previously used this adjustment in previous studies that used this 
methylomic data from ELGAN (Santos and Bhattacharya et al 2020, Molecular Autism; Santos 
et al 2019, Epigenetics). In the Methods section (Methylation data subsection; Page 20, Lines 
6-9), we now write: 
 
“Lastly, the ComBat function was used from the sva package to adjust for batch effects from 
sample plate98. In addition, to account for cell-type heterogeneity, 5 surrogate values were 
estimated and removed from the data to account using the sva package, as previously 
described15,90,98.” 

  
7. For the heritable traits, can you provide some clarity if the GWAS results (HDL, Glucose, Cholesterol) 
that directly related to blood markers/metabolites were quantified in adults or children in the studies which 
they were derived? Also, the way this is presented may make it seem to a casual reader that these 
measurements were collected in the same population based on the labeling in some of the tables/figures 
(such as supplemental figure S9) and some of the wording (For example page 8 line 27-page 9 line 1). 
Readability could be improved by slight rewording. 
 

We appreciate the reviewer in providing these comments that aid the readability of our 
manuscript. Unless otherwise indicated, all traits are measured in adults. Only those traits that 
fall in the neonatal/childhood outcomes category are measured in infants or children. We have 
added, throughout the Results section, multiple references to whether a trait is measured in 
children or adults to aid with readability. In addition, the first paragraph of the Complex traits 
are genetically heritable and correlated subsection (Page 5, Lines 1-11) now reads: 
 

“We curated GWAS summary statistics from subjects of European ancestry for 40 non-
communicable traits and disorders across five health categories to identify potential links 
to genetically-regulated placental expression (traits and cohorts for each GWAS are 
summarized in Supplemental Table S1, sample sizes are provided in Supplemental Table 
S2). These five categories of traits (autoimmune/autoreactive disorders, metabolic traits, 
cardiovascular disorders, early childhood outcomes, and neuropsychiatric traits) have 
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been linked previously to placental and fetal biology and morphology1–8.These 40 traits, 
derived from 5 different consortia (Supplemental Table S1), comprise of 3 
autoimmune/autoreactive disorders, 8 body size/metabolic traits, 4 cardiovascular 
disorders, 14 neonatal/early childhood traits, and 11 neuropsychiatric traits/disorders23–27. 
The 26 traits that are not categorized as neonatal/early childhood traits are measured 
exclusively in adults. In addition, these 40 GWAS are not derived from the same samples 
of patients.” 

 
We believe that these modifications significantly help with the flow of the paper. 

  
How was the threshold of adjusted R2 > 0.01 selected? These values of the cross validation and out of 
sample R2 seem low-is there an example of another paper that uses this threshold? Also, in Page 5 Line 
25, the authors refer to an “adjusted” R2-How was this adjusted? 
 

This is a great clarification question. ࡾ૛ ≥ ૙. ૙૚ is the traditional cutoff used in the original 
TWAS papers (Gamazon et al 2015, Nature Genetics; Gusev et al 2016, Nature Genetics), 
corresponding to a correlation of 0.10 between the observed expression values and the 
predicted genetically-regulated expression values. We have cited multiple other TWAS papers 
that use this ࡾ૛ ≥	0.01 cutoff. In a majority of TWAS papers, only cross-validation ࡾ૛ ≥ ૙. ૙૚ is 
used as a feature selection step for the predictive power of the models, given the dearth of 
large enough tissue-specific eQTL datasets. We provide out-of-sample prediction estimates to 
show relatively strong portability of models across two datasets, especially since MOSTWAS 
is a relatively new method. In addition, MOSTWAS considers the McNemar’s adjusted ࡾ૛, 
instead of a traditional ࡾ૛ (squared correlation), which adjusts the ࡾ૛ for sample size. In our 
experience, feature selecting on this adjusted ࡾ૛ leads to more portable models, which is 
important when conducting the TWAS test of association. We now define the McNemar’s 
adjusted ࡾ૛ mathematically in the Methods section (Gene expression models subsection; 
Page 22, Lines 13-19): 
 
