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1 Materials and General Methods 
 

 

1.1 Reagents and Solvents 

 

H-Rink Amide-ChemMatrix resin was obtained from PCAS BioMatrix Inc. (St-Jean-sur-

Richelieu, Quebec, Canada). 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridini-

um-3-oxid-hexafluorophosphate (HATU), 4-pentynoic acid, 5-azidopentanoic acid, Fmoc--Ala-

OH, Fmoc-6-aminohexanoic acid, and Fmoc-L-Lys(N3) were purchased from Chem-Impex 

International (Wood Dale, IL). PyAOP was purchased from P3 BioSystems (Louisville, KY). 

Fmoc-protected amino acids (Fmoc-Ala-OHxH2O, Fmoc-Arg(Pbf)-OH; Fmoc-Asn(Trt)-OH; 

Fmoc-Asp-(OtBu)-OH; Fmoc-Cys(Trt)-OH; Fmoc-Gln(Trt)-OH; Fmoc-Glu(OtBu)-OH; Fmoc-

Gly-OH; Fmoc-His(Trt)-OH; Fmoc-Ile-OH; Fmoc-Leu-OH; Fmoc-Lys(Boc)-OH; Fmoc-Met-

OH; Fmoc-Phe-OH; Fmoc-Pro-OH; Fmoc-Ser(But)-OH; Fmoc-Thr(tBu)-OH; Fmoc-Trp(Boc)-

OH; Fmoc-Tyr(tBu)-OH; Fmoc-Val-OH), were purchased from the Novabiochem-line from 

Sigma Millipore. Peptide synthesis-grade N,N-dimethylformamide (DMF), CH2Cl2, diethyl ether, 

and HPLC-grade acetonitrile were obtained from VWR International (Radnor, PA). All other 

reagents were purchased from Sigma-Aldrich (St. Louis, MO). Milli-Q water was used 

exclusively.  

 

1.2 Liquid-chromatography mass-spectrometry 

 

LCMS analyses were performed on either an Agilent 6520 Accurate-Mass Q-TOF LCMS 

(abbreviated as 6520) or an Agilent 6550 iFunnel Q-TOF LCMS system (abbreviated as 6550) 

coupled to an Agilent 1260 Infinity HPLC system. Mobile phases were: 0.1% formic acid in water 

(solvent A) and 0.1% formic acid in acetonitrile (solvent B). The following LCMS methods were 

used for characterization:  

 Method A: 1-61% B over 9 min, Zorbax C3 column (6520)  

LC: Zorbax 300SB-C3 column: 2.1 × 150 mm, 5 μm, column temperature: 40 °C, gradient: 0-2 

min 1% B, 2-11 min 1-61% B, 11-12 min 61-95% B, 12-15 min 95% B; flow rate: 0.8 mL/min.  

MS: Positive electrospray ionization (ESI) extended dynamic range mode in mass range 300–3000 

m/z. MS is on from 4 to 11 min. 
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 Method B: 1-61% B over 10 min, Phenomenex Jupiter C4 column (6550) 

LC: Phenomenex Jupiter C4 column: 1.0 × 150 mm, 5 μm, column temperature: 40 °C, gradient: 

0-2 min 1% B, 2-12 min 1-61% B, 12-16 min 61-90% B; 16-20 min 90% B; flow rate: 0.1 mL/min.  

MS: Positive electrospray ionization (ESI) extended dynamic range mode in mass range 100–1700 

m/z. MS is on from 4 to 12 min. 

 Method C: 1-61% B over 10 min, Agilent EclipsePlus C18 column (6550) 

LC: Agilent EclipsePlus C18 RRHD column: 2.1 × 50 mm, 1.8 μm, column temperature: 40 °C, 

gradient: 0-2 min 1% B, 2-12 min, 1-61% B, 12-13 min, 61% B, 13-16 min, 1% B; flow rate: 0.1 

mL/min.  

MS: Positive electrospray ionization (ESI) extended dynamic range mode in mass range 300–3000 

m/z. MS is on from 4 to 12 min. This method was used exclusively for characterization of the 

modular library. 

All data were processed using Agilent MassHunter software package. Y-axis in all 

chromatograms shown represents total ion current (TIC) unless noted.  

 

1.3 General method for peptide preparation 

 

Fast-flow Peptide Synthesis: Peptides were synthesized on a 0.1 mmol scale using an 

automated fast-flow peptide synthesizer. A 100 mg portion of ChemMatrix Rink Amide HYR resin 

was loaded into a reactor maintained at 90 ºC. All reagents were flowed at 40 mL/min with HPLC 

pumps through a stainless-steel loop maintained at 90 ºC before introduction into the reactor. For 

each coupling, 10 mL of a solution containing 0.4 M amino acid and 0.38 M HATU in DMF were 

mixed with 600 μL diisopropylethylamine and delivered to the reactor. Fmoc removal was 

accomplished using 10.4 mL of 20% (v/v) piperidine. Between each step, DMF (15 mL) was used 

to wash out the reactor. For peptides in the modular library, special coupling conditions were used 

for arginine, in which 10 mL of a solution containing 0.4 M Fmoc-L-Arg(Pbf)-OH and 0.38 M 

PyAOP in DMF were mixed with 600 μL diisopropylethylamine and delivered to the reactor. For 

Mach peptides, additional special coupling conditions were used according to the optimized 

peptide synthesis protocol.1 To couple unnatural amino acids or to cap the peptide (e.g. with 4-

pentynoic acid), the resin was incubated for 30 min at room temperature with amino acid (1 mmol) 

dissolved in 2.5 mL 0.4 M HATU in DMF with 500 μL diisopropylethylamine. After completion 

of the synthesis, the resin was washed 3 times with dichloromethane and dried under vacuum.  
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Peptide Cleavage and Deprotection: Each peptide was subjected to simultaneous global side-

chain deprotection and cleavage from resin by treatment with 5 mL of 94% trifluoroacetic acid 

(TFA), 2.5% 1,2-ethanedithiol (EDT), 2.5% water, and 1% triisopropylsilane (TIPS) (v/v) for 7 

min at 60 °C or at room temperature for 2 to 4 hours. For arginine-rich sequences, the resin was 

treated with a cleavage cocktail consisting of 82.5% TFA, 5% phenol, 5% thioanisole, 5% water, 

and 2.5% EDT (v/v) for 14 hours at room temperature. For peptides containing azide, EDT was 

substituted for thioanisole. The cleavage cocktail was first concentrated by bubbling N2 through 

the mixture, and cleaved peptide was precipitated and triturated with 40 mL of cold ether (chilled 

in dry ice). The crude product was pelleted by centrifugation for three minutes at 4,000 rpm and 

the ether was decanted. This wash step was repeated two more times. After the third wash, the 

pellet was dissolved in 50% water and 50% acetonitrile containing 0.1% TFA, filtered through a 

fritted syringe to remove the resin and lyophilized. 

Peptide Purification: The peptides were dissolved in water and acetonitrile containing 0.1% 

TFA, filtered through a 0.22 μm nylon filter and purified by mass-directed semi-preparative 

reversed-phase HPLC. Solvent A was water with 0.1% TFA additive and Solvent B was 

acetonitrile with 0.1% TFA additive. A linear gradient that changed at a rate of 0.5% B/min was 

used. Most of the peptides were purified on an Agilent Zorbax SB C3 column: 9.4 x 250 mm, 5 

μm. Extremely hydrophilic peptides, such as the arginine-rich sequences were purified on an 

Agilent Zorbax SB C18 column: 9.4 x 250 mm, 5 μm. Using mass data about each fraction from 

the instrument, only pure fractions were pooled and lyophilized. The purity of the fraction pool 

was confirmed by LC-MS. 

Macrocyclization: Mach12 and Mach13 contained cysteine linked macrocycles. Purified 

unprotected peptide (1 mM) was dissolved in DMF with decafluorobiphenyl (2 mM) and DIEA 

(50 mM) and incubated at room temperature for 3 h. The solution was then diluted 100-fold in 1% 

acetonitrile, 2% TFA in water and purified directly by reverse-phase HPLC.  
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Figure 1. Synthesis route for Mach peptides. Predicted sequences were synthesized by fully 

automated SPPS, cyclized, and conjugated to PMO. Our synthesis technology can reliably 

synthesize long peptides in one-shot. If the predicted peptide contains a Cys macrocycle, cleaved 

and purified peptides were cyclized before being attached to PMO via copper-free click chemistry. 

 

 

1.4 PMO-DBCO Synthesis 

 

PMO IVS-654 (50 mg, 8 µmol) was dissolved in 150 µL DMSO. To the solution was added 

a solution containing 2 equivalents of dibenzocyclooctyne acid (5.3 mg, 16 µmol) activated with 

HBTU (37.5µL of 0.4 M HBTU in DMF, 15 µmol) and DIEA (2.8 µL, 16 µmol) in 40 µL DMF 

(Final reaction volume = 0.23 mL). The reaction proceeded for 25 min before being quenched with 

1 mL of water and 2 mL of ammonium hydroxide. The ammonium hydroxide hydrolyzed any ester 

formed during the course of the reaction. After 1 hour, the solution was diluted to 40 mL in 

water/acetonitrile and purified using reverse-phase HPLC (Agilent Zorbax SB C3 column: 21.2 x 

100 mm, 5 µm) and a linear gradient from 2 to 60% B (solvent A: water; solvent B: acetonitrile) 

over 58 min (1% B / min). Using mass data about each fraction from the instrument, only pure 

fractions were pooled and lyophilized. The purity of the fraction pool was confirmed by LC-MS. 

2 Analysis and benchmarking of CNN model 

 

2.1 Benchmarking against regression models 
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We benchmarked the fingerprint (FP) representation and convolutional neural network (CNN) 

model against other model architectures and one-hot representation-based models in their ability 

to predict activities of both library and Mach sequences (Figs. S2, S3; Tables S2, S3). 8 scikit-

learn model architectures (ridge, lasso, stochastic gradient descent, gaussian process, random 

forest, support vector and gradient boosting regression) and extreme gradient boosting regression 

were evaluated.2,3  

 

Relevant hyperparameters for every model were optimized with Bayesian search using scikit-

optimize (Table S1).4 The hyperparameter optimization was done by 3-fold cross-validation, with 

the objective function as minimization of average root mean-squared error (RMSE) on the 

randomly held out validation dataset. The metrics have been reported on the test dataset. The train-

valid-test dataset split was 70:10:20.  

 

Table 1. Hyperparameters and optimized hyperparameters for regression and classification 

model architectures, fingerprint and one-hot representations have been noted. The 

hyperparameters follow a notation – parameter, datatype, values. Datatypes are categorical, integer 

and real. For categorical datatype, the list of hyperparameters is noted, and for integer and real 

datatypes, minimum and maximum values are noted. 

