Supplemental Information

IL12 integrated into the CAR exodomain converts

CD8⁺ T cells to poly-functional NK-like cells

with superior killing of antigen-loss tumors

Andreas Hombach, Markus Barden, Lisa Hannappel, Markus Chmielewski, Gunter Rappl, Agapios Sachinidis, and Hinrich Abken

Supplementary Figures

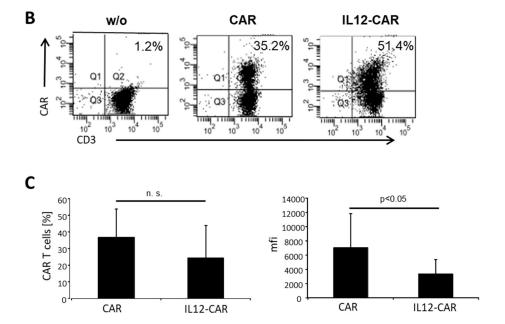
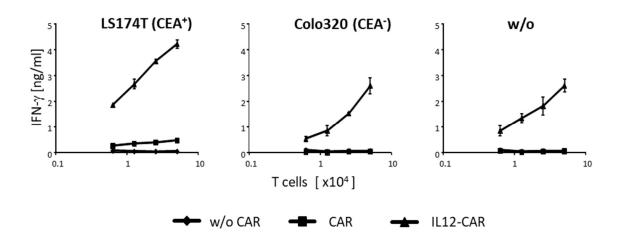
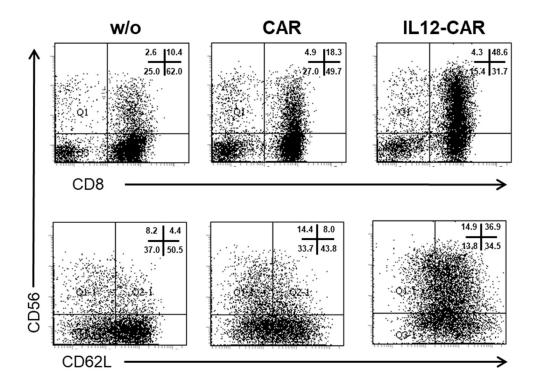
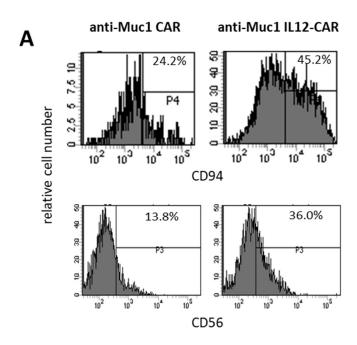


Figure S1

The IL12-CAR was expressed on the surface of peripheral blood T cells.

- (A) Peripheral blood lymphocytes from healthy donors were retrovirally transduced for expression of the anti-CEA IL12-CAR or the homologous CAR without IL12. The CAR was detected by the anti-IgG antibody that binds to the extracellular spacer. A representative dot blot is shown.
- (B) CAR expression by T cells. Figures represent mean values of the number of CAR T cells and mean fluorescence intensity (mfi) of the CAR in arbitrary units. The same numbers of T cells express the IL12-CAR, however, at lower levels per cell compared with the CAR without IL12. Data represent mean values of 10 healthy donors <u>+</u> SD. Statistical analysis was performed by the Student's T test; n.s., not significant.


Figure S2 $IL12\text{-CAR induced IFN-}\gamma \ secretion \ independently \ of \ CAR \ engagement \ of \ target.$

T cells with and without engineered CAR (each $0.625\text{-}5x10^4$ cells/well) were co-cultivated for 48 h in 96 micro-test plates with CEA⁺ LS174T or CEA⁻ Colo320 tumor cells (each $2.5x10^4$ cells/well) and without tumor cells (w/o), respectively. Supernatants were tested for IFN- γ by ELISA. Numbers represent mean values of technical triplicates \pm SD. Data of a representative experiment out of 3 are shown.

Figure S3IL12-CAR T cells acquired a CD8+CD56+CD62Lhigh phonotype.

Peripheral blood lymphocytes were engineered to express the conventional CAR or the IL12-CAR, both of same specificity for CEA, and tested 4-6 days after transduction for CD8+CD56+CD62Lhigh T cells by flow cytometry. Non-transduced T cells (w/o CAR) served as control. Dot blots of a representative blood donor are shown.

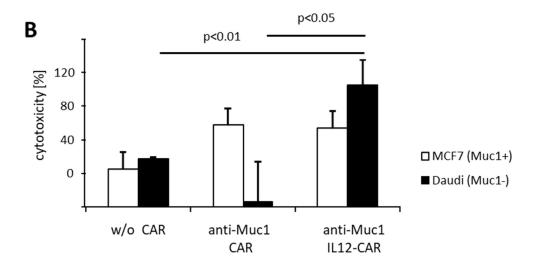


Figure S4

Acquisition of a CD94⁺CD56⁺ phenotype and antigen-independent NK-like cytotoxicity by IL12-CAR T cells with specificity for Muc-1.

- (A) T cells were engineered with a conventional CAR or IL12-CAR, each with specificity for Muc1. CAR T cells were detected by the anti-IgG1 antibody that binds to the common extracellular spacer, gated and analyzed by flow cytometry 4 and 7 days post-transduction for CD94 and CD56 expression, respectively. Histograms of a typical experiment are shown.
- (B) T cells with Muc1 specific conventional CAR or IL12-CAR were co-cultivated (2x10⁴ T cells/well) for 48 h with Muc1⁺ MCF7 or Muc1⁻ Daudi tumor cells (2x10⁴ T cells/well). Viability

of target cells was determined by the XTT assay and specific cytotoxicity was calculated. Numbers represent mean values of technical replicates \pm SD. Representative results of two independent experiments are shown. Statistical differences were determined by Student's T test.