“We considered only genes with significantly positive heritability at nominal ࡼ < ૙. ૙૞	using a 
likelihood ratio test and five-fold McNemar’s adjusted cross-validation ࡾ૛ ≥ ૙. ૙૚, a cross-
validation cutoff used by many previous TWAS analyses16,17,28,36,75,114,115. McNemar’s 
adjustment to the traditional ࡾ૛ is computed as 
૛ࢊࢋ࢐࢛࢙࢚ࢊࢇࡾ  = ૚ − (૚ − (૛ࡾ ࢔) − ૚)(࢔ − ࣇ − ૚), 
 
where ࢔ is the sample size and ࣇ is the number of predictors in this linear model. Since this ࡾ૛ 
is computed only between the observed and predicted expression values, ࣇ = ૚.” 

  
8. The authors perform in vitro validation using JEG-3 Cells, which are not immortalized trophoblast cell 
lines. The JEG-3 cells are derived from a choriocarcinoma cell line that is used to model the placental 
trophoblast because they synthesize placental hormones and express key placental hormones including 
HLA-G. There are other cell lines, such as SWAN-71 and HTR8-SV/neo cells, which are derived from 
immortalized trophoblast cells. Thus, this cell line should be referred to appropriately in the manuscript 
text. What was the justification for using this particular cell line? 
 

JEG-3 cells are indeed choriocarcinoma epithelial cells derived from the placenta, and exhibit 
features that prove their fit for this experiment. This correction has been added to the 
manuscript in the Methods section describing cell culture techniques. Specifically, the revised 
manuscript now states (Page 25, Lines 27-28):  
 
“The JEG-3 choriocarcinoma cells were purchased from the American Type Culture 
Collection.” 
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JEGs exhibit first trimester-like phenotypes with regards to steroidogenesis, including the 
synthesis and secretion of hCG, human placenta lactogen, progesterone, estrone, and 
estradiol. The revised manuscript now states, in the Results section (In-vitro assays reveal 
widespread transcriptomic consequences of EPS15 knockdown subsection; Page 14, Lines 
19-21):  
 
“JEG-3 cells were selected for study based on their know first trimester-like phenotypes, 
including the synthesis and secretion of hCG, human placenta lactogen, progesterone, 
estrone, and estradiol.” 
 
Immortalized cell-lines generally demonstrate an absence of hormone secretion. JEG-3 cells 
are widely used to study molecular mechanisms underlying proliferation and gene expression, 
whereas other cell lines derived from immortalized trophoblast cells such as SV/neo cells may 
be better suited for studies relating to invasion and migration.  

  
9. Can the authors comment more on the logic of selecting the gene EPS15 for experimental validation, 
out of the 9 TFs they identified? The authors state that this gene is highly expressed in the placenta, but 
the citation they reference (#45 https://doi.org/10.1093/humupd/dmq052) only mentions EPS15 once in a 
table of imprinted genes, using data derived from an imprinted gene catalogue (www.geneimprint.com). 
The fact that it is imprinted raises additional questions about how this is incorporated in the results. From 
what I can discern, EPS15 is a substrate for the EGFR receptor, and has been shown to localize within 
the nucleus (doi:10.1186/1478-811X-7-24), but I cannot find any literature directly implicating it as a 
transcription factor. Moreover, it is not included in commonly utilized database of transcription factors 
(https://doi.org/10.1016/j.cell.2018.01.029, https://doi.org/10.1038/s41588-019-0411-1). More insight into 
the function of this gene in the placenta and its role in transcriptional regulation (overall) is warranted, as 
it was highlighted as one of the main findings in the abstract. 
 