 

Model 

Architecture 
Hyperparameters 

Optimized parameters 

Regression - 

Fingerprint 

Regression - 

One Hot 

Classification - 

Fingerprint 

Classification - 

One Hot 

Ridge 

fit_intercept, Categorical, 
[True, False]; 

normalize, Categorical, [True, 

False]; 

alpha, Real, [1e-3, 1e3]; 

solver, Categorical, ['svd', 

'cholesky', 'lsqr', 'sparse_cg', 

'sag', 'saga'] 

alpha=546.999, 

fit_intercept=True, 

normalize=False, 

solver=sparse_cg 

alpha=41.986, 

fit_intercept=True, 

normalize=False, 

solver=sag 

alpha=118.608, 

fit_intercept=False, 

normalize=True, 

solver=svd 

alpha=96.513, 

fit_intercept=False, 

normalize=True, 

solver=cholesky 

Lasso 

fit_intercept, Categorical, 
[True, False]; 

normalize, Categorical, [True, 

False]; 

alpha, Real, [1e-3, 1e3]; 

precompute, Categorical, [True, 

False]; 

selection, Categorical, 

[‘selection’, ‘random’] 

alpha=0.014, 

fit_intercept=False,

normalize=True,pr

ecompute=False,sel

ection=random 

alpha=0.007, 

fit_intercept=True,

normalize=False, 

precompute=True 

selection=random 

- - 

SGD 

loss, Categorical, 

['squared_loss', 

'epsilon_insensitive', 'huber', 

'squared_epsilon_insensitive'; 

penalty, Categorical; ['l1', 'l2', 

'elasticnet']; 

alpha, Real, [1e-3, 1e3]; 

fit_intercept, Categorical, 
[True, False]; 

l1_ratio, Real, [1e-3, 1]; 

learning_rate, Categorical, 

['invscaling', 'constant', 

'optimal', 'adaptive']; 

epsilon, Real, [1e-3, 1e3]; 

eta0, Real, [1e-2, 10]; 

power_t, Real, [1e-2, 10]; 

alpha=0.002, 

average=True, 

epsilon=0.004, 

eta0=1.738, 

fit_intercept=True, 

l1_ratio=0.003, 

learning_rate=invs

caling, loss=huber, 

penalty=l2, 

power_t=0.544 

alpha=0.002, 

average=True, 

epsilon=0.004, 

eta0=1.738, 

fit_intercept=True, 

l1_ratio=0.003, 

learning_rate=invs

caling, loss=huber, 

penalty=l2, 

power_t=0.544 

alpha=0.001, 

average=True, 

epsilon=0.077, 

eta0=0.026, 

fit_intercept=False, 

l1_ratio=0.005, 

learning_rate=opti

mal, loss=log, 

penalty=l2, 

power_t=4.976 

alpha=0.023, 

average=False, 

epsilon=0.009, 

eta0=0.01, 

fit_intercept=True, 

l1_ratio=0.1, 

learning_rate=adap

tive, loss=hinge, 

penalty=l2, 

power_t=0.01 
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average, Categorical, [True, 

False] 

Gaussian 

Process 

kernel, Categorical, [Matern, 

RBF, DotProduct]; 

alpha, Real, [1e-11, 1e-6]; 

n_restarts_optimizer, Integer, 

[0, 10] 

alpha=1.57e-7, 

kernel=Matern, 

n_restarts_optimize

rs=8 

alpha=7.320e-9, 

kernel=Matern, 

n_restarts_optimize

r=10 

kernel=Matern, 

n_restarts_optimize

rs=5 

kernel=Matern, 

n_restarts_optimize

rs=5 

Random Forest 

criterion, Categorical, ['mse', 

'mae']-Regression; 

criterion, Categorical, ['mse', 

'entropy]-Classification 

n_estimators, Integer, [10, 

1000]; 

max_depth, Integer, [1, 10] 

criterion=’mse’, 

max_depth=7, 

n_estimators=626 

criterion=’mse’, 

max_depth=6, 

n_estimators=127 

criterion=entropy, 

max_depth=8, 

n_estimators=908 

criterion=entropy, 

max_depth=10, 

n_estimators=630 

XGBoost 

gamma, Real, [1e-6, 10]; 

eta,Real, [1e-3, 1]; 

max_depth, Integer, [1, 10]; 

tree_method, Categorical, 

['auto', 'exact', 'approx', 'hist']; 

alpha, Real, [1e-3, 1e3]; 

lambda, Real, [1e-3, 1e3]; 

sketch_eps,Real, [1e-3, 1] 

alpha=0.035, 

eta=0.864,     

gamma=2.285, 

reg_lambda=3.945,             

sketch_eps=0.003, 

tree_method='exact

' 

eta=0.864, 

gamma=2.285,  

reg_alpha=0.035, 

reg_lambda=3.945,

sketch_eps=0.003,t

ree_method=’exact' 

alpha=2.407, 

eta=0.035, 

lambda=0.004, 

max_depth=5, 

tree_method=exact 

alpha=0.835, 

eta=0.155, 

lambda=15.360, 

max_depth=4, 

tree_method=auto 

Support Vector 

kernel, Categorical, ['linear', 

'poly', 'rbf', 'sigmoid']; 

degree, Integer, [1, 6]; 

gamma, Real, [1e-6, 10]; 

C, Real, [1e-2, 10], 

epsilon,Real, [1e-3, 10]; 

shrinking, Categorical, [True, 

False] 

C=2.671, 

epsilon=0.009, 

gamma=0.002, 

kernel='linear' 

C=0.024, 

epsilon=0.220, 

gamma=4.966e-5, 

kernel='linear' 

C=0.030, 

degree=5, 

gamma=0.011, 

kernel=linear, 

shrinking=False 

C=0.288, 

degree=5, 

gamma=0.076, 

    kernel='poly', 

probability=True, 

shrinking=False 

Gradient 

Boosting 

loss, Categorical, ['ls', 'lad', 

'huber', 'quantile']; 

learning_rate, Real, [1e-2, 1]; 

n_estimators, Integer, [10, 

1000]; 

criterion, Categorical, 

['friedman_mse', 'mse', 'mae']; 

max_depth, Integer, [1, 10] 

criterion='mse', 

learning_rate=0.01

8, 

                          

loss='huber', 

max_depth=6, 

n_estimators=250 

criterion='mse', 

learning_rate=0.01

8,                        

loss='huber', 

max_depth=6, 

n_estimators=250 

criterion=mse, 

learning_rate=0.01

8, loss=deviance, 

max_depth=6, 

n_estimators=250 

criterion=mse, 

learning_rate=0.01

8, loss=deviance, 

max_depth=6, 

n_estimators=250 

Nearest 

Neighbors 

weights, Categorical, 

[‘uniform’, ‘distance’]; 

leaf_size, Integer, [10, 100]; 

n_neighbors, Integer, [2, 20]; 

algorithm, Categorical, ['auto', 

'ball_tree', 'kd_tree', 'brute']; 

p, Integer, [1, 5] 

algorithm=ball_tre

e, leaf_size=16, 

n_neighbors=7, 

p=5, 

weights=uniform 

algorithm=brute, 

leaf_size=56, 

n_neighbors=4, 

p=3, 

weights=uniform 

algorithm=auto, 

leaf_size=57, 

n_neighbors=4, 

p=4, 

weights=uniform 

algorithm=auto, 

leaf_size=57, 

n_neighbors=4, 

p=4, 

weights=uniform 
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We evaluated the CNN-fingerprint (CNN-FP) models against individual models and model 

ensembles trained with FP and one-hot encoding representations.  

 

RMSE and other metrics between the predicted and experimental activity values were used to 

compare individual models. For the validation dataset, random forest-FP (RF-FP) has lowest 

RMSE, but RF models cannot extrapolate outside the range of the training data, so they are limited 

toward the task of designing more active peptides. For the activity values of the Mach sequences, 

other models such as CNN one-hot had better RMSE, R2, Pearson and Spearman’s rank correlation 

coefficients. Based on the RMSE values, the best performing model architecture was one-hot based 

CNN. In practice, however, we observed that this model was not able to extrapolate activities 

beyond the training data, whereas the CNN-FP model could. We determined that RMSE and other 

metrics for the CNN-FP model are significantly affected by outlying predicted activity values. 

Upon removing the outlier (Mach12 with 140 predicted activity by CNN-FP model), we observed 

that the CNN-FP model outperforms all other models in terms of RMSE and R2. 

 

Unlike CNN-FP, none of the simpler models predict the activity of Mach peptides to be above the 

maximum of training dataset, as apparent in the parity plot and the RMSE and R2 metrics for the 

Mach dataset without the outlier (Table S2). This experiment shows that simpler models are 

limited by the range of the training data, and are unable to extrapolate in the co-domain space. 

While other models may be able to produce sequences with high (>20-fold) experimental activity, 

the ability to extrapolate predicted activities is critical for the informed selection of predicted 

sequences to validate. Extrapolation is a necessary model feature for our goal of designing 

sequences with activities higher than those in the training set.  

 

To mitigate the role of outliers that impact performance, we evaluated the use of model 

ensembling. Ensembled CNN one-hot model performed the best amongst all models on the 

validation dataset, while ensembled CNN-FP outperformed model-feature combinations on RMSE 

for Mach dataset, with and without the outlier (Table S3). Although the choice of sequences for 

experimental validation was not based on predictions from ensemble models, we note that 

ensemble models can robustly extrapolate predictions outside the training data for future studies. 

 

From our analysis, we observe that simpler models can complement the CNN predictions in 

decision-making, such as ranking of predicted peptides, as noted from the high Pearson’s and 

Spearman’s correlation coefficients. The CNN model is necessary to be able to predict peptides 

with higher activity than the training set. 
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Figure 2. Parity plots for CNN and other models trained using 2048-bit fingerprints are shown. 

Random forest regressor performs best on the validation set, however is unable to extrapolate for 

Mach peptides. The second best, and the optimal model is support vector regression. The held-out 

data for validation of the model is shown in grey, and predictions for Mach peptides are shown in 

blue. Key evaluation metrics have been noted in the data inset. Only the CNN model shows a range 

of predicted values above the training data, as do the Mach peptides. 
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Figure 3. Parity plots for CNN and other models trained using one-hot encodings are shown. The 

held-out data for validation of the model is shown in grey, and predictions for Mach peptides are 

shown in blue. Key evaluation metrics have been noted in the data inset. Only the CNN model 

shows a range of predicted values above the training data, as do the Mach peptides. 

 

 

  

GaussianProcess
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Table 2. The CNN model with 2048-bit fingerprint features (CNN-FP) was tested along with other 

regression models, trained on fingerprints and one-hot encodings. The best values for each metric 

have been highlighted in red. The RF model slightly outperforms the original CNN in the 

validation dataset metrics; however, it is known to be limited in predicting within the range of 

training data only. As regards testing against the Mach dataset, CNN-Onehot model outperforms 

the CNN-FP model. However, upon removing the outlier sequence (CNN-FP predicted activity: 

140), CNN-FP turns out to be the most optimal model. r and 𝛒 refers to Pearson’s and Spearman’s 

correlation, respectively. 
 

Model - Feature 
Validation Mach Mach, without outlier 

uRMSE RMSE % Error R2 r 𝛒 RMSE R2 r 𝛒 RMSE R2 r 𝛒 

CNN-FP 0.41 2.03 10.55 0.83 0.92 0.81 35.53 -5.90 0.29 0.37 20.16 -1.11 0.22 0.35 

Ridge-FP 0.51 2.51 13.04 0.75 0.87 0.78 21.23 -1.46 0.46 0.41 21.56 -1.41 0.45 0.39 

Lasso-FP 0.55 2.74 14.24 0.70 0.84 0.78 22.23 -1.70 0.46 0.41 22.34 -1.59 0.44 0.38 

SGD-FP 0.61 3.03 15.76 0.63 0.80 0.81 23.28 -1.96 0.42 0.35 23.33 -1.83 0.40 0.32 

GP-FP 0.44 2.17 11.32 0.81 0.90 0.82 22.93 -1.88 0.55 0.40 22.86 -1.71 0.53 0.38 

RF-FP 0.41 2.02 10.51 0.84 0.92 0.87 23.83 -2.10 0.49 0.46 23.93 -1.97 0.50 0.45 

XGBoost-FP 0.47 2.34 12.19 0.78 0.88 0.82 23.68 -2.07 0.49 0.47 23.81 -1.94 0.49 0.45 

SVR-FP 0.43 2.13 11.06 0.82 0.91 0.85 24.65 -2.32 0.57 0.43 24.32 -2.07 0.56 0.44 

GB-FP 0.48 2.37 12.33 0.77 0.88 0.86 23.19 -1.94 0.44 0.33 23.11 -1.77 0.41 0.34 

kNN-FP 0.46 2.27 11.81 0.79 0.89 0.87 21.42 -1.51 0.35 0.29 21.25 -1.34 0.34 0.28 

CNN-Onehot 0.46 2.28 11.90 0.80 0.89 0.79 20.88 -1.38 0.47 0.38 21.02 -1.29 0.45 0.37 

Ridge-Onehot 0.51 2.51 13.08 0.75 0.87 0.79 22.70 -1.82 0.48 0.42 22.86 -1.71 0.46 0.41 

Lasso-Onehot 0.53 2.62 13.64 0.72 0.85 0.78 23.28 -1.96 0.39 0.36 23.36 -1.83 0.36 0.33 

SGD-Onehot 0.73 3.61 18.78 0.48 0.74 0.80 25.68 -2.61 0.28 0.03 25.33 -2.33 0.27 0.05 

GP-Onehot 0.45 2.21 11.51 0.80 0.90 0.82 24.02 -2.16 0.56 0.39 23.85 -1.95 0.54 0.38 

RF-Onehot 0.42 2.06 10.74 0.83 0.91 0.86 25.89 -2.67 0.31 0.24 25.62 -2.41 0.28 0.22 

XGBoost-Onehot 0.50 2.49 12.96 0.75 0.87 0.78 25.83 -2.65 0.31 0.23 25.80 -2.46 0.27 0.21 

SVR-Onehot 0.55 2.74 14.26 0.70 0.84 0.82 22.12 -1.68 0.51 0.40 22.18 -1.55 0.49 0.38 

GB-Onehot 0.50 2.49 12.97 0.75 0.87 0.87 23.54 -2.03 0.45 0.41 23.55 -1.88 0.43 0.39 

kNN-Onehot 0.44 2.16 11.24 0.81 0.90 0.88 27.91 -3.26 -0.10 -0.07 27.46 -2.92 -0.07 -0.05 
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Validation loss is defined as unitless root-mean-squared (uRMSE), since the training and 

validation data are normalized through scaling by the standard deviation of the training data (σ).  

