

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Prevalence of SARS-CoV-2 infection among the Brazilian Amazon indigenous populations

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054271
Article Type:	Original research
Date Submitted by the Author:	08-Jun-2021
Complete List of Authors:	Lima, Carlos Neandro ; Universidade Federal do Para Abreu, Isabella; Universidade Federal do Pará Rodrigues, Eliene Putira; Universidade Federal do Para Freitas, Vanessa; Universidade Federal do Pará Botelho, Bruno José ; Universidade Federal do Para Souza, Sandra; Universidade Federal do Para Cayres-Vallinoto, Izaura; Universidade Federal do Para Guerreiro, João; Universidade Federal do Para Ishak, Ricardo; Universidade Federal do Para Vallinoto, Antonio; Universidade Federal do Para
Keywords:	COVID-19, EPIDEMIOLOGY, INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Prevalence of SARS-CoV-2 infection among the Brazilian Amazon indigenous

populations

Carlos Neandro Cordeiro Lima,¹ Isabella Nogueira Abreu,¹ Eliene Putira Sacuena

Rodrigues,² Vanessa de Oliveira Freitas,¹ Bruno José Sarmento Botelho,¹ Sandra

Souza Lima,¹ Izaura Maria Vieira Cayres Vallinoto,¹ João Farias Guerreiro,^{* 2} Ricardo

Ishak,*1 Antonio Carlos Rosário Vallinoto*1

¹ Laboratório de Virologia, Instituto de Ciências Biológicas da Universidade Federal do

Pará, Belém, PA, Brasil;

² Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas da

Universidade Federal do Pará, Belém, PA, Brasil.

* RI, JFG and ACRV are senior authors of the manuscript

Correspondence to Dr. Antonio Carlos Rosário Vallinoto; vallinoto@ufpa.br

ABSTRACT

Objectives The emergence of SARS-CoV-2 and its spread at a pandemic level generated a serious warning over the impact of the infection on vulnerable indigenous populations of the Brazilian Amazon. Thus, the present study aimed to perform seroepidemiological survey for antibodies anti-SARS-CoV-2 in those populations. **Methods** We performed a cross-sectional study to investigate the prevalence of antispike (S1) IgG antibodies among six indigenous ethnic groups living in the State of Pará (Northern Brazil). The villages of Xikrin do Bacajá, Assurini, Araweté, Parakanã, Munduruku and Kararaô were visited from October 2020 to January 2021 and 1,185 individuals, of both sexes, were enrolled in the investigation. Sera were tested for the presence of anti-SARS-CoV-2 IgM and IgG antibodies using two assays (a lateral flow rapid test and an ELISA assay). **Results** The prevalence of IgM and IgG antibodies was 6.9% and 68,3%, respectively,

ranging from 0 to 79.6% with significant differences between ages in two communities

(Araweté and Munduruku) and a case fatality rate of 0.86%. Herd immunity was

probably attained but the presence of IgM positivity showed ongoing cases.

Conclusion SARS-CoV-2 was rapidly spread among the indigenous populations

investigated, but it carried a low mortality. It is necessary to expand the serological

investigations towards other communities in the Amazon region of Brazil.

Keywords: SARS-CoV-2, COVID-19, Indigenous peoples, Amazon.

Strengths and limitations of this study

• Our previous reports called the attention to the distinct cultural and health

aspects of the Amazonian peoples, the impact of the virus among native peoples,

and the importance of performing seroepidemiological surveys among vulnerable

populations.

• The results showed that SARS-CoV-2 infection reached the different indigenous

peoples living in the Brazilian Amazon region in an almost homogeneous way.

BMJ Open

1	
2 3	
4	 The results highlight that SARS-CoV-2 infection hit the indigenous populations as
5	
6	
7	rapidly as the virus entered the Amazon region, without the predicted mortality.
8	
9 10	
10 11	 The high IgG prevalence suggest the herd immunity was probably attained but
12	
13	
14	the presence of IgM positivity showed ongoing cases.
15	
16	
17	 Furthermore, seroepidemiological surveys are of paramount importance for
18 10	
19 20	
20	monitoring the outcome of the national contingency plan for the prevention and
22	monitoring the outcome of the national contingency plan for the prevention and
23	
24	control of the onidomic
25	control of the epidemic.
26	
27	
28	
29 30	
31	
32	INTRODUCTION
33	
34	
35	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first
36	
37	
38 39	cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in
40	cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in
41	
42	When this 1 The regidenced of the view determined its classification as negative
43	Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic
44	
45	
46	by WHO ² and because of the high morbimortality it highlighted the burden to vulnerable
47 48	
40 49	
50	populations, including native indigenous peoples living in the Brazilian Amazonian who
51	
52	
53	are susceptible to the virus and could be devastated by their immunological frailty. ³⁻⁶
54	
55	
56	
57	
FO	
58 59	
58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Two previous reports form our laboratory calls the attention to the distinct cultural and

health aspects of the Amazonian peoples, the impact of the virus among native peoples,

and the importance of performing serosurveys among these groups to determine the

spectrum of the illness among them. 57

METHODS

In 2020, a large cross-sectional seroepidemiological surveillance among indigenous ethnic groups within Para State (Northern Brazil, Amazon), started to investigate the prevalence of anti-SARS-CoV-2 IgM and IgG antibodies and the impact of the virus on the health of communities. The study was approved by the leaders of the communities and by the National Research Ethics Committee (Comissão Nacional de Ética em Pesquisa – CONEP; CAAE: 33470020.0.1001.0018), in accordance with the Declarations of Helsinki. From October 2020 to January 2021, multiprofessional health care expeditions were prepared, composed by our team, the staff of the Health Department of the State of Para (Secretaria de Saúde do Estado do Pará - SESPA) and the Special Indigenous