As we mention in our response to the reviewer’s Comment 5, we use the TFcheckpoint 
database that combined multiple experimental and computational databases of potential 
transcription factors to identify a large set of potential transcription factors or regulatory 
proteins. EPS15 has been implicated as a potential transcription factor by GOC (Carbon et al 
2009, Bioinformatics) and TFCat (Fulton et al 2009, Genome Biology). We subject our 
functional hypotheses of distal regulation to multiple computational tests across datasets. 
First, rigorous mediation analysis is used during the MOSTWAS gene expression model 
building to identify EPS15 as a potential mediator of the distal-eQTL relationship between 
genetic variants around EPS15 and SPATA13/FAM214A. Second, we use the distal-added last 
test to implicate the SNP to EPS15 to SPATA13/FAM214A relationships in the associations 
with waist-hip ratio. Third, we use the RICHS data to run two analyses that reveal directional 
associations between the genetically-regulated expression of EPS15 and FAM214A: gene-
based association testing of distal-eQTLs (Liu et al 2020, Genome Biology) and Mendelian 
Randomization (Burgess and Thompson 2017, European Journal of Epidemiology). By 
observing evidence from 3 rigorous computational analysis across different datasets, we 
prioritized the experimental study of the transcriptomic consequences of EPS15 in placenta-
derived trophoblasts. 
 
We did not originally speculate on the function of EPS15, but there are several salient 
functions that have been identified in literature. We now add, in the Discussion section, more 
context on the suggesting roles of EPS15 in transcription regulation and the potential function 
of EPS15 in the placenta. We paste this new paragraph below (Page 16, Lines 8-23): 
 
“MOSTWAS also generates hypotheses for regulation of TWAS-detected genes, through distal 
mediating biomarkers, like transcription factors, miRNAs, or products downstream of CpG 
methylation islands22. Our computational results prioritized 89 GTAs with strong distal 
associations. We interrogated one such functional hypothesis: EPS15, a predicted RP-
encoding gene in the EGFR pathway, regulates two TWAS genes positively associated with 
waist-hip ratio - FAM214A, a gene of unknown function, and SPATA13, a gene that regulates 
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cell migration and adhesion60–62. In fact, EPS15 itself showed a negative TWAS association 
with waist-hip ratio. In particular, EPS15, mainly involved in endocytosis, is a maternally 
imprinted gene and predicted to promote offspring health49,63–65. There is ample literature that 
implicates the protein product of EPS15 as a direct or indirect transcription regulator. The 
protein Eps15 is an adaptor protein that regulates intracellular trafficking and has been 
detected in the nucleus of mammalian cells66. Once in the nucleus, Eps15 has shown to 
positively modulate transcription in a GAL4 transactivation assay67. Furthermore, Eps15 and 
its binding partner intersectin activate the Elk-1 transcription factor, pointing to Eps15’s 
function in regulating gene expression in the nucleus68. Specific to the placenta, it has been 
proposed, through mouse models, that Eps15’s interactions with multiple proteins suggest a 
role in cell adhesion of trophoblast to endothelial cells through biogenesis of exosomes and 
extracellular vesicles, a critical part of placental and fetal development69–71.” 
 
We also soften some language in our Discussion and emphasize to the reader that our results 
cannot implicate a direct causal effect. We now write this in the Discussion section (Page 16, 
Line 27 to Page 17, Line 1): 
 
“Though not implicating a direct causal effect, EPS15’s inverse association with SPATA13 and 
FAM214A could provide more context to its full influence in placental developmental 
programming, perhaps by affecting cell proliferation or adhesion pathways.” 

  
10. The authors describe experiments where EPS15 knockdown causes increased expression of genes 
SPATA13 and FAM214A (Page 13, Line 2, and in Figure 5B). This would indicate that this gene is a 
negative regulator since less activity of this TF is leading to increased expression. However, in 
supplemental figure 13, they show positive correlations between EPS15 and SPATA13 and FAM214A in 
the RICHS cohort, which would implicate it as a positive regulator (Increased TF expression, Increased 
expression of downstream genes) So the data they are presenting here appears contradictory. Can the 
authors explain this? 
 