Re-scaled RMSE is defined as root-mean-squared error in fold-over-PMO units (uRMSE × σ). 

%Error is defined through the equation below, where range is the difference between the maximum 

and minimum value in the training data (19.52 and 0.31 respectively) in fold-over-PMO units.  

 

% 𝐸𝑟𝑟𝑜𝑟 =  
𝑢𝑅𝑀𝑆𝐸 × 𝝈

𝑟𝑎𝑛𝑔𝑒
 × 100% 
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Table 3. 5 models with distinct random initialization seeds were trained for all possible model-

feature combinations (models with ‘*’ do not have a random state initialization, in the sklearn 

implementation). In comparison to metrics obtained from individual models (Table S2), we note 

that both CNN models, based on FP and one-hot encoding respectively, stand out for the 

ensemble models. CNN one-hot is the optimal model on the validation dataset. CNN-FP 

outperforms CNN-One-hot and other models, however, on RMSE for Mach dataset and Mach 

dataset without the outlier. r and 𝛒 refers to Pearson’s and Spearman’s correlation, respectively. 
 

Model - Feature 
Validation Mach Mach, without outlier 

uRMSE RMSE % Error R2 r 𝛒 RMSE R2 r 𝛒 RMSE R2 r 𝛒 

CNN-FP 0.41 2.03 10.58 0.83 0.91 0.80 19.89 -1.42 0.33 0.34 17.49 -0.59 0.30 0.32 

Ridge-FP 0.51 2.51 13.04 0.75 0.87 0.78 21.23 -1.46 0.46 0.41 21.56 -1.41 0.45 0.39 

Lasso-FP 0.55 2.74 14.25 0.70 0.84 0.78 22.23 -1.70 0.46 0.41 22.34 -1.59 0.44 0.38 

SGD-FP 0.61 3.01 15.64 0.64 0.80 0.79 23.36 -1.98 0.47 0.40 23.34 -1.83 0.44 0.38 

GP-FP 0.44 2.17 11.32 0.81 0.90 0.82 22.94 -1.88 0.55 0.40 22.86 -1.71 0.53 0.38 

RF-FP 0.41 2.01 10.48 0.84 0.92 0.87 23.97 -2.14 0.47 0.48 24.10 -2.02 0.49 0.47 

XGBoost-FP 0.47 2.34 12.19 0.78 0.88 0.82 23.68 -2.07 0.49 0.47 23.81 -1.94 0.49 0.45 

SVR-FP* 0.43 2.13 11.06 0.82 0.91 0.85 24.65 -2.32 0.57 0.43 24.32 -2.07 0.56 0.44 

GB-FP 0.48 2.38 12.37 0.77 0.88 0.86 23.12 -1.92 0.42 0.34 23.05 -1.76 0.39 0.34 

kNN-FP* 0.46 2.27 11.81 0.79 0.89 0.87 21.42 -1.51 0.35 0.29 21.25 -1.34 0.34 0.28 

CNN-Onehot 0.34 1.66 8.64 0.89 0.94 0.85 20.29 -1.25 0.48 0.46 20.48 -1.18 0.46 0.45 

Ridge-Onehot 0.61 3.03 15.77 0.63 0.82 0.83 25.13 -2.45 0.39 0.20 24.84 -2.20 0.36 0.20 

Lasso-Onehot 0.57 2.82 14.66 0.68 0.83 0.81 23.21 -1.95 0.31 0.31 23.10 -1.77 0.27 0.28 

SGD-Onehot 0.73 3.60 18.75 0.48 0.74 0.80 25.52 -2.56 0.29 0.01 25.17 -2.29 0.27 0.02 

GP-Onehot 0.45 2.21 11.51 0.80 0.90 0.82 23.87 -2.12 0.55 0.39 23.72 -1.92 0.54 0.38 

RF-Onehot 0.41 2.01 10.48 0.84 0.92 0.87 25.75 -2.63 0.33 0.29 25.50 -2.38 0.29 0.26 

XGBoost-Onehot 0.50 2.49 12.96 0.75 0.87 0.78 25.83 -2.65 0.31 0.23 25.80 -2.46 0.27 0.21 

SVR-Onehot* 0.55 2.74 14.26 0.70 0.84 0.82 22.12 -1.68 0.51 0.40 22.18 -1.55 0.49 0.38 

GB-Onehot 0.50 2.48 12.91 0.75 0.87 0.87 23.76 -2.09 0.40 0.42 23.77 -1.93 0.37 0.40 

kNN-Onehot* 0.44 2.16 11.24 0.81 0.90 0.88 27.91 -3.26 -0.10 -0.07 27.46 -2.92 -0.07 -0.05 
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2.2 Benchmarking against classification models 

 

We benchmarked our regression models with corresponding classification models for both 

fingerprint and one-hot encoding representations (Tables S4, S5). The classification model 

architectures are similar to those reported in the literature for CPP prediction.5–9 Similar to our 

earlier work, the classes were obtained by setting fold over PMO activity threshold of 3.0, above 

which the sequences were classified as active, otherwise inactive.10 The hyperparameter 

optimization and train-valid-test split was same as the benchmarking of regression models (SI 

Section 2.1, Table S1). For the CNN models, the architecture was kept largely the same as 

regression models, with the only modifications being the activation function of last layer as 

sigmoid and loss function as binary crossentropy, which are conventional modifications for 

classification model architecture. In addition to conventional metrics for evaluating classification 

models, we used Spearman’s coefficient to estimate the rank correlation between the predicted 

probabilities from the classification models and experimental MFI values of the sequences. 

 

The best metrics for the performance of the classification models against the held-out validation 

and Mach datasets varied across different model architectures. The CNN, support vector, random 

forest and stochastic gradient descent models were the optimal models across both representations. 

This benchmarking experiment further confirms that CNN model architecture is optimal at both 

classification and regression tasks.   

 

Table 4. The CNN model with 2048-bit fingerprint features was benchmarked against 

classification models. Spearman correlation coefficient is calculated using predicted probabilities 

from the classification model and the experimental MFI values. The best values for each metric 

have been highlighted in red.  
 

  Validation Dataset Metrics Mach Dataset Metrics 

  
Accu-
racy 

Preci-
sion 

F1 Recall 
ROC-
AUC 

Spear-
man 

Accu-
racy 

Preci-
sion 

F1 Recall 
ROC-
AUC 

Spear-
man 

CNN-FP 0.85 0.81 0.85 0.92 0.92 0.81 0.46 0.92 0.66 0.82 0.84 1.00 

Gaussian 
Process 

0.84 0.69 0.77 0.87 0.85 0.82 0.54 0.50 0.67 1.00 0.57 0.01 

Gradient 
Boosting 

0.78 0.67 0.70 0.73 0.77 0.81 0.77 0.83 0.87 0.91 0.45 0.21 

Nearest 
Neighbors 

0.88 0.76 0.82 0.90 0.88 0.79 0.69 0.75 0.82 0.90 0.45 0.28 

Random 
Forest 

0.87 0.82 0.82 0.83 0.86 0.85 0.77 0.83 0.87 0.91 0.45 0.02 

Ridge 0.90 0.86 0.87 0.88 0.89 0.75 0.85 0.92 0.92 0.92 0.46 0.39 

SGD 0.89 0.86 0.86 0.86 0.88 0.72 0.77 0.83 0.87 0.91 0.45 0.00 

Support 
Vector 

0.91 0.88 0.88 0.88 0.90 0.75 0.77 0.83 0.87 0.91 0.45 0.00 

XGBoost 0.84 0.73 0.77 0.82 0.83 0.84 0.46 0.50 0.63 0.86 0.43 0.22 
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 Table 5. The CNN model with one-hot representation was benchmarked against classification 

models. Spearman correlation coefficient is calculated using predicted probabilities from the 

classification model and the experimental MFI values. ROC-AUC for Mach dataset could not be 

calculated for nearest neighbors and support vector model architectures as all predicted 

probabilities were less than 0.50. The best values for each metric have been highlighted in red. 
 

  Validation Dataset Metrics Mach Dataset Metrics 

  Accuracy Precision F1 Recall 
ROC-

AUC 

Spear-

man 
Accuracy Precision F1 Recall 

ROC-

AUC 

Spear-

man 

CNN-One-

Hot 
0.88 0.83 0.77 0.87 0.83 0.62 0.45 0.91 0.58 0.82 0.87 0.62 

Gaussian 

Process 
0.87 0.73 0.81 0.90 0.88 0.83 0.77 0.75 0.86 1.00 0.63 0.01 

Gradient 

Boosting 
0.86 0.82 0.82 0.82 0.85 0.83 0.77 0.75 0.86 1.00 0.63 -0.27 

Nearest 

Neighbors 
0.88 0.80 0.84 0.89 0.88 0.82 0.08 0.00 0.00 0.00 N/A 0.27 

Random 

Forest 
0.90 0.82 0.86 0.91 0.90 0.84 0.77 0.75 0.86 1.00 0.63 -0.07 

Ridge 0.87 0.80 0.82 0.85 0.86 0.69 0.77 0.83 0.87 0.91 0.45 0.00 

SGD 0.90 0.88 0.87 0.86 0.89 0.76 0.77 0.83 0.87 0.91 0.45 0.00 

Support 

Vector 
0.84 0.78 0.78 0.79 0.83 0.77 0.08 0.00 0.00 0.00 N/A 0.12 

XGBoost 0.88 0.80 0.83 0.87 0.87 0.83 0.46 0.42 0.59 1.00 0.56 0.09 

 

 

2.3 Benchmarking against CPP webservers 

 

We compared our model to currently available CPP prediction tools by evaluating predictions for 

Mach peptides (accessed on September 3, 2020). (doi: 10.1186/1479-5876-11-74, doi: 

10.1186/s12864-017-4128-1, doi: 10.1021/acs.jproteome.7b00019, doi: 

10.1021/acs.jproteome.8b00148, doi: 10.1093/bib/bby091) Of note, these prediction tools do not 

allow for unnatural residues, therefore when testing the Mach sequences, B (-alanine) and X 

(aminohexanoic acid) were replaced by A (alanine) and L (leucine) respectively. Macrocyclic 

peptides were treated as linear peptides. (Table S6).  

 

All the webservers are generic (do not differentiate between different cargo) binary classifiers and 

provide the classification probability of the sequence being a CPP, and uptake probability. Most 

webservers, with the exception of CellPPD, classified all Mach peptides, including the negative 

control Mach11, as CPP. This result indicates that the webservers are not robust enough to 

differentiate between highly active and poorly active CPPs. The current work of training a 

quantitative model (regressor) over a standard dataset with consistent cargo and experimentation 

is necessary to achieve this distinction. 
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Table 6. Online webservers that were accessible (as of September 3, 2020) were used to 

benchmark the Mach peptides. The row labeled ‘Model’ notes the name of the webserver, and a 

brief summary has been given in the row ‘Summary’ (format: year of publication - model 

architecture - sequence size limitation). The unabbreviated forms of the model architectures are – 

SVM: Support Vector Machine, RF: Random Forest, and ERT: Extremely Randomized Trees. For 

CPPred-FL (*), there is no limitation on sequence size, however the prediction is done for a 

window of 40 residues. Pred denotes prediction, upt denotes uptake and conf denotes confidence. 

