## **Supplementary Information**

## **Polyanion-Assisted Ribozyme Catalysis Inside Complex Coacervates**

Raghav R. Poudyal<sup>1,3\*</sup>, Christine D. Keating<sup>1\*</sup>, Philip C. Bevilacqua<sup>1,2,3\*</sup>

<sup>1</sup>Department of Chemistry, <sup>2</sup>Department of Biochemistry, Microbiology, and Molecular Biology, <sup>3</sup>Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

\*Authors to whom correspondence should be addressed:

rup34@psu.edu

keating@chem.psu.edu

pcb5@psu.edu

| Contents                  | Page  |
|---------------------------|-------|
| Supplementary Tables 1-2  | S2-S3 |
| Supplementary Figures 1-5 | S4-S7 |

| Polyion          | Conc. of macromolecule<br>added (mM) | Total charge<br>(mM) |
|------------------|--------------------------------------|----------------------|
| PDAC             | 0.19                                 | 10                   |
| D <sub>10</sub>  | 1.00                                 | 10                   |
| D <sub>30</sub>  | 0.33                                 | 10                   |
| D <sub>50</sub>  | 0.20                                 | 10                   |
| D <sub>100</sub> | 0.10                                 | 10                   |

## Table 1. Composition of Coacervates at 1:1 Charge

Supplementary Table 1. Concentrations of polymers to generate complex coacervates.

| Coacervate<br>Composition | Total –<br>(mM) | рН   |  |
|---------------------------|-----------------|------|--|
| -                         | -               | 8.04 |  |
| PDAC(only)                | -               | 8.11 |  |
| D <sub>10</sub>           | 10              | 8.07 |  |
| D <sub>30</sub>           | 10              | 8.01 |  |
| D <sub>50</sub>           | 10              | 8.05 |  |
| D <sub>100</sub>          | 10              | 8.10 |  |
| D <sub>10</sub> /PDAC     | 10              | 8.02 |  |
| D <sub>30</sub> /PDAC     | 10              | 8.09 |  |
| D <sub>50</sub> /PDAC     | 10              | 8.07 |  |
| D <sub>100</sub> /PDAC    | 10              | 8.00 |  |
| D <sub>10</sub>           | 20              | 8.02 |  |
| D <sub>10</sub>           | 30              | 7.96 |  |
| D <sub>10</sub>           | 50              | 7.82 |  |
| D <sub>10</sub> /PDAC     | 20              | 8.12 |  |
| D <sub>10</sub> /PDAC     | 30              | 8.00 |  |
| D <sub>10</sub> /PDAC     | 50              | 7.86 |  |
| D <sub>50</sub>           | 20              | 8.00 |  |
| D <sub>50</sub>           | 30              | 7.99 |  |
| D <sub>50</sub>           | 50              | 7.82 |  |
| D <sub>50</sub> /PDAC     | 20              | 8.02 |  |
| D <sub>50</sub> /PDAC     | 30              | 7.98 |  |
| D <sub>50</sub> /PDAC     | 50              | 7.85 |  |

 Table 2. Bulk pH of coacervate solutions

**Supplementary Table 2.** pH measurements of bulk coacervate solutions. Bulk coacervate samples were prepared in 300  $\mu$ L volume which contained 25 mM Tris•HCl at pH 8.0, 2.5 mM KCl and 1 mM MgCl<sub>2</sub>. All coacervates contained 10 mM total positive charge from PDAC<sub>53</sub> and varying amounts of negative charge.



**Supplementary Figure 1**. Standard curve used to calculate concentration of the HHRz substrate inside complex coacervates showed in Figure 2, 3, and SI Figure 5.



Supplementary Figure 2. Stimulation of ribozyme activity by  $D_{10}$  requires coacervates. Reactions contained indicated amounts of total negative charge from  $D_{10}$  and PDAC. Reactions were stopped at 0, 7.5, 15, 30, 60, and 90 minutes.



Supplementary Figure 3. Effect of increasing polyanions concentration on ribozyme partitioning (A) Cartoon depiction of the experiment. Complex coacervates were first generated to which 5' end-labeled ribozyme or substrate were added. Counts of <sup>32</sup>P were measured either with (sample 1) or without (sample 2) centrifugation. Lack of counts in the supernatant (sample 1) indicate retention of RNA in the condensed phase (top). Similar method was used in the absence of coacervates as controls (samples 3 and 4). (B,C) Counts of <sup>32</sup>P in 10  $\mu$ L volume (20  $\mu$ L total) in (B) D<sub>10</sub>/PDAC coacervates and (C) D<sub>50</sub>/PDAC coacervates. Mean values from n=3, error bars represent the S.D



Supplementary Figure 4. Polyanion enhancement enhance hairpin ribozyme in PDACcontaining coacervates. (A) Structure of the hairpin ribozyme. The enzyme strand is shown in green (loop B) and the substrate RNA is shown in black (loop A). The site of substrate cleavage is indicated by red triangle. (B) Fraction product formed by hairpin ribozyme after 2 hours of reaction. All reactions contained 25 mM Tris•HCl, 2.5 mM MgCl<sub>2</sub>, 2.5 mM KCl, 40 nM enzyme strand and <1 nM substrate. Coacervates contained PDAC and spermine at 5 mM total positive charge each and varying amounts of D<sub>30</sub> to give indicated total –/+. Mean values from n=3, error bars represent the S.D



Supplementary Figure 5. Ribozyme reactions in complex coacervates containing PDAC and various polyanions. (A) Concentration of 5' Alexa488 substrate in different complex coacervates (1:1 charge-matched).  $0.25 \ \mu$ M Alexa488-labeled HHRz substrate was added to different coacervates. Mean values of three replicates are shown error bars representing the S.D (B) Representative gel images showing hammerhead ribozyme reactions in different coacervates. (C) Gel images showing hammerhead ribozyme reaction in complex coacervates containing indicated compositions. Time points were taken in 0, 7.5, 15, 30, 60 and 90 min (B) and (C). Quantifications for (A) and (B) are shown in Figure 4B. (D) 0.25  $\mu$ M Alexa488-labeled HHRz substrate was added to the indicated coacervate compositions for confocal microscopy. A large contiguous condensed phase is visible in PAA<sub>25</sub>/PDAC (2:1) (top) due to coalescence of smaller droplets. Scale bar is 10  $\mu$ m.