© 2021 Wiley-VCH GmbH

Supporting Information

for Adv. Funct. Mater., DOI: 10.1002/adfm.202106786

Fabrication of Smart Tantalum Carbide MXene Quantum Dots with Intrinsic Immunomodulatory Properties for Treatment of Allograft Vasculopathy

Alireza Rafieerad, Weiang Yan, Keshav Narayan Alagarsamy, Abhay Srivastava, Niketa Sareen, Rakesh C. Arora, and Sanjiv Dhingra*

Electronic Supplementary Information

Fabrication of Smart Tantalum Carbide MXene Quantum Dots with Intrinsic Immunomodulatory Properties for Treatment of Allograft Vasculopathy

Alireza Rafieerad^{a,b,#}, Weiang Yan^{a,b,c,#}, Keshav Narayan Alagarsamy^{a,b}, Abhay Srivastava^{a,b}, Niketa Sareen^{a,b}, Rakesh C. Arora^{b,c}, Sanjiv Dhingra^{a,b,*}

^a Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0W2, Canada

^b Institute of Cardiovascular Sciences, Albrechtsen St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada

^c Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0W2, Canada

[#]*A.R and W.Y contributed equally to this work.*

*Correspondence: Sanjiv Dhingra, PhD, FAHA, FAPS Regenerative Medicine Program Director: Canada Italy Tissue Engineering Program Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre R-3028-2, 351 Tache Avenue, Winnipeg, R2H2A6, Canada Email: sdhingra@sbrc.ca

Supplementary Figure S1: Morphology and elemental composition characterization of Ta_4AlC_3 MAX phase. (A) FESEM image showing the microstructure of Ta_4AlC_3 MAX phase bulk before etching with the HCl/NaF. (B, C) Back-scattered SEM image and EDS analyses of Ta_4AlC_3 MAX phase to evaluate its elemental composition. The EDS histogram revealed C, Ta, O, and Al as the main elements. In particular, EDS results confirmed significant Al layers in the material structure, with an atomic percentage of ~ 20%.

Supplementary Figure S2: Elemental composition analysis of the HCl/NaF exfoliated $Ta_4C_3T_x$ MXene nanosheets. (A) EDS histogram showed C, Ta, and O as the main elemental composition of the etched nanosheets. The weight percentage of Al (~ 0.1%) confirmed that our innovative protocol could etch and exfoliate the Ta₄AlC₃ MAX phase to MXene nanosheets. (B) EDS mapping further demonstrated the distribution of C, Ta, and O within the Ta₄C₃T_x MXene nanosheets.

Supplementary Figure S3: *Size and crystallinity of* $Ta_4C_3T_x$ *MQDs.* (A, B) High-resolution TEM (HRTEM) micrograph of MQDs revealed uniform distribution of particles with a median size of 3.323 nm. The statistical analysis and frequency histogram revealed that the maximum particle size of a single MQD is 5.574 nm. This geometry was specifically obtained by the applied hydrothermal treatment and can be varied at different processing temperatures. (C) The HRTEM image and corresponding fast Fourier transform (FFT) pattern for a single Ta₄C₃T_x MQD demonstrated a highly crystalline 0D material with lattice d-spacing of 0.328 nm (inner plane: 0.238 nm). Our FFT data illustrate the orientation of the MQDs that demonstrates the crystalline structure of the material. (**D-F**) HRTEM and FFT of Ta₄C₃T_x MQDs at 1 year after synthesis revealed no significant changes compared to the initial measurements, confirming the long-term stability and shelf-life of as-synthesized quantum dots.

Supplementary Figure S4: Elemental composition analysis of as-synthesized $Ta_4C_3T_x$ MQDs. (A) The EDS point and (B) line scan analysis of MQDs showed that the main elemental composition of the particles included Ta, C, O, F, and Na. This suggested that the employed fabrication method in the current study was effective, and the Al layers were significantly removed during the synthesis process. Also, the low concentration of Cl in the MQDs composition confirms the efficiency of HCl to synthesize MXene materials. The relatively higher concertation of Na and F in elemental map describes the bonding in MQDs structure. (C) The scanning TEM image and EDS mapping of MQDs further showing the elemental composition.

Supplementary Figure S5: *XRD phase characterization of pristine* Ta_4AlC_3 *MAX phase.* (A-C) The XRD analysis of bulky Ta₄AlC₃ MAX phase revealed its crystalline structure with significant presence of Al. The XRD spectra of MAX phase contains a dominant peak at ~ 16° 20. The phase pattern of Ta₄AlC₃ includes a contamination peak of tantalum carbide (Ta₂C) at ~ 50° 20. These data are in agreement with the standard XRD structure of Ta₄AlC₃ MAX phase. The peaks of the tantalum aluminium carbide were matched with a standard XRD pattern (ICSD156383, 96-210-3218, α-alumina).