 

Model ➝ CellPPD SkipCPP-Pred CPPred-RF MLCPP CPPred-FL Current Work 

Summary ➝ 2013 - SVM - 1-50 2017 - RF - >10 2017 - RF - N/A 2018 - ERT and RF - 5-30 2018 - RF - N/A* 2020 - CNN - N/A 

Sequence ↓ Pred SVM Score Pred  Pred Conf Pred 
Pred 

Conf 
Upt 

Upt 

Conf 
Pred 

Pred 

Conf 
Upt Upt Conf Pred Pred Conf Activity 

Mach 1 
Non-

CPP 
-0.03 CPP 0.93 CPP 0.73 High 0.50 CPP 0.86 High 0.51 CPP 0.69 29.68 

Mach 2 
Non-

CPP 
-0.13 CPP 0.81 CPP 0.67 High 0.52 CPP 0.77 Low 0.31 CPP 0.85 20.82 

Mach 3 CPP 0.43 CPP 0.79 CPP 0.73 High 0.52 CPP 0.85 Low 0.45 CPP 0.69 19.52 

Mach 4 CPP 0.20 CPP 0.81 CPP 0.79 High 0.56 CPP 0.87 Low 0.39 CPP 0.61 18.48 

Mach 5 CPP 0.07 CPP 0.71 CPP 0.69 High 0.59 CPP 0.58 Low 0.41 CPP 0.76 17.47 

Mach 6 
Non-

CPP 
-0.03 CPP 0.94 CPP 0.72 High 0.53 CPP 0.86 Low 0.50 CPP 0.82 27.25 

Mach 7 
Non-

CPP 
-0.09 CPP 0.93 CPP 0.73 High 0.61 CPP 0.86 High 0.51 CPP 0.77 5.30 

Mach 8 
Non-

CPP 
-0.02 CPP 0.91 CPP 0.68 High 0.53 CPP 0.74 High 0.50 CPP 0.78 50.55 

Mach 9 CPP 0.18 CPP 0.90 CPP 0.78 High 0.56 CPP 0.89 High 0.51 CPP 0.85 48.90 

Mach 10 
Non-

CPP 
-0.56 CPP 0.92 CPP 0.61 High 0.52 CPP 0.68 High 0.52 CPP 0.67 63.43 

Mach 11 
Non-

CPP 
-0.40 CPP 0.70 CPP 0.56 High 0.57 CPP 0.56 Low 0.35 CPP 0.77 -11.75 

Mach 12 CPP 0.07 CPP 0.90 CPP 0.73 High 0.55 CPP 0.79 High 0.52 CPP 0.75 140.24 

Mach 13 CPP 0.48 CPP 0.84 CPP 0.78 High 0.55 CPP 0.86 High 0.62 CPP 0.83 44.68 

 

 

2.4 Training CNN model on sequences with lower activity (fold over PMO) 

 

In order to determine which factors of the training set are required for accurate prediction, we 

tested the predictor’s accuracy when trained on datasets with increasing activity. We trained CNN 

models with the same architecture as the optimized model, with activity thresholds increasing by 

0.5, starting at 0.5 until 19 (Fig. S4, Table S7). Trained models are able to extrapolate activities 

beyond the training data only once the training data reaches activity around 8-fold over PMO. The 

performance then continues to increase with subsequently increasing activity thresholds. RMSE 

for held out test dataset consisting of sequences having higher activity than threshold increases at 

first, and then decreases, indicating a barrier for learning. RMSE for Mach sequences continues to 

decrease as the number of training data points and threshold increases, indicating that extrapolation 

for high activity sequences (such as Mach sequences) requires a wide range of training data. 

Including even higher activity sequences in future rounds of model training would potentially lead 

to more accurate predictions in future work. The experiment notes that activity has a sequence 

dependence that the model is able to learn, once meeting an activity threshold in the training data. 
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Figure 4.Threshold for extrapolation. The validation loss (RMSE), in blue, for the held-out 

dataset of sequences having higher activity than the ones used for training the model goes 

through a barrier. RMSE for Mach sequences, in green, is decreasing with increasing threshold. 

The number of training datapoints is indicated in red. 
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Table 7. The evaluation metrics for models trained with sequences filtered by activity threshold 

have been noted. The original CNN model has been highlighted in grey color. 

 
Threshold #Train #Test uRMSE RMSE MachRMSE % Error R2 Pearson 

0.5 13 627 1.34 6.63 29.78 34.53 -0.79 -0.08 

1 186 454 1.48 7.32 29.5 38.08 -1 -0.09 

1.5 280 360 1.62 8.03 28.91 41.82 -1.43 -0.33 

2 328 312 1.68 8.31 28.71 43.28 -1.72 0.03 

2.5 363 277 1.71 8.48 28.69 44.14 -1.98 -0.04 

3 384 256 1.78 8.82 28.53 45.91 -2.38 -0.26 

3.5 407 233 1.83 9.04 28.37 47.08 -2.8 -0.19 

4 425 215 1.83 9.05 27.65 47.11 -3.07 -0.08 

4.5 442 198 1.85 9.17 27.58 47.73 -3.53 0.02 

5 456 184 1.9 9.38 27.51 48.84 -4.16 -0.03 

5.5 471 169 1.84 9.12 26.96 47.48 -4.46 0.11 

6 480 160 1.96 9.71 27.46 50.56 -5.72 0.04 

6.5 491 149 1.92 9.51 27.02 49.49 -6.29 -0.04 

7 497 143 1.95 9.63 26.7 50.15 -7.08 0.1 

7.5 507 133 1.98 9.81 26.81 51.05 -8.61 -0.07 

8 512 128 1.94 9.59 26.82 49.95 -8.99 -0.04 

8.5 518 122 1.88 9.3 26.49 48.43 -9.34 0.11 

9 523 117 1.9 9.38 24.93 48.85 -10.38 0.14 

9.5 529 111 1.88 9.28 25.72 48.32 -11.27 0.12 

10 531 109 1.82 9.01 26.31 46.92 -10.92 0.14 

10.5 543 97 1.81 8.95 25.11 46.6 -13.17 0.22 

11 551 89 1.82 8.98 24.27 46.73 -16 0.17 

11.5 559 81 1.76 8.73 24.58 45.42 -19 0.11 

12 563 77 1.73 8.56 22.57 44.57 -21.05 0.13 

12.5 566 74 1.82 9.01 23.18 46.9 -25.47 0 

13 572 68 1.7 8.41 24.17 43.78 -26.83 0.03 

13.5 577 63 1.6 7.93 23.72 41.26 -27.35 0.23 

14 580 60 1.55 7.67 23.87 39.92 -27.54 0.27 

14.5 589 51 1.63 8.05 21.18 41.92 -36.2 0.24 

15 598 42 1.28 6.32 21.51 32.89 -27.91 0.26 

15.5 606 34 1.31 6.5 20.53 33.83 -38.67 0.27 

16 610 30 1.29 6.36 21.03 33.11 -41.49 0.32 

16.5 619 21 1.26 6.21 19.52 32.33 -57.81 -0.04 

17 623 17 0.99 4.87 19.45 25.38 -45.61 0.65 

17.5 627 13 1.23 6.08 20.53 31.66 -76.13 0.59 

18 634 6 0.89 4.42 21.08 23.03 -75.21 0.66 

18.5 636 4 0.45 2.2 20.15 11.47 -39.37 0.88 

19 637 3 0.22 1.07 19.97 5.57 -44.72 -0.99 

CNN-FP 512* 128* 0.41 2.03 10.55 35.53 0.83 0.92 
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2.5 Training CNN model on sequences by leaving one residue/linker out 

 

In order to demonstrate the advantage of the fingerprint representations in giving the model 

flexibility in predictions, we trained CNN models by leaving one residue out then having it predict 

activity of all sequences (Table S8). Models trained with sequences leaving one residue/linker out 

are able to compensate for the missing residue to a certain extent. Models were trained with 

sequences without a particular residue/linker and evaluated against the test dataset with sequences 

containing the residue/linker. This demonstrates that the model is able to infer chemical rules, such 

as the similarities between glutamic acid and glutamine, and aspartic acid and asparagine. It is 

hypothesized that the performance in some cases may be marred by a lack of sufficient training 

data points for the maximum similarity residue. The absence of similar sequence motifs, in the 

case of replacement by maximum similarity residue, may also be a contributing factor in the 

performance of the models. These results suggest that the model is able to use information learned 

from other amino acids. 

 

Table 8. The evaluation metrics for models trained with sequences without a particular 

residue/linker have been noted, in decreasing order of RMSE. The residue/linker in the dataset 

with maximum chemical similarity, evaluated using Tanimoto similarity over the fingerprints, has 

been noted in the column Chem. Simil. 
Residue/ 

Linker 

Chem. 

Simil. 
#Train #Test uRMSE RMSE 

Mach 

RMSE 
% Error R2 Pearson 

I V, 0.70 114 526 1.41 6.95 20.79 36.17 -2 0.3 

E Q, 0.66 456 184 1.39 6.86 24.49 35.68 -0.35 0.54 

A S, 0.76 150 490 1.24 6.14 17.93 31.95 -0.99 0.42 

R Q, 0.51 12 628 1.16 5.76 28.62 29.96 -0.34 -0.12 

L I, 0.63 74 566 1.14 5.66 22.77 29.44 -0.23 0.12 

K L, 0.62 25 615 1.14 5.64 19.86 29.35 -0.26 0.24 

Q E, 0.66 221 419 1.14 5.64 21.74 29.34 -1.19 0.31 

S A, 0.76 186 454 1.1 5.44 27.79 28.32 -0.09 0.18 

G A, 0.62 172 468 1.1 5.42 25.35 28.21 -0.02 0.39 

P Q, 0.47 143 497 1.07 5.29 24.8 27.52 -0.09 0.28 

H F, 0.27 402 238 1.05 5.2 22.31 27.07 -1.2 0.18 

3 W, 0.18 64 576 1.05 5.17 27.17 26.91 -0.01 0.33 

V I, 0.70 44 596 0.99 4.88 25.93 25.42 0.08 0.56 

2 C, 0.55 64 576 0.97 4.79 26.96 24.94 0.13 0.44 

B A, 0.55 592 48 0.92 4.57 24.62 23.8 0.55 0.87 

X K, 0.61 592 48 0.89 4.4 25.02 22.92 0.59 0.87 

Y F, 0.82 387 253 0.83 4.13 18.74 21.48 0.15 0.5 

N D, 0.54 267 373 0.79 3.91 21.33 20.37 0.09 0.38 

C 2, 0.55 495 145 0.7 3.47 22.95 18.07 0.63 0.8 

F Y, 0.82 245 395 0.67 3.31 25.38 17.23 0.36 0.62 

W F, 0.35 323 317 0.65 3.23 22.65 16.81 0.36 0.66 

M V, 0.48 445 195 0.63 3.14 24.05 16.34 0.27 0.55 

T S, 0.57 343 297 0.62 3.07 22.13 15.99 0.46 0.7 

D N, 0.54 399 241 0.6 2.96 22.58 15.42 0.42 0.71 

CNN-FP - 512* 128* 0.41 2.03 10.55 35.53 0.83 0.92 
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3 Analysis of the role of generator 
 

In order to investigate the role and advantages of generator, we conducted five in silico 

experiments comparing the generator to other methods of generating seed sequences (Fig. S5, 

Table S9). The predictor-optimizer loop was seeded with 50 sequences sampled from random 

sequences from the predictor training dataset (CPP Library), the 50 most active sequences from 

the predictor training dataset (CPP Library Top50), the CPP thesaurus (CPPsite 2.0), randomly 

generated sequences with equal likelihood for all amino acids at all sites, and sequences sampled 

using the generator as reported in the main text.  

 

Our three criteria for optimized sequences are: high predicted activity, low similarity, and low Arg 

content. The optimized sequences have varying ranges of these characteristics. The top 50 

sequences from the predictor dataset receive a head start in terms of activity, resulting in the 

highest predicted activity, followed by the generator-sampled, CPP library, and CPP thesaurus and 

random sequences. On the other hand, the maximum and mean similarities for sequences 

optimized using the seeds from the Top50 and full CPP Library are higher than for the sequences 

optimized using generator-sampled, CPP thesaurus, and randomly generated seeds. Finally, the 

generator-sampled, CPP thesaurus, and random sequences resulted in optimized sequences with 

lower Arg content than sequences from Top50 and full CPP library. Taken together, sampling 

seeds from the generator is a more favorable option for meeting our three criteria. However, we 

note that with appropriate diversity constraints and predicted activity thresholds, it is possible to 

sample sequences using other routes and still predict sequences with the desired characteristics. 

We note that this comparison uses predicted activity, and robust comparison of these strategies 

would require experimental validation.  

 

 
Figure 5. Box plots comparing optimized sequences comparing random seeds, randomly selected 

sequences from the predictor dataset, and seed sequences sampled from the generator dataset.  For 

the box plot, the box marks the interquartile range (IQR), Q1 and Q3; the whiskers are at Q1-

1.5*IQR and Q3+1.5*IQR; the orange line is the median; the green triangle is the mean, and 

outliers, if outside the whiskers, are marked as dots, N = 50 sequences.  
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Table 9. Statistical metrics comparing optimization of seed sequences sampled from different lists. 
 

