- 1 Metabolic engineering of *Escherichia coli* BL21 strain
- 2 using simplified CRISPR-Cas9 and Asymmetric
- 3 Homology Arms recombineering
- 4
- 5 Sudha Shukal[#], Xiao Hui Lim[#], Congqiang Zhang, Xixian Chen^{*}
- 6 Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology
 7 and Research (A*STAR), Singapore.
- 8 # Both authors contribute equally.
- 9 * To whom correspondence should be addressed.
- 10 Chen Xixian: SIFBI, A*STAR, Proteos level 4, Singapore 138673;
- 11 Email: <u>xixian_chen@sifbi.a-star.edu.sg</u> or <u>xixian.chen@outlook.sg</u>
- 12

13 Additional file 1

- 14 Table S1. Knockout efficiencies of different gRNA designs to delete adhE from BL21
- 15 genome and its in silico prediction [15]. Synthego: https://www.synthego.com/

	Knockout		chopchop	on-target score	Ranking
adhE	efficiencies	# Colonies	(based on K12) (sythego)		(sythego)
gRNA1	1/15	729±158		0.417	94
gRNA2	10/16	3503±28	64.65	0.646	no rank
gRNA3	14/15	4666±6	37.71	0.377	no rank
gRNA4	12/16	923±112	57.03	0.57	79
gRNA5	0/16	944±211	53.35	0.534	78

Table S2. Effect of tuning the recombinase expression levels on knockout efficiencies.
The gel images for the colony PCR results were shown. C: the PCR results using nonedited cells as template. Both the deleted and non-deleted (WT) sizes are indicated as
arrows. Refer to table 2 for the plasmid description.

adhE-	Cas	Inducers	Colony forming	Knockout
gRNA	Version		units	efficiencies
	pCas-V5	20mM Arabinose	59	0%
gRNA1	pCas-V6	20mM Arabinose	99	0%
	pCas-V2	0.1mM IPTG	0	-
	pCas-V2	No inducers	0	-
	pCas-V5	20mM Arabinose	4320	100%
gRNA3	pCas-V6	20mM Arabinose	5720	100%
	pCas-V2	0.1mM IPTG	180	100%
	pCas-V2	No inducers	162	100%

- 26 Table S3. Media and mean knockout efficiencies for the gene knockouts across the BL21
- 27 genome.

	Gene	gRNA targeting	Proximate gene	Median KO	Mean KO
	direction	strand	end	efficiency	efficiency
1	Forward	-	3'	0.625	0.62
2	Forward	-	5'	0.75	0.71
3	Forward	+	3'	0.5	0.46
4	Forward	+	5'	0.25	0.38
5	Reverse	-	3'	0.75	0.67
6	Reverse	-	5'	0.25	0.45
7	Reverse	+	3'	0.16	0.32
8	Reverse	+	5'	0.75	0.6

34 Table S4. Comparisons of genome editing methods tested in the *E. coli* BL21 strains by CRISPR-Cas system. pCas / pTargetF system,

35 which our system is based on, is also included.

	pCas / pTargetF system	pEcCas / pEcgRNA system	pCasRed / pCRISPR-SacB- gRNA system	CRASH
Reference	Jiang et al. 2015	Li et al. 2021	Zerbini et al. 2017	Our work
Tested host	Mg1655 Tatumella citrea	BL21(DE3), BL21 Star [™] (DE3), MG1655, DH5α, CGMCC3705, Nissle1917, ATCC9637, DSM13699	BL21 ΔompA (DE3)	BL21 (DE3), MG1655
pCas or equivalent plasmid size	12545 bp	14605 bp	N.A.	11066 bp
Deletion length	N.A.	0.1-5.6 kb	0.03 - 2.3 kb	0.2-10 kb
Max length tested in BL21	N.A.	2.5 kb	2.3 kb	3.4 kb
Positive rate for the max length deleted	N.A.	1/2 (50%)	5/23 (14%)	2/2 (100%)

Duration (cloning, transformation	7.5 days	5.5 days	N.A.	6 days
and curing)				
Homology arm				
DNA fragment	Yes*	Yes	Yes	Yes
Amount transformed	400 ng	400 ng	1-10 µg	100 ng
Preparation time	≥ 4 h**	≥ 4 h**	> 1 day***	1.5-2 h
Generating the homology arm	overlapping PCR	overlapping PCR	Anneal 70-120nt synthetic	one-step
			DNA	PCR
PCR products	Multiple bands****	Multiple bands	N.A.	Single
				band
Number of primers required	4	4	N.A.	2

- 36 *protocol mainly tested with homology arm cloned in pTargetF plasmid.
- 37 ** Time includes PCR and purification
- 38 *** DNA synthesis and shipping takes 1 day
- 39 ****DNA yield may suffer due to non-specific bands and gel purification

Figure S1. Multiplex knockout of *adhE* and *ldhA* genes simultaneously. The plasmid pTarget construct carrying 2 sgRNA expression cassettes is illustrated. Gel images of colony PCR results are shown. The same colonies were tested for both *adhE* and *ldhA* deletion. C: the PCR results using non-edited cells as template. Both the deleted and nondeleted (WT) size are indicated as arrows.

IdhA (7/8, 87.5% recombination efficiency)

adhE (7/8, 87.5% recombination efficiency)

45

46

Figure S2. Illustration of the 6-day CRASH protocol. Please refer to materials and methods for details. The RF cloning method is used 48 49 to mutate the gRNA sequences in the pTarget plasmid. To obtain asymmetric homology arms, the forward primer is a fusion of the 50 upstream homology arm (40-45 bp) and downstream homology arm (15-20 bp). The 15-20 bp downstream homology arm is for 51 annealing during initial cycles of PCR, and its length is chosen based on Tm ~50 °C. The reverse primer is a normal PCR primer about 52 15-20bp with Tm ~50°C. The length of downstream homology arms can be varied based on the reverse primer chosen. For this study, 53 the downstream homology arm length was kept at 500 bp. While preparing the pTarget and homology arms, the pCas plasmid can be 54 transformed into BL21 cells, and electrocompetent cells (ECC) can be prepared. Subsequently, the pTarget and homology arms can 55 be transformed into BL21 cells overexpressing Cas9 protein and plate on LB + Spec + Kan agar. The next day, when colonies are formed, colony PCR is carried out to screen for positive clones. The positive clone is then inoculated into LB+Spec + Kan liquid media, 56 57 and the cell culture is plated on LB+5% sucrose agar plate and incubated at 42 °C overnight to cure both plasmids. The cured colonies 58 are then verified by testing their growth LB, LB+Spec, and LB+Kan (12h). Alternatively, the cell culture is plated on LB+Kan+5% sucrose 59 agar plate and incubated at 42 °C overnight to cure the pTarget plasmid. The cured colonies can then be verified by testing their growth 60 LB+Spec+Kan, and LB+Kan (12h).

D1 and D2: Mutate the gRNA region and sequencing confirm

D4: Colony PCR and inoculate in LB +Spec + Kan

D2: Pick single colony to grow up

D3: Make ECC and Transform the pTarget and homology arm

D1: transform pCas plasmid and plate on LB+Kan agar