We appreciate that the reviewer asks this important question, as it is true that the results in 
the old Supplemental Figure S13 appear contradictory to those shown in Figure 5. 
Supplemental Figure S13 simply provides correlations between the full placental expression 
of mediating genes and TWAS-identified genes, which we include as a description of the data 
at face value. We then dig deeper using more sophisticated computational methods: the 
associations shown in Figure 4B (association between placental GReX of RP expression and 
placental expression of TWAS gene) and Figure 4C (causal effect estimate of RP expression 
on placental expression of TWAS gene) both use genetics as a causal anchor. We prioritize 
EPS15 for the in vitro experiments due to these computational results shown in Figure 4, that 
use associations between genetically-regulated expression of EPS15 or genetic variants as 
instrumental variables. The correlations presented in Supplemental Figure S13 reflect total 
expression of these genes, subject to multiple post-transcriptional processes which may 
induce a different correlation than those with GReX. In the interest of thoroughness, we have 
elected to discuss this phenomenon quickly at the end of the second paragraph in the 
MOSTWAS reveals functional hypotheses for distal placental regulation of GTAs subsection 
(Page 13, Lines 24-27), where we write: 
 
“However, as discussed in previous TWAS and MR studies17,53, correlations between GReX 
and a phenotype are not equivalent to correlations between full expression and the 
phenotype, as full expression is subject multiple post-transcriptional process, while GReX is 
not.” 
 
We also soften some language in our Discussion and emphasize to the reader that our results 
cannot implicate a direct causal effect. We now write this in the Discussion section (Page 16, 
Line 27 to Page 17, Line 1): 
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“Though not implicating a direct causal effect, EPS15’s inverse association with SPATA13 and 
FAM214A could provide more context to its full influence in placental developmental 
programming, perhaps by affecting cell proliferation or adhesion pathways.” 

  
11. In the methods, the authors describe confirming gene expression changes in JEG-3 cells through RT-
PCR (Page 23, Lines 4-5). However, it appears later in the methods (Page 23, Lines 13-16) that 
differential gene expression was performed, which is presented in the results and in Figure 5B. However, 
in the methods there isn’t any information provided about how RNA was isolated from the JEG-3 cells, or 
any details about the sequencing (i.e library prep method, sequencer, QC). Please provide this 
information. 
 
The following information has been added to the revised manuscript in the Methods section 
(mRNA expression by quantitative Real-Time Polymerase Chain Reaction and RNA sequencing 
subsection). The revised manuscript now states (Page 26, Line 24 to Page 27, Line 2):  
 
“Treated and untreated samples of JEG-3 RNA previously extracted using the AllPrep 
DNA/RNA/miRNA Universal Kit were submitted to the High Throughput Sequencing Facility at 
UNC Chapel Hill for RNA sequencing. Total RNA samples were submitted for sequencing using 
the HS4000 HO platform. Libraries were prepped with the Kapa Stranded mRNA-Seq kit from 
Illumina Platforms. Sequencing was performed after all samples passed QAQC, with a paired-end 
read type, with a read length of 2x75.” 
  
12. As a follow up to this, the authors plated cells in duplicate, then performed siRNA isolation in 
duplicate. For the real time PCR, the samples were also run in technical duplicate (Page 23, line 2).The 
authors then had 3 degrees of freedom for their biological and technical duplicates (Page 23 Line 10) for 
pairwise T tests. Can the authors describe in more detail how the technical and biological duplicates were 
used to calculate the fold change using the Delta Delta CT method. Was this calculated separately for 
each sample? Also, if the authors also did RNA sequencing, was this performed only in duplicate? 
Normally the minimum number of samples presented in RNA sequencing experiments with in vitro 
samples are triplicates. (Example: https://doi.org/10.1111/aji.12722) 
 
Samples were prepared in both biological and technical duplicate. Fold change calculations using 
the Delta Delta CT method was calculated for each sample individually. The revised manuscript 
now states in the Methods section (mRNA expression by quantitative Real-Time Polymerase 
Chain Reaction and RNA Sequencing subsection; Page 26, Lines 18-22):  
 
“Each sample was prepared in biological duplicate and technical duplicate. These samples were 
pooled together for sequencing to yield data representing four samples per exposure group. Fold 
change calculations using the Delta Delta CT method was calculated for each sample individually:  

Delta CTtreated = CTGOI, treated – CTHouse, treated.” 
 
