RESEARCH

Additional file for: 'Weighted Composite Time To Event Endpoints with Recurrent Events: Comparison of Three Analytical Approaches'

Ann-Kathrin Ozga and Geraldine Rauch

Full list of author information is available at the end of the article

1 Stratified weight-based log-rank test

The test-statistic for the approach by Rauch et al. (see Section Approach by Rauch et al. of main text) is given as follows:

$$T^{R} = \frac{\sum_{j=1}^{J} \sum_{k=1}^{K} \left[\left(w_{D}^{R} e_{D,jk}^{I} + w_{M}^{R} e_{M,jk}^{I} \right) - \frac{n_{jk}^{I}}{n_{jk}^{I} + n_{jk}^{C}} \left(w_{D}^{R} e_{D,jk} + w_{M}^{R} e_{M,jk} \right) \right]}{\sqrt{\sum_{j=1}^{J} \sum_{k=1}^{K} \frac{n_{jk}^{I} n_{jk}^{C} \left[\left(n_{jk}^{I} + n_{jk}^{C} \right) \left[\left(w_{D}^{R} \right)^{2} e_{D,jk} + \left(w_{M}^{R} \right)^{2} e_{M,jk} \right] - \left(w_{D}^{R} \right)^{2} e_{D,jk}^{2} - \left(w_{M}^{R} \right)^{2} e_{M,jk}^{2} \right]}}{\left(n_{jk}^{I} + n_{jk}^{C} \right)^{2} \left(n_{jk}^{I} + n_{jk}^{C} - 1 \right)}}$$

- j = 1, ..., J are the strata, i.e. all first events (death D or myocardial infarction M) are in the first stratum, all second events (death D or myocardial infarction M) are in the second stratum, and so on.
- K_j are the number of event times in stratum j, i.e. k = 1, ..., K indicate the number of events within a stratum.
- w_D^R and w_M^R are the weights for death and myocardial infarction, respectively.
- $e_{D,jk}^I$ are the number of death-events in stratum j at event time point t_{jk} within the intervention group I.
- $e_{M,jk}^I$ are the number of myocardial infarction-events in stratum j at event time point t_{jk} within the intervention group I.
- $e_{D,jk}$ are the number of death-events in stratum j at event time point t_{jk} (for intervention I and control C combined).
- $e_{M,jk}$ are the number of myocardial infarction-events in stratum j at event time point t_{jk} (for intervention I and control C combined).
- n_{jk}^{I} are the number of individuals at risk in stratum j at event time t_{jk} for the intervention group.
- n_{jk}^C are the number of individuals at risk in stratum j at event time t_{jk} for the control group.

Ozga and Rauch Page 2 of 5

2 Example Bakal et al.

Table 1 Example data set to illustrate approach by Bakal et al.

ID	time	weight
1	1	0.3
1	2	0.3
1	3	0.3
1	4	1
2	1	0.3
2 2 3	4	1
3	5	0.3
3	6	0.3
3	7	1

• First step:

- Calculate individual score at all (whole dataset) distinct ordered event time points $(s_i(t_k))$ with $i = 1, ...n, K_j$ as above, $s_i(0) = 1$, and $t_0 = 0$:

$$s_i(t_k) = s_i(t_{k-1}) - \left[s_i(t_{k-1}) \cdot w_i^B(t_k) \right]$$

- In example: n=3, K=7

Individual ID = 1:

at
$$t_1 = 1$$
 the score is: $s_1(1) = s_1(t_0) - [s_1(t_0) \cdot w_1^B(1)] = 1 - (1 \cdot 0.3) = 0.7$
at $t_2 = 2$ the score is: $s_1(2) = s_1(t_1) - [s_1(t_1) \cdot w_1^B(2)] = 0.7 - (0.7 \cdot 0.3) = 0.49$
at $t_3 = 3$ the score is: $s_1(3) = s_1(t_2) - [s_1(t_2) \cdot w_1^B(3)] = 0.49 - (0.49 \cdot 0.3) = 0.343$
at $t_4 = 4$ the score is: $s_1(4) = s_1(t_3) - [s_1(t_3) \cdot w_1^B(4)] = 0.343 - (0.343 \cdot 1) = 0$
at $t_5 = 5$ the score is: $s_1(5) = 0$
at $t_6 = 6$ the score is: $s_1(6) = 0$