Supplementary Figure S6: *XPS characterization of* Ta_4AlC_3 *MAX phase and* $Ta_4C_3T_x$ *MQDs.* (A) Wide scan survey of the MAX phase showing its surface composition. The XPS measurement detected a significant amount of Al in MAX phase with an atomic percentage of 3.19. The presence of atomic oxygen in the MQDs increased from 33.15% in MAX phase to 43.51% in MQDs (Figure 2E). (B) The Al 2p XPS narrow scan spectrum of $Ta_4C_3T_x$ MQDs displayed significant removal of Al from the material. (C-E) The Cl 2p, Na 1s, and F 1s spectra of $Ta_4C_3T_x$ MQDs. The F 1s include Ta–F, and C–F bonds at the binding energies of 684.06 and 687.45. This provided further support that our innovative protocol successfully synthesized, and surface functionalized the MQDs.

Supplementary Figure S7: Assessment of optical absorption of $Ta_4C_3T_x$ MQDs. (A) Our UV-Vis spectrum of MQDs displayed dose-dependent absorption properties with a broad peak at a wavelength of ~ 300 nm. Additionally, when the UV-Vis analysis of $Ta_4C_3T_x$ MQDs was repeated six months after synthesis, no significant differences were observed in its optical absorption profile. This confirmed adequate stability of as-synthesized MQDs for the targeted biomedical applications. (B) Furthermore, optical microscope images of colloidal $Ta_4C_3T_x$ MQDs showed high stability in aqueous media without significant agglomeration or precipitation at concentrations up to 300 µg·mL⁻¹.

Supplementary Figure S8: Assessment of electrical conductivity of $Ta_4C_3T_x$ MQDs. The electrical conductivity of $Ta_4C_3T_x$ MQDs as measured by DuraProb 4-Electrode Probe (Thermo Scientific) in an aqueous colloidal dispersion was $10543 \pm 77 \ \mu S \square \text{cm}^{-1}$ at a concentration of 250 $\mu \text{g} \square \text{mL}^{-1}$, compared to $0.737 \pm 0.027 \ \mu S \square \text{cm}^{-1}$ for distilled water measured under the same conditions.

Supplementary Figure S9: Assessment of lactate dehydrogenase release from endothelial cells cultured with $Ta_4C_3T_x$ MQDs at 7 days. No significant differences were observed in cytotoxicity between control cells and those treated with 0.5 to 20 µg·mL⁻¹ of Ta₄C₃T_x MQDs.

Supplementary Figure S10: *Co-culture of activated and polarized naïve human CD4*⁺ *lymphocytes with Ta₄C₃T_x MQDs.* Naïve human CD4⁺ T-lymphocytes were isolated using negative magnetic activated cell sorting and activated/polarized using plate-bound anti-CD3, soluble anti-CD28, and exogeneous IL-2 and IL-12 in the presence and absence of Ta₄C₃T_x MQDs. (A) After 7 days, no significant differences were observed in the degree of T-cell proliferation and (B) percentage of T_H1 (IFN- γ^+) CD4⁺ T-lymphocytes between cells treated with and without Ta₄C₃T_x MQDs.

Supplementary Figure S11: Activation of human umbilical vein endothelial cells by interferon gamma (IFN- γ) after 24 hours. HLA-DR α expression was normalized to β -actin expression in order to assess endothelial activation and antigen presentation induced by IFN- γ . (A-B) As shown by Western Blot analysis, addition of 10 units·mL⁻¹ of recombinant IFN- γ induced robust activation of human umbilical vein endothelial cells in both control cells and those treated with 20 µg·mL⁻¹ of Ta₄C₃T_x MQDs (p<0.001 for the comparison shown).

Supplementary Figure S12: Histologic assessment of the lung, liver, and kidney from animals undergoing aortic transplantation and $Ta_4C_3T_x$ MQDs injection. No gross histologic changes were observed on H&E staining of sections from these organs.

Supplementary Figure S13: *Characterization of human umbilical vein endothelial cells used for in vitro experiments.* Cells were characterized by the commercial vendor as 100% double positive for PECAM-1 (CD31) and Endoglin (CD105) and were additionally tested in our study to be strongly positive for both von Willebrand factor (vWF) and VE-Cadherin (CD144). This is in keeping with the expected surface marker expression for HUVECs.