RNA sequencing was performed in duplicate, as we were limited by the reagent availability. This 
information has been incorporated into the Methods section (mRNA expression by quantitative 
Real-Time Polymerase Chain Reaction and RNA sequencing subsection; Page 26, Line 24 to Page 
27, Line 2): 
 
“Treated and untreated samples of JEG-3 RNA previously extracted using the AllPrep 
DNA/RNA/miRNA Universal Kit were submitted to the High Throughput Sequencing Facility at 
UNC Chapel Hill for RNA sequencing. Total RNA samples were submitted for sequencing using 
the HS4000 HO platform. Samples were sequenced in duplicate, and libraries were prepped with 
the Kapa Stranded mRNA-Seq kit from Illumina Platforms. Sequencing was performed after all 
samples passed QAQC, with a paired-end read type, with a read length of 2x75.” 
 
The reviewer is correct that 2v2 RNA-seq experiments cannot provide strong power for analysis. 
However, as Schurch et al shows in their benchmarking analysis (Schurch et al 2016, RNA), 
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DESeq2 and other differential expression analysis methods control false positive rates adequately 
even at low sample sizes (down to duplicate, shown in Figure 2). On the other hand, the true 
positive rate (percent of true positives actually estimated to be positive) greatly suffers at low 
sample sizes. Accordingly, we report a more stringent set of differentially expression genes: 
those with absolute log2-fold change of 0.5 and P-value less than ૚. ૜૛ × ૚૙ି૟, a strict Bonferroni 
correction across the 37,788 assayed genes. This P-value correction is far more conservative than 
the Benjamini-Hochberg procedure previously used. Despite the limited sample size, we believe 
that this RNA-seq experiment serves as an exploratory next step to our qRT-PCR analysis, to look 
at further transcriptomic consequences of EPS15 knockdown. We have amended the Results 
section to include a caution about the small sample size, our strict definition of a differentially 
expressed gene, updated ontology enrichment results, and softened interpretation and 
conclusions. The last paragraph of the Results section (In-vitro assays reveal widespread 
transcriptomic consequences of EPS15 knockdown subsection; Page 15, Lines 3-18) now reads: 
 
“Due to small sample sizes, we define a differentially expression gene with absolute log2-fold 
change greater than 0.5 at ࡼ	 < 	૚. ૜૛ × ૚૙ି૟, a Bonferroni correction across all assayed genes 
(Methods). We detected 694 genes down-regulated and 814 genes up-regulated in the EPS15 
knockdown cells, validating the negative correlations between EPS15 and SPATA13 and FAM214A 
observed in qRT-PCR (Figure 5B, Supplemental Table S16-S17). In particular, these down-
regulated genes were enriched for cell cycle, cell proliferation, or replication ontologies, while up-
regulated genes were enriched for multiple different pathways, including lipid-related processes, 
cell movement, and extracellular organization (Figure 5C, Supplemental Table S18-S19). 
Enrichments for cellular, molecular, and disease pathway ontologies support these enrichments 
(Supplemental Figure S14, Supplemental Table S18-S19). Though we could not study the effects 
of these three genes on body size-related traits, cis-GReX correlation analysis from the HMDP did 
reveal a negative cis-GReX correlation (࢘ = 	−૙. ૜૚, FDR-adjusted P = 0.07) between Eps15 (mouse 
analog of human gene EPS15) and free fatty acids in mouse liver (Supplemental Table S11). These 
results prioritize EPS15 for further study in larger cell line or animal studies as a potential 
regulator for multiple downstream genes, perhaps for genes affecting cell proliferation and 
replication in the placenta, like SPATA1360.” 
 
