
Appendix A: Activation Dynamics and Activation Nonlinearity Functions 
 
This study differs from previous work in the use of Bayesian optimization for tuning MTU parameters. Several 
activation dynamics [1]–[4] and activation nonlinearity functions [5]–[7] have been proposed in previous research and 
it was not clear which model was most appropriate. The approach in previous work has been to choose a model for 
the activation dynamics and activation-force nonlinearity and assign it to every muscle. The parameters of those 
models are then optimized via global optimization (e.g., simulated annealing [5], [8]), often in addition to the optimal 
fiber length and tendon slack length. However, empirical evidence suggests activation dynamics may be muscle 
specific and related to fiber type distribution [9], which informed the activation muscle groupings in the current study. 
Moreover, the activation dynamics have been recognized as the least well established in the Hill model [10]. Further 
uncertainty was introduced surrounding the activation dynamics by using GP synergy functions to estimate some of 
the excitation signals. Thus, we chose to include these functions as tunable (categorical) parameters in the global 
optimization for which Bayesian optimization is suitable.  
 
Five activation dynamics models were considered. The first was a 1st order, linear model (L1T1) based on that used by 
Winters and Stark [2], 
 

�̇� = 𝜏!̅"#(𝑒 − 𝛼) (A. 1) 
 
where �̅�! is the average of the activation and deactivation time constants. The second was a 1st order, nonlinear, 
piecewise-continuous model (N1T2) based on that used by De Groote et al. [1], 
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The third was a 1st order, bilinear model (B1T2) based on that used by He et al. [3], 
 

�̇� = [(𝜏!"# − 𝜏$"#)𝑒 + 𝜏$"#](𝑒 − 𝛼). (A. 3) 
 
The fourth was a 2nd order, linear model (L2T1) based on the findings of Milner-Brown et al. [4], 
 

�̈� = −2Ω�̇� − Ω%𝛼 + Ω%𝑒 (A. 4) 
 
where the natural frequency Ω is equal to the average value of 𝜏!"# and 𝜏$"#. The fifth was a piecewise version of the 
model (A.4) (L2T2) where Ω = 𝜏!"# for 𝛼 ≥ 0 (during activation) and Ω = 𝜏$"# for �̇� < 0 (during deactivation). Three 
activation nonlinearity functions were considered. The first was the exponential model used by Lloyd and Besier [5] 
(Aexp) based on the findings of Potvin et al. [11], 

 

𝑓& =
exp(𝐴𝛼) − 1
exp(𝐴) − 1 . (A. 5) 

 
The second was the piecewise A-model developed by Manal and Buchanan [7] (A), based on the findings of Woods 
and Bigland-Ritchie [9] which is dependent on a single parameter 𝐴′. The third was a modified version of the (twice 
differentiable) approximation to the piecewise A-model used by Meyer et al. [6] (Ac), 
 

𝑓& = (1 − 𝐴′′)𝛼 + 𝐴′′ E1 +
𝑏#

𝑏% + 𝑏'(𝛼 + 𝑏())!
G (A. 6) 

 
where 𝑏# = −7.623, 𝑏% = 4.108 𝑏' = 29.280, 𝑏( = 0.884, 𝑏* = 17.227. The parameter 𝐴′′ in (A.6) was a function 
of 𝐴 such that the derivative of (A.6) with respect to 𝛼 evaluated at 𝛼 = 0 was equivalent to that of (A.5). A similar 
adjustment was made to the single parameter 𝐴′ of the piecewise A-model such that 𝐴′ = +.#%

+.'*
𝐴′′. These parameter 

adjustments were made so that the single tunable parameter 𝐴 yielded similar behavior in all three activation 
nonlinearity functions for the range −3 ≤ 𝐴 < 0 [5]. The step response for each activation dynamics model and the 
behavior of the three activation nonlinearity functions is shown in Fig. A.1. 
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Fig. A.1. Activation dynamics and activation nonlinearity functions included in the tunable parameter set of the Bayesian 
optimization. The step response for each activation dynamics model is shown in the left plot. The electromechanical time delay 
was set to 40 ms, 𝜏! was set to 12 ms and the ratio 𝜏!/𝜏" was set to 0.5 such that 𝜏" = 24 ms. The solid black line is the B1T2 
model, the solid blue line is the N1T2 model, the dashed blue line is the L1T1 model, the solid red line is the L2T2 model, and 
the dashed red line is the L2T1 model. The behavior of the activation nonlinearity functions is shown on the right where solid 
lines correspond to 𝐴 = -1.50 and dashed lines to 𝐴 = -2.50. The black lines correspond to the A model, the red lines correspond 
to the Ac model, the blue lines correspond to the Aexp model, and the grey line corresponds to the line of linearity. 
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