Supplementary Table S1: XPS peak fitting results for $Ta_4C_3T_x$ MQDs. The XPS wide scan atomic percentage of $Ta_4C_3T_x$ MQDs and its Ta_4AlC_3 MAX phase. Peak fitting results for $Ta_4C_3T_x$ MQDs are also presented here.

Sample	Elements	Overall	Component	Binding Energy (eV)	Component	FWHM	
-		Atomic %	Name		Atomic %	(eV)	
$Ta_4C_3T_x MQDs$	Ta 4f _{7/2}	9.72	Ta-C _x	21.57	1.2	2.37	
~ ~ ~	$(4f_{5/2})$		Ta ⁴⁺ –O (TaO _{2 7/2})	24.49	32.06	1.29	
			Ta–C _x	24.89	30.6	2.25	
			Ta ⁴⁺ –O (TaO _{2 5/2})	26.31	17.4	1.15	
			Ta ⁵⁺ -O (Ta ₂ O _{5 7/2})	26.78	18.13	1.48	
			Ta ⁵⁺ –O (Ta ₂ O _{5 5/2})	28.79	0.61	0.78	
	C 1s	40.77	С-Та	281.22	0.09	1.02	
			С-Та	283.23	45.81	1.31	
			C=C	283.76	13.89	1.77	
			C–C	285.12	32.39	1.33	
			C–N	286.22	4.58	0.98	
			C-O	287.02	3.16	1.69	
			C=O	288.7	0.08	0.62	
	O 1s	43.51	Ta-Oxide	528.55	9.07	1.41	
			$Ta_4C_3O_x$	529.66	8.29	1.61	
			Ta ₄ C ₃ (OH) _x	531.42	81.1	1.99	
			H ₂ O _{ads} / Ta ₄ C ₃ (OH) _x	534.6	1.53	1.79	
	F 1s	2.42	Ta–F	684.06	71.82	2.39	
			C–F	687.45	28.18	1.65	
	Cl 2p _{3/2}	1.81	Cl 2p	196.44	88.46	1.56	
	$(2p_{1/2})$		Nonmetal Cl	201.48	11.54	1.06	
	Na 1s	1.35	Ta-Oxide	1067.45	1.86	0.54	
			Та–С	1069.97	67.07	1.47	
			Na ⁺ ions (NaCl)	1070.85	31.07	1.35	
	N 1s	0.43					
	Al 2p	0.00					
Ta ₄ AlC ₃ MAX Phase	Ta 4f _{7/2}	32.15					
	$(4f_{5/2})$						
	C 1s	33.15					
	O 1s	31.51					
	Al 2p	3.19					

Supplementary Table S2: List of western blotting antibodies used in this study.

Antibody Name	Vendor	Catalog Number	Dilution
Anti-HLA-DR α antibody	Santa Cruz Biotechnology	sc-55592	1:200
HRP anti-β-actin antibody	Santa Cruz Biotechnology	sc-47778	1:10,000
HRP anti-mouse secondary	Bio-Rad Laboratories	1706516	1:10,000

Antibody Name	Clone	Vendor	Catalog Number	Quantity (for 10 ⁶ cells in 100 μL)
PE anti-human CD3	UCHT1	BioLegend	300456	0.5 µg
FITC anti-human CD4	RPA-T4	BioLegend	300506	2 µg
PerCP anti-human IFN-γ	4S.B3	BioLegend	502524	0.5 µg
AF647 anti-human IL-4	8D4-8	BioLegend	500712	0.25 µg
FITC anti-rat CD4	W3/25	BioLegend	201505	0.25 µg
PE anti-rat CD25	OX-39	BioLegend	202105	0.25 µg
PE mouse IgG1k isotype	MOPC-21	BioLegend	400111	n/a
FITC mouse IgG1k isotype	MOPC-21	BioLegend	400107	n/a
PerCP mouse IgG1k isotype	MOPC-21	BioLegend	400147	n/a
AF647 mouse IgG1k isotype	MOPC-21	BioLegend	400135	n/a

Supplementary Table S3: List of flow cytometry antibodies used in this study.