The Methods section (Differential expression analysis sub-subsection; Page 27, Lines 12-17) now 
reads: 
 
“Although false positive rates are well-controlled even at low sample sizes120, true positive rates 
at such a low sample size are low for smaller thresholds of log-transformed fold changes. Thus, 
guided by Schurch et al’s analysis, due to very limited sample size, we considered a gene to be 
differentially expressed if the absolute log2-fold change is greater than 1 and P < 0.05/37,788 = ૚. ૜૛ × ૚૙ି૟. This P-value threshold is a strict Bonferroni threshold across 37,788 quantified 
genes.” 
  
13. The authors include an analysis using the Hybrid Mouse diversity panel to look at correlations with 
obesity related traits However, the authors should mention in the discussion the limitations of generalizing 
between mouse and human studies of the placenta, given that the biology is so different. 
 

We agree with the reviewer that generalizations from mice to humans are difficult. We have 
already included this in our concluding statement of the Body size and metabolic placental 
GTAs show trait associations in mice subsection (Page 12, Lines 12-14): 
 
“Though generalizing these functional results from non-placental tissue in mice to humans is 
tenuous, we believe these 36 individually significant genes in the HMDP are fruitful targets for 
follow-up studies.” 
 
We also include a statement in the second paragraph of the Discussion section that 
emphasizes this important point (Page 17, Lines 3-5): 
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“Although these cis-GReX correlations cannot be generalized from mice to humans,  our in 
vitro assay provides valuable evidence for EPS15 genomic regulation in the placenta.” 

  
14. What do the authors mean when they say “collection of negative control variables”-pag'e 15, line 12. 
 

We include this statement in the Discussion to point to current methodology that is under 
development in our group. Negative control variables are outcomes that are known not to be 
causally affected by the treatment of interest. They have been used in causal inference to rule 
out non-causal associations and decrease bias in associative studies. In this TWAS case, one 
can imagine using outcomes that are unlikely to be caused by gene expression (say, certain 
lifestyle choices) as an adjustment in the predictive models of gene expression. Accordingly, 
properly chosen negative controls should help in rooting out bias in TWAS tests of 
association. We have included two references to causal inference literature in this sentence 
for the reader (Page 17, Lines 18-20):  
 
“An interesting future endeavor could include negative control variables to account for 
unmeasured confounders in predictive models to allow for more generalizability of predictive 
models73,74.” 

  
15. Moreover, in the discussion, the authors should discuss the assumptions made in this analysis, 
particularly the assumption that TF expression is a proxy for abundance and activity. 
 

We appreciate this comment from the review and have included a few sentences in the 
Discussion about the assumptions we make about regulatory protein expression (Page 17, 
Lines 23-28), pasted below: 
 
“Fifth, we curated a list of regulatory proteins to include as potential mediators but use RNA 
expression of the genes that code for these proteins as a proxy for abundance. We contend 
that RNA abundance of the gene is a noisy estimate of the protein abundance. An interesting 
extension of this analysis could consider a proteome-wide association study, using the 
MOSTWAS framework to identify protein interactions that are disease-related.” 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors did a great job to address my comments. Conducting TWAS using both cis- and trans- 

eQTL information with the fetal tissue gene expression data is valuable to the field. 

 

My only comment is how the authors would share their summary level eQTL weights trained by 

MOSTWAS and their TWAS summary statistics with the public? 

 

 

 

Reviewer #2: 

Remarks to the Author: 

My questions and concerns are adequately addressed. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors of this manuscript have done an excellent job adding details that have clarified the 

results of this manuscript. I appreciate the inclusion of previous trans-eqtl papers that integrate 

the MOSTWAS method. Necessary details have now been added to this most recent draft that 

address reviewer concerns, including the addition of polymorphic probes, and adjustment for 

cellular heterogeneity. I have a few minor comments to further improve the manuscript. 