Statistic Seed List 
Predicted 

Activity 
Length 

# Arginine/ 

Length 

Net Charge/ 

Length 

Maximum 

Similarity 

Mean 

Similarity 

Mean 

CPP Library 20.70 44.88 0.10 0.55 0.69 0.53 

CPP Library  

Top 50 
28.86 43.95 0.14 0.57 0.69 0.54 

CPP Thesaurus 14.87 27.76 0.05 0.64 0.68 0.50 

Random 12.92 24.63 0.05 0.66 0.68 0.51 

Gen-Sampled 21.00 39.2 0.08 0.62 0.66 0.50 

Median 

CPP Library 20.23 44 0.11 0.55 0.68 0.53 

CPP Library  

Top 50 
25.94 43 0.13 0.56 0.68 0.53 

CPP Thesaurus 13.74 28 0.04 0.62 0.67 0.50 

Random 13.40 27 0.04 0.64 0.68 0.50 

Gen-Sampled 19.58 39 0.05 0.60 0.66 0.50 

Minimum 

CPP Library 17.16 33 0.02 0.46 0.62 0.47 

CPP Library  

Top 50 
20.51 39 0.07 0.44 0.64 0.48 

CPP Thesaurus 9.11 12 0.00 0.38 0.61 0.45 

Random 5.81 6 0.00 0.38 0.61 0.45 

Gen-Sampled 14.12 27 0.00 0.34 0.59 0.46 

Maximum 

CPP Library 25.15 56 0.22 0.69 0.75 0.61 

CPP Library  

Top 50 
50.42 56 0.36 0.70 0.79 0.59 

CPP Thesaurus 33.40 45 0.17 0.90 0.75 0.55 

Random 19.57 39 0.17 0.92 0.75 0.55 

Gen-Sampled 41.07 55 0.26 0.85 0.72 0.57 

Q1 

CPP Library 18.74 39 0.07 0.50 0.67 0.52 

CPP Library  

Top 50 
24.34 39 0.10 0.54 0.66 0.51 

CPP Thesaurus 12.47 24 0.03 0.58 0.66 0.49 

Random 10.01 16 0.03 0.59 0.66 0.49 

Gen-Sampled 14.89 30 0.04 0.57 0.64 0.49 

Q3 

CPP Library 22.47 50 0.13 0.58 0.70 0.55 

CPP Library  

Top 50 
30.51 45 0.18 0.63 0.72 0.55 

CPP Thesaurus 15.98 33 0.06 0.69 0.70 0.52 

Random 14.89 30 0.06 0.72 0.71 0.52 

Gen-Sampled 24.42 48 0.1 0.68 0.68 0.51 
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4 Analysis of the optimization approach 
 

4.1 Analyzing the role of constraints in the optimizer 

 

We tested the model with varying combinations of constraints to probe the role of each constraint 

in sequence optimization (Table S10). 5 seed sequences with variable length (10, 20, 30, 40, 50) 

were used to seed the predictor-optimizer loop, where the optimizer had none to all constraints – 

maximization of predicted activity, minimization of similarity, minimization of Arg content, 

minimization of length, and maintenance of net charge for water solubility. Removal of a 

constraint leads to clear change in the optimized sequences. For instance, when minimization of 

Arg content is not a constraint, the sequences have a high degree of net Arg. Such sequences have 

been shown to be toxic in vivo and are already a known cell-penetrating motif. A goal of this work 

was to generate unique high-activity sequences that do not rely on Arg for activity.  

 

The constraints are also necessary to shift away from the bias in the training dataset, since without 

them, the predicted sequences would appear to be very similar to the sequences in the training 

dataset. This dataset was created using a combinatorial approach with the currently known cell-

penetrating peptides. The peptides in the training dataset inherently have a net high Arg content 

and longer length than desired. The optimizer also makes mutations to the seed sequences using 

motifs from the training data, so without minimizing similarity, the end sequences would resemble 

the training sequences. The constraints help to reduce the bias present in the dataset, and optimize 

sequences towards desired properties and away from those in the training dataset such that we are 

more likely to discover new sequences and motifs.  

 

Table 10. List of top sequences obtained from the optimization without additional constraints. 
 

Constraints Sequences Intensity Length 
Relative 

Arg 

Relative 

Charge 

Seeds 

KHAPRRESSW 2.50 10.00 0.20 0.28 

RWTAWTLRRIAKAVGPIVRR 2.71 20.00 0.25 0.30 

SCRRPQRKDVLTIAHRSRNRIRGAHARPNR 4.60 30.00 0.30 0.35 

GKEKQSWRRFQRKTPRSAAQMRAKRALARARLQ
LSRSQRR 

3.89 40.00 0.28 0.35 

RSSHHGCARSPRLRRHKRRKPIKVRLRRRMKLELK
KTARKRKSRRRGLHC 

2.78 50.00 0.32 0.52 

MFI 

RRRRRQRRRRRR 11.53 12.00 0.92 0.92 

RKRRRQRKRRRRWPXRXIPQYDQXF 14.40 25.00 0.40 0.44 

KKKRPQLKRRRRGPMRXCSEFDFHFPRPTK 14.45 30.00 0.23 0.36 

GKKRRSRRRRRRGPKGGVPQPSQGYPKYSBNRXR
RRRRX 

28.31 39.00 0.36 0.46 

RRRRRLLKRRRRKGKKXLPKFREGYPLGLKPRKRR
QRRRYRWGRGKHRTWW 

26.90 51.00 0.37 0.53 

MFI, Length 

RRRRRQRRRRRR 11.53 12.00 0.92 0.92 

RRRRRQGKRRRRGPRGKVPEPPQHSPKY 15.53 28.00 0.36 0.46 

RKKRRQRKRRRRGPMGKRSRPSQGYALYLK 16.03 30.00 0.33 0.50 
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BKKKNSBBKRRRWRGKNAPQPKAKYPLWILRRR
RRQRGRYRR 

21.28 42.00 0.31 0.48 

XRRRRLLRRLRRNPGRGRLRVIFGRKRGAANRXRR
MRXRGPWARKRHXRW 

33.74 50.00 0.42 0.48 

MFI, Arg 

RRRRRQRRRRRRWPMG 12.50 16.00 0.69 0.69 

RRRRRQRKRRRRWCKKGIPE 13.14 20.00 0.50 0.60 

RRKRPQERRRRRGLNRXCSEPPQHYAIYCK 14.16 30.00 0.30 0.32 

GKRKKSBLKKRRALKXRRBKAKAGQRQYALKRXR
RQRXRLPRWR 

25.83 44.00 0.30 0.50 

RRNRRENKRRRRGLBMALPRPAEGYLLRLINKRRL
QRRRGPWARXRKXRW 

32.84 50.00 0.36 0.38 

MFI, Charge 

RRRRRQRRRRRR 11.53 12.00 0.92 0.92 

RRRRRQRKRRRRGPMGXCPRP 14.19 21.00 0.52 0.57 

RRRRRQRRRRRRGPGGGNPRPEQHVPDFLBG 16.10 31.00 0.39 0.35 

GKKRRQRRRRRRGPNNKNPQFSQKYPQPPRXKR
RRRRRR 

24.81 39.00 0.41 0.54 

RRLRRLRLRRRRYLRGKLLQKKVKYKQGLRBRRRR
QRXRAPRKPRRRRKRWCR 

38.53 53.00 0.45 0.58 

MFI, Length, 

Arg 

RRKRRQ 6.66 6.00 0.67 0.83 

RRKRRQRKRRRRGPKKGVPQ 14.32 20.00 0.45 0.65 

RRRRRQRPKKRRGPLRGCPQFRQHFLQYL 15.43 29.00 0.34 0.44 

BRRRRQRKRRRRYRBKGIPQPREKYLQYLIRXXKR
QRXRRRR 

26.89 42.00 0.43 0.50 

RRGRRLRKLRRRWRGRRRAKPRLGYPRYADRRRR
RERRRRRYWRQKHXRW 

29.25 50.00 0.52 0.56 

MFI, Arg, 

Charge 

RRRRRQRRRRRRWP 12.32 14.00 0.79 0.79 

BKKRRQRRRRNRWRGKNCPQPSLSYAMY 14.31 28.00 0.29 0.39 

WRKRPQRKRRRRWPKKADPQPAQBVAQPLBGR
X 

17.67 33.00 0.24 0.33 

GRKKRQRLKRRRGPMRGKPQPSSKYPRYSKKXRR
LQRRX 

23.06 39.00 0.31 0.49 

RRRRRRLRRRRRRPGNALARADQDYLAYVLNRGR
RRRRXACBCRXLHW 

26.00 48.00 0.42 0.39 

MFI, Length, 

Charge 

RRRRRQRRRRRR 11.53 12.00 0.92 0.92 

RRRRRQEKLRRRGPNKGIPQPSQHYPIYLLG 16.94 31.00 0.26 0.32 

RRRRRQRKKRRRGPLGGGLQFKEGVPQYVQNRX 18.48 33.00 0.30 0.36 

RKRRKSRRRRRRRPNGGRSQPEQXYLLPTBXRRR
RRKXXRRRW 

27.35 43.00 0.44 0.49 

RRRRRKALKLLRYPKKINLQPREKQPQWLAKKRRR
RRRXRRRWRXRRWRWXCGRXM 

53.09 56.00 0.38 0.48 

MFI, Length, 

Arg, Charge 

HRKRRQ 6.70 6.00 0.50 0.80 

RRRRRQRKRRRRWRGGGVPRPSQBQPV 14.73 27.00 0.44 0.48 

RRKRRQRRRRRRGGKBGBPIPIQXVPQYLIRXXRR
BR 

20.80 37.00 0.38 0.43 

KKRRKQAKKRRRNPKKNNPQFDFHFPRPTLXRGR
RKGRX 

23.29 39.00 0.26 0.46 
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RRLRRSGLKSRRGLLGKSSQPSKGRRLPSKKRGKLL
KGXGLWGRGKRXTWWCM 

30.39 53.00 0.21 0.36 

4.2 Optimizing for sequences with all canonical residues 

 

We determined that sequences with comparable activity could not be achieved using only 

canonical residues. We optimized peptides containing only canonical residues by constraining the 

optimizer to use only canonical residues for mutations (Fig. S6, Table S11). 50 seed sequences 

sampled from generator were used to seed the predictor-optimizer loop. While we can predict fully 

canonical peptides, the predicted activities of these peptides are significantly lower than those 

containing noncanonical residues. Given the constraints in the optimizer (minimization of length 

and Arg content), we observe diminishing returns of length versus Arg content, where shorter 

sequences have more Arg in order to have a high predicted MFI. 

 

 
 

Figure 6. Box plots comparing optimized sequences with and without the constraint of only being 

able to use canonical residues for the genetic algorithm mutations. For the box plot, the box marks 

the interquartile range (IQR), Q1 and Q3; the whiskers are at Q1-1.5*IQR and Q3+1.5*IQR; the 

orange line is the median; the green triangle is the mean, and outliers, if outside the whiskers, are 

marked as dots, N = 50 sequences. 
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Table 11. Optimized sequences in decreasing order of predicted MFI. 
 

Sequence Predicted MFI Length Net Arg Net Charge 

PRKKRRSRRRRRRRLRGDPQPPQGRKIYVLGTRRLQRR
RGPWRPRRRGRR 

21.62 50 0.46 0.5 

KRRRRQIRRRRRYRLRNVLQPEQMRKQGLLGRRRRQL
RRYPYRR 

21.27 44 0.45 0.48 

ARKRRQRKRRRRWPMGANLVFSLHYAQYTKGRRRRR
R 

19.12 37 0.38 0.48 

RRRRRQRKRRRRGPGGGDPEPAQGYPI 16.18 27 0.37 0.33 

KAKRRQRRRRRRGPNGGDPRPSQHYPD 16 27 0.33 0.36 

RRRRRQRRRRRRGPQKPCPQPSQKYA 15.85 26 0.42 0.5 

RRRRRQGKRRRRWRNRGCPQPDQKYPDYC 15.51 29 0.38 0.38 

RRRRRQRRRRRRWPQRPLPQPRQHILDYVN 15.36 30 0.43 0.43 

RRRRREEKRRRRGPGGPCLQFSLSAPQYSK 15.2 30 0.3 0.3 

RRRRRQRRRRRRWPMGKMPQPSQ 15.12 23 0.48 0.52 

KKKRRQRRRRRRWRAKGIPEPSFKYKQPPHGR 15.04 32 0.31 0.49 

RRRRRQRRRRRRWRGGPCPRPIQHIPQ 14.97 27 0.48 0.51 

RRRRRQRRRRRRGRGGPRSQFSQHYPQ 14.6 27 0.48 0.51 

RRRRRLGKRRTRGPLGPCPQFDEGILI 14.28 27 0.3 0.26 

RRRRRQRPLRRRGPNKPCPEPDQ 14.17 23 0.39 0.35 

KRRRREEKKKKKWRRGGCPRPRQHYPQYPKG 13.87 31 0.26 0.44 

RRRRRLRKRRRRGPMGKCSD 13.02 20 0.5 0.55 

RRRRRQRKRRRRGCNGNCPD 12.92 20 0.5 0.5 

RRRRRQRKRRRRGPMGPC 12.79 18 0.56 0.61 

RRRRRQRKKRRRGPMGPC 12.52 18 0.5 0.61 

RRRRRQRRRRRRWPMG 12.5 16 0.69 0.69 

RRRRRQRRRRRRGPM 12.44 15 0.73 0.73 

RRRRRQRRRRRRWPM 12.41 15 0.73 0.73 

RRRRRQRRRRRRWPG 12.36 15 0.73 0.73 

RKRRRQRRRRRRGPM 12.35 15 0.67 0.73 

RRRRRQRRRRRRGPG 12.35 15 0.73 0.73 

RRKRRQRRRRRRWP 12.27 14 0.71 0.79 

RRRRRQRRRRRRGP 12.27 14 0.79 0.79 

RRRRRQRNRRRRWPM 12.23 15 0.67 0.67 

RRRRRQRPRRRRWP 12.2 14 0.71 0.71 

RRRRRQRKKRRRWPM 12.08 15 0.6 0.73 

RRRRRERKRRRRWPMG 11.97 16 0.62 0.62 

RRRRRQRKKRRRWP 11.96 15 0.6 0.73 
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RRRRRQRRRRRR 11.53 13 0.85 0.85 

