

Figure S1. Tspan15 contains a single glycosylation site, **related to Figure 1.** Tspan15 contains three predicted N-linked glycosylation sites. Wild-type FLAG-tagged Tspan15 and predicted glycosylation site mutants were expressed in Expi293 cells. The anti-FLAG western blot shows that there is no change in migration on the gel with the N118Q/N230Q double mutant compared to wild-type Tspan15. The N189Q mutant has a clear change in migration position with a sharpened band due to loss of the glycan.

Figure S2. Alignment of all 24 copies of Tspan15 LEL in the asymmetric unit, related to Figure 1. Each copy of Tspan15 LEL is aligned and displayed in cartoon representation in a different color.

Figure S3. Representative electron density maps, related to Figure 1. (A) Simulated-annealing composite omit 2mFo-Fc map following molecular replacement with partial model (with 13 of 24 chains placed) and rigid body refinement contoured to 1.0 σ . (B) The final refined 2mFo-DFc map and (C) simulated-annealing composite omit 2mFo-Fc map, both contoured to 1.5 σ .

Figure S4. Tspan15 protein amount is increased by co-expression with ADAM10, related to Figure 4. HEK293T cells were co-transfected with FLAG-tagged Tspan15 or Tspan15 166/168/169 mutant and either myc-ADAM10 or empty vector. Western blots show increased abundance of both wild-type and mutant Tspan15 proteins when co-expressed with ADAM10.

```
Tspan15
         TFRNQTIDFLNDNIRRGIENYYDDLDFKNIMDFVQKKFKCCGGEDYRDWSKNQYHDCSA-
                                                                        173
Tspan5
         VFKDWIKDQLYFFINNNIRAYRDDIDLQNLIDFTQEYWQCCGAFGADDWNLNIYFNCTDS
                                                                        171
Tspan10
         -LWGPLODSLEHTLRVAIAHYODDPDLRFLLDOVOLGLRCCGAASYODWOONLYFNCSS-
                                                                        231
        LFQDWVRDRFREFFESNIKSYRDDIDLQNLIDSLQKANQCCGAYGPEDWDLNVYFNCSGA
                                                                        173
Tspan14
        VFKDWIRDQLNLFINNNVKAYRDDIDLQNLIDFAQEYWSCCGARGPNDWNLNIYFNCTDL
Tspan17
                                                                        175
        VFSDKARGKVSEIINNAIVHYRDDLDLQNLIDFGQKKFSCCGGISYKDWSQNMYFNCSED
                                                                        176
Tspan33
         -PGPLACGVPYTCCIRN--TTEVVNTMCGYKTIDKERFSVQDVIYVRGCTNAVIIWFMDN
                                                                        230
Tspan15
Tspan5
         NASRERCGVPFSCCTKD-PAEDVINTQCGYDARQKPEVDQQIVIYTKGCVPQFEKWLQDN
                                                                        232
        -PGVQACSLPASCCIDPREDGASVNDQCGFGVLRLDADAAQRVVYLEGCGPPLRRWLRAN
                                                                        290
Tspan10
Tspan14
         SYSREKCGVPFSCCVPD-PAQKVVNTQCGYDVRIQLKSKWDESIFTKGCIQALESWLPRN
                                                                        232
Tspan17
        NPSRERCGVPFSCCVRD-PAEDVLNTQCGYDVRLKLELEQQGFIHTKGCVGQFEKWLQDN
                                                                        234
        NPSRERCSVPYSCCLPT-PDQAVINTMCGQGMQAFDYLEASKVIYTNGCIDKLVNWIHSN
                                                                        235
Tspan33
```

- N-linked glycosylation site
- Disulfide forming cysteine
- 80% conserved in human TspanC8
- 100% conserved in human TspanC8

Figure S5. Sequence alignment of the LEL domain of human TspanC8 proteins, related to Figures 4 and 5. Alignment of the six human TspanC8 LEL domain sequences. Conserved TspanC8 cysteines are colored in yellow, N-linked glycosylation sites are blue, sites that are 100% conserved in the human TspanC8 proteins are red and sites that are at least 80% conserved (including conservative substitutions) are green.