 

1. I appreciate the authors tempering their language regarding EPS15 as a TF, and instead 

referring to it as a regulator protein encoding gene. Figure 2 provides a great summary, however, 

in panel D they still refer to TF activity of EPS15. This is not in alignment with the tempered 

methods and results. 

 

2. Consider relabeling the x axis in Figure 5A from group of traits to ICD code block 

 

3. Line 191- there is a space missing between adult and BMI 

 

4. The authors explain in the response to reviewers the rationale behind the selection of the JEG-3 

cells. However, the limitations of the JEG-3 cells are not mentioned in the discussion of the paper. 

It is important for a broad range of readers that might access nature communications to 

understand that choriocarcinoma derived placental cells may not accurately reflect the placental 

transcriptome, but are a reasonable representation. 

 

5. I understand that both of these cohorts have multiple papers explaining how samples were 

collected, but it may be good to briefly summarize this in the online methods. One key component 

is the exclusion/inclusion criteria. The samples are derived from different gestational age infants, 

but there may be other key differences in inclusion/exclusion that are not discussed. 

 

6. Instead of saying the pre-processing steps are different, can the authors briefly outline the main 

differences. Would this impact their results? 
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November 21, 2021 

 

Enclosed is a response to reviewers for the manuscript: 

 

"Genetic control of fetal placental genomics contributes to development of health and disease." 

 

We were glad to see that the reviewers found our study substantial, comprehensive, and ambitious with 

key contributions to genetic determinants of placental genomic regulation in the context of the 

Developmental Origins of Health and Disease hypothesis. Specifically, we thank all three reviewers for 

their thorough comments and suggestions that have greatly improved our paper. 

 

Starting on the next page, we address each reviewer’s comments point-by-point. 

 

We thank the reviewers and the editorial board at Nature Communications. 

 

Sincerely, 

 

Arjun Bhattacharya, PhD 
Postdoctoral Fellow 
Department of Pathology and Laboratory Medicine 
Institute for Quantitative and Computational Biosciences 
David Geffen School of Medicine 
University of California, Los Angeles 
 
Rebecca C. Fry, PhD 
Carol Remmer Angle Distinguished Professor and Associate Chair 
Department of Environmental Sciences and Engineering 
Director, Institute for Environmental Health Solutions 
Director, UNC Superfund Research Program 
Director, Graduate Studies, Curriculum in Toxicology 
University of North Carolina at Chapel Hill 
 
Hudson P. Santos, Jr., PhD, RN 
Associate Professor 
School of Nursing 
Director, Biobehavioral Laboratory and HEalth Resilience and Omics Science (HEROS) Hub 
Director, Training & Mentorship Division, Institute for Environmental Health Solutions 
University of North Carolina at Chapel Hill 
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Reviewer #1 (Remarks to the Author): 
 
The authors did a great job to address my comments. Conducting TWAS using both cis- and trans- 
eQTL information with the fetal tissue gene expression data is valuable to the field. 
 

We thank the review for their helpful reviews that have improved our manuscript through 
revisions. 

 
My only comment is how the authors would share their summary level eQTL weights trained by 
MOSTWAS and their TWAS summary statistics with the public? 
 

The models are available through Zenodo, as we include in the Data Availability section:  
 
“All models and full TWAS results can be accessed at 
https://doi.org/10.5281/zenodo.4618036

121
.” 

 
  

https://doi.org/10.5281/zenodo.4618036
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Reviewer #2 (Remarks to the Author): 
 
My questions and concerns are adequately addressed. 
 

We thank the review for their helpful reviews that have improved the clarity of methods 
manuscript through revisions. 
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Reviewer #3 (Remarks to the Author): 
 
The authors of this manuscript have done an excellent job adding details that have clarified the 
results of this manuscript. I appreciate the inclusion of previous trans-eqtl papers that integrate the 
MOSTWAS method. Necessary details have now been added to this most recent draft that address 
reviewer concerns, including the addition of polymorphic probes, and adjustment for cellular 
heterogeneity. I have a few minor comments to further improve the manuscript. 
 