RRRRRQRRRRRR 11.53 12 0.92 0.92 

RRKRRQRRRRRR 11.49 12 0.83 0.92 

RRRRRQRKRRRR 11.48 12 0.83 0.92 

RRKRRQRKRRRR 11.45 12 0.75 0.92 

RKRRRQRRRRRR 11.44 12 0.83 0.92 

RRRRRQRPRRRR 11.39 12 0.83 0.83 

RRRRRQERRRRR 11.15 12 0.83 0.75 

RRKRQQRRRRRR 10.61 12 0.75 0.83 

RRRRRLRRRRRR 10.6 12 0.92 0.92 

RRRRRQRRRKRR 10.56 12 0.83 0.92 

RRKRRQRRRRHR 10.51 12 0.75 0.9 

HRKRRQ 6.7 7 0.43 0.68 

HRKRRQ 6.7 6 0.5 0.8 

RRRRRQ 6.61 6 0.83 0.83 

HRKRRE 5.91 6 0.5 0.63 

RRKRRM 5.42 6 0.67 0.83 

 

5 Attribution analysis 
 

5.1 Interpretability 

Using the conceptual attribution framework developed to understand activation of neural networks 

for image classification, we developed a toolkit to visualize the decision making process of the 

CNN model.11 We chose the first convolution layer of the model to access the fingerprint indices. 

Taking the first derivative of the model output (normalized fluorescence intensity) with respect to 

the input representation (row matrix of fingerprints), produces a Jacobian matrix of partial 

derivatives. We performed element-wise multiplication of the Jacobian with the input 

representation to zero out the activation of absent chemical features, and clipped negative values, 

to focus on features that drive high MFI. We analyzed the role of individual activated fingerprints 

by visualizing the corresponding chemical substructure, and also obtained the average activation 

over the residue positions and fingerprint indices (Fig. S7 and S8). 
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Figure 7 Activation map of predictor training set relative to amino acid position. Gradient 

activations for sequences are arranged in descending order of experimental normalized MFI for 

(a) positive and (b) negative activation averaged over residue position. The positive activation for 

C-terminal residues decreases with decrease in normalized MFI values. The most active sequences 

have a highly positively activated C-terminus and a sparsely negatively activated C-terminus. 

  

a b
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Figure 8 Activation map of predictor training dataset relative to fingerprint index. Gradient 

activations for sequences are arranged in descending order of normalized MFI for (a) positive and 

(b) negative activation averaged over fingerprint index. The most positively activated 

substructures by residue are for aminohexanoic acid, -alanine, aspartic acid, threonine and serine. 

 

 

5.2 Robustness of Attribution Analysis 

 

We evaluated the robustness of gradient-based attribution by analyzing residue-activations for 

mutated Mach3 sequences (Fig. S9). We mutated each active Ahx residue individually with Ala, 

followed by both with beta-alanine and aminoundecanoic acid. This experiment is analogous to 

the method reported for validating attributions for protein-ligand binding by designing an 

adversarial ligand, which is a modified version of a correctly predicted ligand.12  In this report, 

the modified ligand, present in a database of useful decoys13, should have been predicted as non-

binding, however, the model owing to other substructures inaccurately predicts this as a binding 

ligand.  

 

Consistent with our earlier findings, we observed that the most activated residue was the lone Ahx 

in single Ala mutations, followed by Arg when both Ahx are mutated to Ala or -Ala, residues 

a b
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with a shorter alkyl backbone. The most activated residue reverts back to undecanoic acid, a 

residue with a longer alkyl backbone than Ahx, for the undecanoic acid mutation. This experiment 

validates the robustness of attribution analysis, both in terms of activated residues which conform 

to known biochemical principles and experimental validation of the mutations (SM Section 8). 

 

 
Figure 9. Attribution analysis of mutations. Alanine and -Alanine mutations of the most active 

residue(s) shows a fall in the predicted MFI and a corresponding change in the positive activation 

heatmap. Ahx remains the most active residue for single Ala mutations, that changes to Arg when 

both C-terminus Ahx are mutated to Ala and -Ala. However, when Ahx is mutated to undecanoic 

acid (U), both U are the most positively activated residues. 

 

 

6 Similarity and immunogenicity analysis of predicted sequences 

6.1 Similarity of Training and Validation Sequences 

 

Similarity among sequences in each training and validation dataset was analyzed using Jaro-

Winkler distance metric (Fig. S10).14 Each sequence was compared with the rest of the library to 

evaluate the string similarity.  

The sequences used to train the generator have a mean similarity of 47%, indicating that we 

capture a combinatorial chemical space of cell-penetrating peptide sequences. For the sequences 

used to train the predictor, composed mostly of the modular library, the mean similarity is 66%. 

The modularity of the sequences from the library can be seen clearly in the visualization of 

sequence similarity (Fig S10). The four highlighted squares along the diagonal correspond to 

module 2 of the sequences. Similarly, the four lighter colored boxes correspond to module 3. The 

non-modular sequences, which are dissimilar from one another, are on the bottom of the 

visualization.  

Mach3

X33A

X39A

X33A-X39A

X33B-X39B

X33U-X39U

Residue
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Finally, Mach sequences were confirmed to be unique by comparing to library sequences as 

well as a protein database. Similarity of Mach sequences was first compared to the library using 

mean Jaro-Winkler distance (Fig. S11). All Mach sequences had a mean similarity less than 60% 

when compared to the training dataset. Then to compare Mach peptides to the existing proteome, 

we used BLASTp on the online server.15 The search was done using default values to search the 

UniProt database. There was no sequence homology between Mach sequences and known proteins 

for significant E-values less than 0.01. For the unnatural residues, B (-alanine) and X 

(aminohexanoic acid) were replaced by A (alanine) and L (leucine) respectively for the search 

operation. Mach sequences containing cysteine macrocycles were excluded from the search. 

 

 
Figure 10 Similarity of sequences used in the training of generator and predictor. Each 

sequence used in training of (a) generator (Nested LSTM) and (b) predictor (Convolutional Neural 

Network based model) is compared with the rest of respective training dataset. The mean 

similarities of the sequences are 47% and 66% for the generator and predictor respectively. The 

heatmap for the predictor sequences have a modular pattern owing to the combinatorial nature of 

the library. Jaro-Winkler distance was used as the metric to assess the similarity between two 

sequences 

 

 

a b
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Figure 11. Similarity and experimental normalized MFI of Mach and training sequences. 

Mach sequences (blue) are novel and high-performing in comparison to the sequences used in the 

training of the predictor (grey). For each Mach sequence, the Jaro-Winkler distance with the 

predictor training dataset was averaged. For the rest of the training dataset, the mean similarity 

was calculated by averaging over the similarity with rest of the library. The mean similarities for 

all Mach sequences is less than 60%. 

 

6.2 Immunogenicity Score of Predicted and Library Sequences 

 

The likelihood of being a T-cell epitope was calculated for all sequences using an online 

server.16 The score is an arbitrary number, where a higher positive value indicates a higher 

probability of the peptide to be immunogenic and vice-versa. For the unnatural residues, B (-

alanine) and X (aminohexanoic acid) were replaced by A (alanine) and L (leucine) respectively 

for the search operation. The Mach sequences were compared to the sequences used in the training 

of the predictor (Fig. S12). 

 
Figure 12. In silico immunogenicity score for Mach and training sequences. Predicted 

immunogenicity for Mach sequences is within the range of the predicted immunogenicity for the 

sequences used in training of predictor. Mach sequences have a substantially higher experimental 

normalized MFI within the same range of immunogenicity, in comparison to the sequences used 

in the training of the predictor. The immunogenicity scores are the likelihood of being a T-cell 

epitope. The values are calculated using an online predictor.16  

a b

a b
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7 Evaluation of PMO-Mach constructs 
 

7.1 Endocytosis Inhibition Assays 

 

Chemical endocytosis inhibitors were used to probe the mechanism of delivery of PMO in a 

pulse-chase format. For the PMO constructs, HeLa 654 cells were preincubated with various 

chemical inhibitors or incubated at 4 °C for 30 minutes before treatment with PMO-Mach 

constructs for three hours. Treatment media was then replaced with fresh media for 22 hours. Cells 

were then lifted as previously described and EGFP synthesis was measured by flow cytometry 

(Fig. S13). 

 
Figure 13. PMO-Mach peptides enter cells by energy-dependent endocytosis. PMO activity 

of Mach constructs when treated with various endocytosis inhibitors. Chlorpromazine (CPZ) has 

a dose-dependent effect on PMO activity for each of the Mach constructs, indicating that constructs 

may enter via clathrin-mediated endocytosis. Each bar represents group mean ± SD, n = 3, with 

the exception of Mach4 Wrt 50 nM condition in which n=1 due to Wrt toxicity to cells. 
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7.2 Circular Dichroism 

 

Peptides were dissolved in PBS buffer to obtain stock solutions of 1 mM. The circular 

dichroism (CD) spectra was obtained from 195 to 250 nm using an AVIV 420 circular dichroism 

spectrometer with a 1 mm path length quartz cuvette. Peptides in PBS buffer at 20 µM, with or 

without 10 mM sodium dodecyl sulfate (SDS) were used in the measurement (Fig. S14). 

  

  

  
Figure 14. Circular dichroism of azide-Mach peptides. 20 µM Mach peptides were either 

incubated in PBS or 10 mM SDS before analysis using circular dichroism. In buffer, these peptides 

do not exhibit secondary structure. In a lipid environment, Mach1, Mach2, and Mach7 exhibit 

partial alpha helicity.  

 

7.3 Inflammation panel  

 

THP-1 cells (ATCC TIB-202) were grown in RPMI 1640 media supplemented with 10% (v/v) 

FBS, 1% (v/v) penicillin-streptomycin, L-glutamine, non-essential amino acids, sodium pyruvate 

at 37 C and 5% CO2. THP-1 cells (450k/mL) were treated with 25 nM phorbol 12-myristate 13-

acetate (PMA) at 37 C and 5% CO2 for 24 h to trigger differentiation into macrophages. Then, 

media was replaced with fresh RPMI media and the cells were incubated for another 24 h. Cells 
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were then collected, spun down, and brought up in complete RPMI media to a cell density of 

500k/mL. 100k cells were plated in each well of a 96-well plate, leaving the first two columns 

empty. Duplicate wells were treated with varying concentrations of the PMO-peptide conjugates 

at 37 C and 5% CO2 for 2 h. Media-only and no treatment wells were used as negative controls, 

and 10 µg/mL bacterial lipopolysaccharide (LPS) treatment was used as a positive control. 

Following treatment, each well was washed three times, given fresh media, and incubated for 12 

h. Supernatant was transferred to a V-bottom plate. Inflammatory cytokines in the supernatant 

were assayed using LEGENDplex Human Inflammation panel (BioLegend). Analysis was carried 

out on a BD LSRII flow cytometer and data was analyzed using BioLegend’s accompanying 

software (Fig S15). 
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Figure 15. PMO-Mach constructs are nonimmunogenic in vitro. Inflammation panel results of 

cytokines that were detected in human monocyte-derived macrophages.  IL-1B, TNF-a, IL-6, IL-

10, and MCP-1 are all released after treatment with lipopolysaccharide (LPS), but exhibit no 

significant increase after treatment with PMO-Mach constructs. Each bar represents group mean, 

n = 2. 