Individual ID = 2:

at
$$t_1 = 1$$
 the score is: $s_2(1) = s_2(t_0) - [s_2(t_0) \cdot w_2^B(1)] = 1 - (1 \cdot 0.3) = 0.7$
at $t_2 = 2$ the score is: $s_2(2) = s_2(t_1) - [s_2(t_1) \cdot w_2^B(2)] = 0.7 - (0.7 \cdot 0) = 0.7$
at $t_3 = 3$ the score is: $s_2(3) = s_2(t_2) - [s_2(t_2) \cdot w_2^B(3)] = 0.7 - (0.7 \cdot 0) = 0.7$
at $t_4 = 4$ the score is: $s_2(4) = s_2(t_1) - [s_2(t_1) \cdot w_2^B(4)] = 0.7 - (0.7 \cdot 1) = 0$
at $t_5 = 5$ the score is: $s_2(5) = 0$
at $t_6 = 6$ the score is: $s_2(6) = 0$
at $t_7 = 7$ the score is: $s_2(7) = 0$

Ozga and Rauch Page 3 of 5

Individual ID = 3:

at
$$t_1 = 1$$
 the score is: $s_1(1) = s_3(t_0) - [s_3(t_0) \cdot w_3^B(1)] = 1 - (1 \cdot 0) = 1$
at $t_2 = 2$ the score is: $s_1(2) = s_3(t_1) - [s_3(t_1) \cdot w_3^B(2)] = 1 - (1 \cdot 0) = 1$
at $t_3 = 3$ the score is: $s_1(3) = s_3(t_2) - [s_3(t_2) \cdot w_3^B(3)] = 1 - (1 \cdot 0) = 1$
at $t_4 = 4$ the score is: $s_1(4) = s_3(t_3) - [s_3(t_3) \cdot w_3^B(4)] = 1 - (1 \cdot 0) = 1$
at $t_5 = 5$ the score is: $s_1(5) = s_3(t_4) - [s_3(t_4) \cdot w_3^B(5)] = 1 - (1 \cdot 0.3) = 0.7$
at $t_6 = 6$ the score is: $s_1(6) = s_3(t_5) - [s_3(t_5) \cdot w_3^B(6)] = 0.7 - (0.7 \cdot 0.3) = 0.49$
at $t_7 = 7$ the score is: $s_1(7) = s_3(t_6) - [s_3(t_6) \cdot w_3^B(7)] = 0.49 - (0.49 \cdot 1) = 0$

• Second step:

Calculate weighted survival probabilities

$$KM^{B}(t_{k}) = KM^{B}(t_{k-1}) \cdot \left(1 - \frac{\sum_{i=1}^{n} s_{i}(t_{k-1}) - \sum_{i=1}^{n} s_{i}(t_{k})}{\sum_{i=1}^{n} s_{i}(t_{k-1})}\right)$$

With
$$KM^B(t_0) = 1$$

- In example:

$$KM^{B}(t_{1}) = 1 \cdot \left(1 - \frac{3-2.4}{3}\right) = 0.8$$

$$KM^{B}(t_{2}) = 0.8 \cdot \left(1 - \frac{2.4-2.19}{2.4}\right) = 0.73$$

$$KM^{B}(t_{3}) = 0.73 \cdot \left(1 - \frac{2.19-2.043}{2.19}\right) = 0.681$$

$$KM^{B}(t_{4}) = 0.681 \cdot \left(1 - \frac{2.043-1}{2.043}\right) = 0.33$$

$$KM^{B}(t_{5}) = 0.33 \cdot \left(1 - \frac{1-0.7}{1}\right) = 0.23$$

$$KM^{B}(t_{6}) = 0.23 \cdot \left(1 - \frac{0.7-0.49}{0.7}\right) = 0.209$$

$$KM^{B}(t_{7}) = 0.209 \cdot \left(1 - \frac{0.49}{0.49}\right) = 0$$

Ozga and Rauch Page 4 of 5

3 Weight calculation for the weights in the Wei-Lachin approach

To gain the same weight relation in the Wei-Lachin approach as for the weights in the weighted hazards approach or Bakal's approach the following calculation have to be conducted under the assumption that $w_D^B=1$ and the relation is denoted by $\frac{w_M^B}{w_D^B}$ with D as the fatal event and M as the non-fatal event:

For weighted hazards weights or Bakal's weights:

$$\frac{w_M^B}{w_D^B} = x \to w_M^B = x$$

For Wei-Lachin weights:

$$\frac{w_M^L}{w_D^L} = x$$
 and $w_M^L + w_D^L = 1$

$$w_M^L = x w_D^L$$
 and $w_M^L = 1 - w_D^L$

$$xw_D^L \stackrel{!}{=} 1 - w_D^L \rightarrow w_D^L = \frac{1}{1+x}$$
 and $w_M^L = 1 - \frac{1}{1+x}$