We thank the reviewer for all their helpful comments. We address their additional points below. 
 
1. I appreciate the authors tempering their language regarding EPS15 as a TF, and instead referring 
to it as a regulator protein encoding gene. Figure 2 provides a great summary, however, in panel D 
they still refer to TF activity of EPS15. This is not in alignment with the tempered methods and results. 
 

We thank the reviewer for pointing out this oversight. The corrected Figure 2 now refers to 
regulatory proteins, instead of transcription factors. 
 

2. Consider relabeling the x axis in Figure 5A from group of traits to ICD code block 
 

We thank the reviewer for this comment – we have kept the label in Figure 5A as “Group of trait” 
as these groups do not map one-to-one to ICD code blocks. We do add more detail in the legend 
to point out that these groups are generally grouped around ICD code blocks.  

 
1. Line 191- there is a space missing between adult and BMI 

 
Thank you for pointing this out. We have corrected this. 

 
4. The authors explain in the response to reviewers the rationale behind the selection of the JEG-3 
cells. However, the limitations of the JEG-3 cells are not mentioned in the discussion of the paper. It 
is important for a broad range of readers that might access nature communications to understand that 
choriocarcinoma derived placental cells may not accurately reflect the placental transcriptome, but 
are a reasonable representation. 
 

The reviewer is correct in this request. We have included a sentence in the Discussion (Page 17, 
Line 5) that mentions the main limitation of using these JEG3 cells: 
 
“JEG3 cells are reliable in use and provide accurate results when investigating specific cellular 
responses, such as the placental gene expression experiments used in this study; however, 
these cell lines do not capture interactions between cell types in the placental tissue and its 
effects on the placental transcriptome, as a whole.” 

 
5. I understand that both of these cohorts have multiple papers explaining how samples were 

collected, but it may be good to briefly summarize this in the online methods. One key component 
is the exclusion/inclusion criteria. The samples are derived from different gestational age infants, 
but there may be other key differences in inclusion/exclusion that are not discussed. 

 
This is a subtle but important point that we now include in the Methods section (Page 20): 
 
“Differences in inclusion/exclusion criteria between ELGAN and RICHS 
We highlight some differences in inclusion and exclusion criteria employed by ELGAN and 
RICHS. ELGAN enrolled children born extremely preterm (less than 28 weeks gestation) and 
surviving 28 days postnatally, with full details of the study recruitment and descriptive statistics 
of the cohort in O’Shea et al 21. In contrast, as mentioned in Peng et al36, the RICHS sample 
consists of term infants (≥37 weeks gestation, not twins) born without serious pregnancy 
complications or congenital and chromosomal abnormalities. In addition, RICHS oversampled 
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for large-for-gestational age (LGA, >90% 2013 Fenton Growth Curve) and small-for-gestational 
age (SGA, <10% 2013 Fenton Growth Curve) infants.” 

 
6. Instead of saying the pre-processing steps are different, can the authors briefly outline the main 

differences. Would this impact their results? 
 
We have included differences in pre-processing in the Methods section, with a brief discussion of 
how these differences may affect eQTL signal across two cohorts. The impact of differences in 
pre-processing and QC of RNA-seq data on distal-eQTL signal merits a full simulation and real 
data-based methodological study. Our expectation is that the local-eQTL signal (which is largely 
conserved across cells and tissues) will not be affect, given proper covariate selection. However, 
we hypothesize that distal-eQTLs will have key differences due to how different normalization and 
QC steps affect removal of noise attributable to cell-type heterogeneity. We include the following 
sentences in the Methods (Page 19, Line 19): 
 
“Pre-processing steps for RNA expression data from the RICHS are different from those 
employed here in the ELGAN study (e.g., using EDASeq and edgeR for GC bias correction and 
normalization

35
); differences in pre-processing may affect inferred distal-eQTL architecture, as 

cell-type heterogeneity is captured and removed differently across ELGAN and RICHS
22,89,90

.” 
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