8 Post-hoc mutations of PMO-Mach miniprotein 
 

Attribution analysis provides opportunity for post-hoc experimentation with peptide sequences. 

Given that Ahx is highly activated in Mach3, and reports that extended alkyl backbone chain amino 

acids have a large effect on CPP activity, we hypothesized that mutating these residues to residues 

with a longer chain may increase activity. Also observed is that the C-terminus of Mach3 and 

Mach7 are the highest activated regions on the sequence, we hypothesized that the 10 C-terminal 

residues may retain some CPP activity.  

 

We made several point mutations and truncations to Mach3 and Mach7 to investigate our 

hypotheses. Mutating to undecanoic acid indeed enhanced the activity of Mach3, decreasing the 

EC50 to 0.6 µM from 1.5 µM. Mutation from X to B decreased activity only slightly in both Mach3 

and Mach7 (Fig S16). Finally, the 10 C-terminal residues of each miniprotein do not retain the 

activity of the full-length sequence (Fig. S17). 

  

  

 
Figure 16. Mutations of Mach peptides can affect activity. Shown are dose-response curves in 

HeLa 654 after testing with PMO-Mach analogs, along with their sequences. B = beta-alanine, X 

= aminohexanoic acid, U = aminoundecanoic acid. Mutation to beta-alanine decreases activity 
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slightly. Mutation to aminoundecanoic acid increases activity of Mach3 significantly. Activity is 

shown as fluorescence relative to untreated cells, with the curve corresponding to PMO alone also 

shown. Points and error bars represent mean and standard deviation, respectively. n = 3. 

 

 

 
 

Figure 17. Truncation of Mach peptides ablates PMO activity. Shown are dose-response 

curves in HeLa 654 after testing with PMO-Mach analogs, along with their sequences. B = beta-

alanine, X = aminohexanoic acid. The 10 C-terminal residues of Mach3 and Mach7 do not retain 

the activity of the parent sequence. Activity is shown as fluorescence relative to untreated cells, 

with the curve corresponding to PMO alone also shown. Points and error bars represent mean and 

standard deviation, respectively. n = 3. 

 

9 Recombinant Expression & Purification 
 

His6-SUMO-G5-DTA(C186S), His6-SUMO-G5-DTA(C186S, E148S) and G5-EGFP-His6 

were overexpressed in E. coli BL21 (DE3) cells. Approximately 10 g of cell pellet was lysed by 

sonication in 50 mL of 20 mM Tris, 150 mM NaCl, pH 7.5 buffer containing 30 mg lysozyme, 2 

mg DNAase I, and 1 tablet of cOmpleteTM Protease Inhibitor Cocktail. The suspension was 

centrifuged at 16,000 rpm for 30 min to remove cell debris. The supernatant was loaded onto a 5 

mL HisTrap FF Ni-NTA column (GE Healthcare, UK) and washed with 30 mL of 100 mM 

imidazole in 20 mM Tris, 150 mM NaCl, pH 8.5. Protein was eluted from the column with buffer 

containing 300 mM imidazole in 20 mM Tris, 150 mM NaCl, pH 8.5. Imidazole was removed 

from protein via centrifugation in Millipore centrifugal filter unit (10K).  

For the DTA constructs, the His6-SUMO tag was then cleaved from the protein with SUMO 

protease (previously recombinantly expressed) by incubating a 1:1000 protease:protein ratio in 20 

mM Tris, 150 mM NaCl, pH 7.5 overnight at 4 C. Desired protein was separated from His6-
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SUMO tag by flowing the mixture through a 5 mL HisTrap FF Ni-NTA column. Finally, purified 

protein was isolated by size exclusion chromatography using HiLoad 26/600 Superdex 200 prep 

grade size exclusion chromatography column (GE Healthcare, UK) in 20 mM Tris, 150 mM NaCl, 

pH 7.5 buffer. 

For the EGFP construct, purified protein was isolated by anion exchange chromatography 

using HiTrap Q HP anion exchange chromatography column (GE Healthcare, UK) in (0-40 %B 

over 20 CV) where A: 20 mM Tris, pH 8.5 buffer and B: 1 M NaCl, 20 mM Tris, pH 8.5 buffer.  

Proteins were analyzed using an SDS-Page gel. In addition, proteins were analyzed by ESI-

QTOF LCMS to confirm molecular weight and purity. The protein charge-state envelope was 

deconvoluted using Agilent MassHunter Bioconfirm using maximum entropy. 
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Supplemental Figures and Tables 
 

Table 12: List of peptides used for each module in the 600-member library*  

PMO Name Sequence 

 PMO IVS2-654 GCT ATT ACC TTA ACC CAG 

Peptide 1 Name Sequence 

 Penetratin RQIKIWFQNRRMKWKK 

 pVec LLIILRRRIRKQAHAHSK 

 TP10 AGYLLGKINLKALAALAKKIL 

 DPV6 GRPRESGKKRKRKRLKP 

Peptide 2 Name Sequence 

 KRVK (NLS) KRVK 

 SV40 (NLS) PKKKRKV 

 AAV-PHP.eB SDGTLAVPFKA 

Peptide 3 Name Sequence 

 DPV6 ZGRPRESGKKRKRKRLKP 

 PPC3 ZKKYRGRKRHPR 

 PPC5 ZGRKAARAPGRRKQ 

 R12 ZRRRRRRRRRRRR 

 R12 full cycle ZCRRRRRRRRRRRRC 

 R12 N-cycle ZCRRRRRRCRRRRRR 

 R12 C-cycle ZRRRRRRCRRRRRRC 

 

R12 benzyl 

bicycle 
ZCRRRRRRCRRRRRRC 

 R12 double cycle ZCRRRRRRCCRRRRRRC 

 Bpep ZRXRRBRRXRRBR 

 Bpep full cycle ZCRXRRBRRXRRBRC 

 Bpep C-cycle ZRXRRBRCRXRRBRC 

 Penetratin (nle) ZRQIKIWFQNRRMKWKK 

 Engrailed N-cycle ZCQIKIWFCNKRAKIKK 

 Engrailed C-cycle ZSQIKIWFQCKRAKIKC 

 

Engrailed full 

cycle 
ZCSQIKIWFQNKRAKIKKC 

 pVEC ZLLIILRRRIRKQAHAHSK 

 pVEC-Bpep ZLLIILRRRIRKQAHAHSKRXRRBRRXRRBR 

 AIP6 full cycle ZCRLRWRC 

 
Melittin-Bpep 

ZGIGAVLKVLTTGLPALISWIKRKRQQRXRRBRRXRR

BR 

 Bh3 helix ZIWIAQELRRIGDEFNAYYARR 

 Bac7 ZRRIRPRPPRLPRPRPRPLPFPRPG 
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 Buforin 2 ZTRSSRAGLQWPVGRVHRLLRK 

 Melittin ZGIGAVLKVLTTGLPALISWIKRKRQQ 

 SynB1 ZRGGRLSYSRRRFSTSTGR 

 S413-PVrev ZALWKTLLKKVLKAPKKKRKV 

 Ribotoxin2 L3 ZKLIKGRTPIKFGKADCDRPPKHSQNGMGK 

 PreS2-TLM ZPLSSIFSRIGDP 

 MAP ZKLALKALKALKAALKLA 

 W/R ZRRWWRRWRR 

 MAP12 ZLKTLTETLKELTKTLTEL 

 SAP ZVRLPPPVRLPPPVRLPPP 

 SVM1 ZFKIYDKKVRTRVVKH 

 SVM3 ZKGTYKKKLMRIPLKGT 

 SVM4 ZLYKKGPAKKGRPPLRGWFH 

 YTA4 ZIAWVKAFIRKLRKGPLG 

 439a ZGSPWGLQHHPPRT 

 HoxA13 serine2 ZRQVTIWSQNRRVKSKK 

 Bip ZVSALK 

 PPR3 ZPPRPPRPPR 

 PPR4 ZPPRPPRPPRPPR 

 AIP6 ZRLRWR 

 DPV15b ZGAYDLRRRERQSRLRRRERQSR 

 TAT ZRKKRRQRRR 

 Penetratin ZRQIKIWFQNRRMKWKK 

 R9 ZRRRRRRRRR 

 HoxA13 serine1 ZRSVTIWFQSRRVKEKK 

 KRVK TP10 ZKRVKAGYLLGKINLKALAALAKKIL 

 TP10 KRVK ZAGYLLGKINLKALAALAKKILKRVK 

 SV40 TP10 ZPKKKRKVAGYLLGKINLKALAALAKKIL 

*Z refers to 4-pentynoyl. “C” refers to cysteines that are linked with decafluorobiphenyl. “C” 

refers to cysteines that are linked with 1,3,5-trisbromomethylbenzene. Module 4 included fifty 

CPPs, including a mixture of chimeric peptides, cyclic peptides, and bicyclic peptides that we 

have previously reported to improve PMO delivery. 
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Figure 18. Synthesis of modular library.  
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Figure 19. Mean fluorescence intensity of 600-member library. The heat maps show the mean 

fluorescence intensity of the 600 constructs tested in the HeLa-654 assay (n=1 replicate well). 

Boxes marked with an “X” are constructs in which the gated cell count was zero. The complete 

list of sequences and activities can be found in Supplemental Table 1.  
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 Table 13. List of Mach peptides.*   
Fold over 

PMO 

% 

Arg 

PPMO 

MW 

Net charge 

Mach 1 ALKBRSAAKAVRWPKKKIKQASK

KVAKYALXXXRKKKAASKXWLQ

LHWPRW 

45 8 12,645 18 

Mach 2 PPLRNAKKKNLKNNLKMDPKFTK

KVKQGALKLNRRKKNRGPKGPX

KHWTT 

27 8 12,499 18 

Mach 3 QKKRKSKANKKNWPKGKLSIHAK

DYKQGPKAKXRKQRXR 

39 10 11,324 17 

Mach 4 KKGKKQNKKKHRWPKKKVPQPK
KMFKQGABXRX 

25 6 10,622 16 

Mach 5 AKKKIAKAKKHRGPNBGIHAPVS

KIKDPLKXXX 

3 8 10,222 11 

Mach 6 ALKBRSAAKAVRWPKKAIKQASK

KVAKYALKXXRKKKAASKXWLQ

LHWPRW 

43 8 12,603 18 

Mach 7 XKHPXAVQBAARAWKVPAAALW

KKKRLKKSSKQKKKWLWKARSA

XKYXRLI 

36 8 12,645 18 

Mach 8 BKGKNLLAKIRRGPNGGNBQGSQ

GYLLYLLXRXRRQRXXYPWWRX

KHXRWXXRXRGHXRRRRQXLKP

DRXRGGKGSVS 

39 21 15,929 22 

Mach 9 KKKKNLNBKSRRGPNGGALQPSQ

GYLQPLNXRXRRQRXXYPWWRX

KHXRWRXRYHXRRRRQXLKPG 

38 21 14,845 22 

Mach 

11 

TSNLKLHLAPPVKKKALKKPLYK

AKKKKKVVSPTWXTDQEW 

4 0 11,423 11 

Mach 

12 

KGGKNLAKKIRRGPNGGALQPSQ

GYLLYLBXRXRRQRXXGPXWRX

KHXRWXXXXXRPTHXRRRRQXL

CPGRXRPCRGSVS 

40 20 16,285 22 

Mach 

13 

AKKKKLGBKALRWPNGKCPQPK

EKCPKYLLGRXRRKRXRYPWWR

XKHRRW 

30 18 13,228 20 

 

*Peptide 10 was found to degrade in solution, so its analysis was discontinued. ‘X’ is 6-amino 

hexanoic acid, and ‘B’ is -alanine. C residues are linked through decafluorobiphenyl. 
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Figure 20. Experimental vs Predicted activity of Mach peptides. Mach peptides enhance 

delivery of PMO by 40-50 fold as determined by the HeLa 654 assay. Experimental activity (blue) 

is comparable to predicted activity (grey). Mach12 predicted activity is off the scale, at 140. Each 

bar represents group mean ± SD, N = 3. 
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Figure 21. Dose-response in HeLa 654 cells (Activity). PMO-Mach constructs elicit a dose-

dependent increase in EGFP fluorescence. (A) Shown is GFP fluorescence relative to the no 

treatment condition, including PMO alone. Also included here is chimera PMO-Bpep-Bpep, a 

previously reported high-performing PMO-peptide. Each bar represents group mean ± SD, N = 3 

distinct samples. (B-E) Shown is GFP fluorescence relative to the PMO alone condition. PMO-

Mach peptides were tested at different concentration ranges with similar results. Each bar 

represents group mean ± SD, N = 3 distinct samples, except for (C) Mach3 and (D) Mach7 in 

which bar represents group mean, N = 2. 
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Figure 22. Dose response curves corresponding to activity and toxicity in HeLa 654. HeLa 

654 cells were treated with varying concentrations of PMO-Mach constructs or PMO-Bpep-Bpep 

for 22 h. RPTEC cells were also treated with the same concentrations of PMO-Bpep-Bpep, as in 

Figure 23. Following treatment, cell supernatant was removed and tested for LDH release, reported 

as % LDH release relative to full lysis control (LDH, square). Toxicity is compared to activity 

(EGFP, triangle) in HeLa 654 from Figure 21. Each point represents group mean ± SD, N = 3 

distinct samples.  
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Figure 23. Dose-response in RPTEC (Toxicity). PMO-Mach constructs elicit a dose-dependent 

increase in membrane toxicity as measured by LDH release assay. Data shown here for Mach3, 4, 

and 7 are what is shown in main text Figure 4A-C. LC50 of PMO-Mach constructs are between 

100-200 µM, in contrast to PMO-Bpep-Bpep, which has a significantly lower LC50 near 10 µM. 