Human Gene	Strand	Sequence (5' to 3')							
$NE_{\nu}B(p65)$	S	GCT	GCA	TCC	ACA	GTT	TCC	AGA	
М-кв (роз)	as	CCC	CAC	GCT	GCT	CTT	CTA	Т	
IR F1	S	CCT	CCA	CCT	CTG	AAG	CTA	CAA	С
	as	CCA	TCC	ACG	TTT	GTT	GGC	ΤG	
ΤΔΡ1	S	TCG	TTG	TCA	GTT	ATG	CAG	CG	
1741 1	as	AAT	GGC	CAT	CTC	CCC	AAG	AG	
	S	GAG	TAT	TGG	GAC	CAG	GAG	ACA	С
IILA-A	as	CCA	CGT	CGC	AGC	CAT	ACA	TTA	
B2M	S	GAT	GAG	TAT	GCC	TGC	CGT	GΤ	
	as	CTG	CTT	ACA	TGT	CTC	GAT	CCC	А
VCAM_1	S	GGA	AAT	GAC	CTT	CAT	CCC	TAC	CA
VCAWI-1	as	ATC	TCT	GGG	GGC	AAC	ATT	GA	
ICAM-1	S	AGC	TTC	GTG	TCC	TGT	ATG	GC	
ICAW-1	as	TTT	TCT	GGC	CAC	GTC	CAG	ΤT	
PECAM_1	S	GCT	GAC	CCT	TCT	GCT	CTG	TT	
I ECAM-I	as	ATC	TGG	TGC	TGA	GGC	TTG	AC	
VE Cadharin	S	CTT	CAC	CCA	GAC	CAA	GTA	CAC	A
VE-Cauliellii	as	AAT	GGT	GAA	AGC	GTC	CTG	GΤ	
E Salaatin	S	CCG	AGC	GAG	GCT	ACA	TGA	AT	
E-Selectili	as	GCA	TCG	CAT	CTC	ACA	GCT	ΤС	
D Salaatin	S	CAT	CCG	CTC	ACT	GCT	TTT	GC	
r-Selectili	as	AAT	CCA	TGC	TTC	CGT	GGA	CA	
EASLigand	S	CTA	CCA	GCC	AGA	TGC	ACA	CA	
TAS Ligand	as	CCT	TGA	GTT	GGA	CTT	GCC	TGT	
CCI 2	S	AGA	TCT	GTG	CTG	ACC	CCA	AG	
CCL2	as	GGA	GTT	TGG	GTT	TGC	TTG	TCC	
CYCLO	S	GGT	GTT	CTT	TTC	CTC	TTG	GGC	
CACL9	as	TTC	TCA	СТА	CTG	GGG	TTC	CTT	G
CYCL 10	S	AAG	TGG	CAT	TCA	AGG	AGT	ACC	Т
CACLIO	as	GGA	CAA	AAT	TGG	CTT	GCA	GGA	
	S	ACT	CCG	ATC	ACC	AAT	GTA	CCT	С
IILA-DKu	as	ACG	TTG	GGC	TCT	CTC	AGT	ΤС	
СШТА	S	CAC	CAT	CCC	ATT	CAG	TGT	CCA	
CIIIA	as	TCC	AGC	GTG	GTT	AGT	GTC	СТ	
	S	CCT	CTG	GCA	CAT	CCT	CCA	AAT	
	as	GCT	GGA	TTA	CGT	CTC	CTC	CAA	
CD86	S	CGA	CGT	TTC	CAT	CAG	CTT	GTC	
	as	TCC	AAG	GAA	TGT	GGT	CTG	GG	
ACTR	S	CTT	CGC	GGG	CGA	CGA	Т		
	as	CCA	CAT	AGG	AAT	CCT	TCT	GAC	С

Supplementary Table S4: List of quantitative PCR primers used in this study.

Antibody Name	Vendor	Catalog Number	Dilution
Mouse anti-rat CD8a	Cedarlane	CL004AP	1:100
Goat anti-human/mouse/rabbit/rat α-SMA	Novus Biologicals	NB300-978	1:300
Mouse anti-human vWF	abcam	ab201336	1:200
Rabbit anti-human VE cadherin	abcam	ab33168	1:100
AF488 goat anti-mouse secondary	Invitrogen	A-11017	1:500
AF647 goat anti-rabbit secondary	Invitrogen	A-21246	1:500
AF647 goat anti-mouse secondary	Invitrogen	A-21237	1:500
AF647 donkey anti-goat secondary	abcam	ab150135	1:500

Supplementary Table S5: List of immunocytochemistry antibodies used in this study.

Supplementary Equation S1, S2: *The Beer-Lambert Theory* describes UV-Visible absorption arising from the surface of $Ta_4C_3T_x$ MQDs and correlates to its optical properties. The novel α for the aqueous colloidal dispersion of this material was presented in the manuscript.

Absorbance (A) = $\log(I_o/I) = \alpha^* L^* c$

$$\alpha = A / (L^*c)$$

where,

 $I_{\rm o}$ is the intensity of the light on the colloidal suspensions α refers the absorptivity of the absorber or absorption coefficient L signifies the path length that the light travels through the sample c assigns to the concentration of the material.

(Equation 1)

(Equation 2)