Each bar represents group mean ± SD, N = 2, except for Bpep-Bpep N = 3 distinct samples. 
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Figure 24. Mach peptides enhance delivery of peptide nucleic acid (PNA). PNA-Mach 

constructs were evaluated at 5 µM in the HeLa EGFP 654 assay. Each bar represents group mean 

± SD, N = 3 distinct samples. 
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Figure 25. Mach-DTA conjugates produce dose-dependent toxicity in HeLa cells. Attachment 

of WT DTA to (a) Mach3 or (b) Mach7 produces significantly greater activity than attachment to 

DTA (E148S) which has 300-fold lower activity than wild-type. (c) Covalent attachment of Mach3 

is required for DTA constructs to be delivered to the cytosol. DTA alone has the same toxicity as 

DTA co-incubated with 5 equivalents of Mach3 peptide. Each point represents group mean ± SD, 

N = 3 distinct samples,  with the exception of Mach3-DTA(E148S) and Mach7-DTA(E148S) in 

which n = 2. Experiments, excluding Mach3-DTA(E148S) and Mach7-DTA(E148S), were 

repeated at slightly different concentrations with similar results.  
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Figure 26. PMO-Mach constructs do not induce kidney toxicity in mice. In EGFP 654 mice, 

levels of (a) blood urea nitrogen (BUN), (b) creatinine, and (c) cystatin C remained unchanged. 

Each bar represents group mean ± SD. Saline (n = 6), Mach3 and Mach4 at 5 mg/kg (n = 4), all 

other n = 8 mice. A two-tailed Mann-Whitney U test showed no significant difference between 

groups. 
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Appendix 1  LC-MS Characterization 
 

PMO-DBCO (Method A) 

Mass Expected: 6527.9 Da 

Mass Observed: 6527.9 Da 

PMO sequence: GCT ATT ACC TTA ACC CAG 
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PMO-Mach1 (Method B) 

Mass Expected: 12645.4 Da 

Mass Observed: 12645.6 Da 

Peptide sequence: 

ALKBRSAAKAVRWPKKKIKQASKKVAKYALXXXRKKKAASKXWLQLHWPRW 
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PMO-Mach2 (Method B) 

Mass Expected: 12499.1 Da 

Mass Observed: 12499.2 Da 

Peptide sequence: 

PPLRNAKKKNLKNNLKMDPKFTKKVKQGALKLNRRKKNRGPKGPXKHWTT 
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PMO-Mach3 (Method A) 

Mass Expected: 11323.6 Da 

Mass Observed: 11324.3 Da 

Peptide sequence: QKKRKSKANKKNWPKGKLSIHAKDYKQGPKAKXRKQRXR 
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PMO-Mach4 (Method A) 

Mass Expected: 10622.0 Da 

Mass Observed: 10622.5 Da 

Peptide sequence: KKGKKQNKKKHRWPKKKVPQPKKMFKQGABXRX 
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PMO-Mach5 (Method A) 

Mass Expected: 10222.5 Da 

Mass Observed: 10222.5 Da 

Peptide sequence: AKKKIAKAKKHRGPNBGIHAPVSKIKDPLKXXX 
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PMO-Mach6 (Method B) 

Mass Expected: 12603.4 g/mol 

Mass Observed: 12603.4 g/mol 

Peptide sequence: 

ALKBRSAAKAVRWPKKAIKQASKKVAKYALKXXRKKKAASKXWLQLHWPRW 
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PMO-Mach7 (Method A) 

Mass Expected: 12645.4 Da 

Mass Observed: 12645.9 Da 

Peptide sequence: 

XKHPXAVQBAARAWKVPAAALWKKKRLKKSSKQKKKWLWKARSAXKYXRLI 
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PMO-Mach8 (Method B) 

Mass Expected: 15929.1 Da 

Mass Observed: 15929.3 Da 

Peptide sequence: 

BKGKNLLAKIRRGPNGGNBQGSQGYLLYLLXRXRRQRXXYPWWRXKHXRWXXRXRG

HXRRRRQXLKPDRXRGGKGSVS 
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PMO-Mach9 (Method B) 

Mass Expected: 14844.8 Da 

Mass Observed: 14845.0 Da 

Peptide sequence: 
KKKKNLNBKSRRGPNGGALQPSQGYLQPLNXRXRRQRXXYPWWRXKHXRWRXRYH

XRRRRQXLKPG 
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PMO-Mach11 (Method B) 

Mass Expected: 11422.8 Da 

Mass Observed: 11422.8 Da 

Peptide sequence: TSNLKLHLAPPVKKKALKKPLYKAKKKKKVVSPTWXTDQEW 
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PMO-Mach12 (Method B) 

Mass Expected: 16284.5 Da 

Mass Observed: 16284.7 Da 

Peptide sequence: 

KGGKNLAKKIRRGPNGGALQPSQGYLLYLBXRXRRQRXXGPXWRXKHXRWXXXXXR

PTHXRRRRQXLCPGRXRPCRGSVS 
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PMO-Mach13 (Method B) 

Mass Expected: 13227.8 Da 

Mass Observed: 13228.0 Da 

Peptide sequence: 

AKKKKLGBKALRWPNGKCPQPKEKCPKYLLGRXRRKRXRYPWWRXKHRRW 
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PNA-Mach2 (Method B) 

Mass Expected: 11375.5 Da 

Mass Observed: 11374.9 Da 

 

 

 
 

  

* Peak includes 
PNA-Mach2 and 
unconjugated Mach2  
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PNA-Mach3 (Method A) 

Mass Expected: 10200.0 Da 

Mass Observed: 10200.6 Da 

 

 
 

  

* PNA-Mach3 

* Unconjugated PNA  
* Unconjugated 
Mach3  
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PNA-Mach4 (Method B) 

Mass Expected: 9498.4 Da 

Mass Observed: 9497.8 Da 

 

 
 

 

 

 

  

* Unconjugated Mach4 

* PNA-Mach4 
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PNA-Mach7 (Method B) 

Mass Expected: 11521.8 Da 

Mass Observed: 11521.3 Da 

 

 

 
 

  

* Peak contains 
PNA-Mach7 and 
unconjugated Mach7 
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G5-DTA(C186S) (Method A) 

Mass Expected: 21376.8 Da 

Mass Observed: 21377.2 Da 
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G5-DTA(C186S, E148S) (Method A) 

Mass Expected: 21334.6 Da 

Mass Observed: 21335.3 Da 
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Mach3-DTA(C186S) (Method A) 

Mass Expected: 26428.7 Da 

Mass Observed: 26432.0 Da 
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Mach3-DTA(C186S, E148S) (Method B) 

Mass Expected: 26386.7 Da 

Mass Observed: 26388.2 Da 
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Mach7-DTA(C186S) (Method A) 

Mass Expected: 27750.5 Da 

Mass Observed: 27755.1 Da 
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Mach7-DTA(C186S, E148S) (Method B) 

Mass Expected: 27708.5 Da 

Mass Observed: 27710.1 Da 
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G5-EGFP (Method A) 

Mass Expected: 28754.4 Da 

Mass Observed: 28754.8 Da 
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Mach3-EGFP (Method B) 

Mass Expected: 33806.5 Da 

Mass Observed: 33807.3 Da 

 

 
  

* Mach3-EGFP 

* Mach3-LPSTGG 
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Mach7-EGFP (Method B) 

Mass Expected: 35128.3 Da 

Mass Observed: 35130.3 Da 

 

 
 

 

 

 

 

* Mach7-EGFP 

* Mach7-LPSTGG 
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Appendix 2 Topological fingerprints 
 

CB_Index = Condensed Bit-vector index, used in the figures in Manuscript and SI 

TF_Index = Topological Fingerprint index, for the corresponding CB_index 

 

All ON bits out of the 2048-bits have been represented in the following set of figures. The radius 

of exploration goes from 0 (atom, itself) to 3 nearest neighbors. The coloring scheme denotes the 

node atom in blue, atoms which are a part of an aromatic ring in yellow, connected neighbors as 

a part of the topological exploration in black, and the unexplored neighboring atoms and nodes in 

gray. 

 
CB_Index TF_Index  CB_Index TF_Index  CB_Index TF_Index  CB_Index TF_Index 

1 1  51 585  101 1114  151 1693 

2 11  52 623  102 1117  152 1719 

3 22  53 625  103 1127  153 1731 
4 27  54 650  104 1139  154 1736 

5 32  55 667  105 1141  155 1737 

6 67  56 671  106 1143  156 1750 

7 70  57 680  107 1145  157 1751 

8 74  58 708  108 1152  158 1752 
9 79  59 713  109 1158  159 1754 

10 80  60 724  110 1171  160 1758 

11 119  61 727  111 1185  161 1773 

12 132  62 739  112 1199  162 1778 

13 140  63 742  113 1213  163 1783 
14 150  64 745  114 1221  164 1785 

15 173  65 759  115 1226  165 1791 

16 197  66 776  116 1258  166 1794 

17 204  67 784  117 1259  167 1805 
18 220  68 785  118 1267  168 1840 

19 222  69 786  119 1268  169 1844 

20 227  70 806  120 1283  170 1847 

21 229  71 807  121 1287  171 1849 

22 231  72 831  122 1290  172 1873 
23 272  73 857  123 1301  173 1876 

24 280  74 878  124 1307  174 1879 

25 283  75 889  125 1313  175 1882 

26 289  76 894  126 1325  176 1898 

27 293  77 900  127 1349  177 1910 
28 294  78 926  128 1357  178 1911 

29 295  79 931  129 1380  179 1912 

30 305  80 955  130 1388  180 1917 

31 310  81 966  131 1427  181 1926 

32 321  82 971  132 1431  182 1928 
33 328  83 981  133 1451  183 1937 

34 329  84 983  134 1452  184 1946 

35 362  85 989  135 1459  185 1947 

36 364  86 1014  136 1462  186 1969 

37 368  87 1017  137 1507  187 1970 
38 376  88 1019  138 1517  188 2006 

39 378  89 1022  139 1544  189 2013 

40 389  90 1027  140 1547  190 2022 

41 394  91 1028  141 1558  191 2042 

42 412  92 1031  142 1564    

43 420  93 1034  143 1573    

44 425  94 1057  144 1601    

45 473  95 1066  145 1602    

46 482  96 1072  146 1607    

47 545  97 1082  147 1633    

48 553  98 1088  148 1656    

49 561  99 1104  149 1661    

50 575  100 1110  150 1685    
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Linker 2 
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Linker 3 
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 84 

Alanine 
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Beta-Alanine 
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Aminohexanoic acid 
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Arginine 
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Asparagine 
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Aspartic acid 
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Cysteine 
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Glutamic acid 

  



 92 

Glutamine 
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Glycine 
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Histidine 
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Isoleucine 
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Leucine 

 
 

  



 97 

Lysine 
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Methionine 

 

  



 99 

Phenylalanine 

 
 

  



 100 

Proline 

 
 

 

 

  



 101 

Serine 
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Threonine 
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Tryptophan 
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 105 

Tyrosine 
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Valine 

 

 
 

  



 107 

Appendix 3: Example of flow cytometry gating strategy 
 

Gates were created using the cell-only control, and applied to experimental samples. Gates were 

applied to the main cell population on the SSC vs FSC density plot, and then to the SSC and FSC 

density plots, respectively, in order to exclude outlying cells. Finally, outlying cells labeled by 

PerCP were excluded, and the mean fluorescence intensity of FITC was obtained.  
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