Page 7 of 21

BMJ Open

Health Districts of Altamira and Santarém (Distrito Sanitário Especial Indígena – DSEI) of the Special Secretariat of Indigenous Health (Secretaria Especial de Saúde Indígena - SESAI-MS). Six ethnic groups were visited while presenting active cases of COVID-19, before starting the vaccination campaign among indigenous communities. The groups investigated were from the Tupi (Asurini do Koatinemo, Araweté, Parakanã, and Munduruku) and Jê (Xikrin do Bacajá and Kararaô) linguistic trunks. The groups are geographically located in the State of Pará, Northern of Brazil (Figure 1). The Araweté is located at the margin of the Ipixuna stream, a tributary of the right margin of the Middle Xingu. Asurini is situated on the banks of the Igarapé Ipiaçava, a tributary of the right bank of the Xingu. Kararaô is also at the margin of the Xingu stream. Parakanã and Xikrin villages are located on the margin of the Xingu River, between the municipalities of São Felix do Xingu and Senador José Porfírio. Munduruku villages are located southwest, by the Tapajós river, in the municipalities of Santarém, Itaituba, and Jacareacanga). The investigation included 1,185 individuals of both sexes (552 male and 633 female),

randomly selected from the Araweté (n=508), Asurini (n=08), Munduruku (n=317),

Parakanã (n=210), Xikrin (98) and Kararaô (n=44). All individuals were clinically

evaluated and a blood sample (5 mL) was drawn to test for the presence of anti-SARS-

CoV-2 IgM and IgG antibodies.

The prevalence of anti-SARS-CoV-2 IgG and IgM antibodies used a rapid test (lateral

flow method; Guangzhou Wondfo Biotech Co., China) and an enzyme-linked

immunosorbent assay (ELISA; Anti-SARS-CoV-2 S1 IgG, Euroimmun, Brazil),

according to the manufacturer's recommendation.

Patient and public involvement

Neither patients, parents nor the public were involved in the design, conduct or reporting

ez.

of this research.

RESULTS

Anti-SARS-CoV-2 IgG was detected among 503 (68.3%) individuals by the rapid test

and 815 (68.8%) when tested by the ELISA (Table 1). Eight Asurini did not show

antibodies, but among the other villages, it ranged (by the Elisa test) from 51.7%

BMJ Open

(Munduruku) to 79.5% (Araweté and Kararaô). No statistical significance was observed between the tests. It is worth mentioning that IgM antibodies detected among 51 (6.9%) individuals from three villages. There was no statistical significance of prevalence values according to sex (χ^2 = 0.001; p=0.9793), but in the Araweté the frequencies were significantly lower among those >31 years old (p=0.0065) and in the Munduruku a lower frequency among those <6 years old and greater (p<0.0001) among those older than 31 years old (Table 2).

BMJ Open

Table 1. Prevalence of anti-SARS-CoV-2 (S1) IgG antibodies among Indigenous villages

Population	Age range	Sex			Rapid To	est results		ELISA IgG anti-Spike S1 results				
	-	Male	Female	N	Negative	IgM	IgG	Ν	Negative	Ind	IgG	-
		N (%)	N (%)	tested	N (%)	N (%)	N (%)	tested	N (%)	N (%)	N (%)	
Xikrin do Bacajá ^[7]	02 a 84	51 (52.0)	47 (48.0)	95	38 (40)	nt	57 (60)	98	25 (25.5)	0 (0)	73 (74.5)	01
Asurini	17 a 42	0 (0)	8 (100)	0	nt	nt	nt	08	7 (87.5)	1 (12.5)	0 (0)	0
Araweté	8m a 84	258 (50.8)	250 (49.2)	236	29 (12.3)	11 (4.7)	196 (83)	508	92 (18.1)	12 (2.4)	404 (79.5)	0
Parakanã	7m to 95 y	106 (50.5)	104 (49.5)	195	06 (3.1)	39 (20)	150 (76.9)	210	65 (30.9)	06 (2.8)	139 (66.2)	01
Munduruku	7 m to 89 y	116 (36.6)	201 (63.4)	166	96 (57.8)	nt	70 (42.2)	317	139 (43.9)	14 (4.4)	164 (51.7)	05
Kararaô	1 a 94	21 (47.7)	23 (52.3)	44	13 (29.5)	1 (2.3)	30 (68.2)	44	9 (20.4)	0 (0)	35 (79.5)	0
Total	7m a 95 y	552 (46.6)	633 (53.4)	736	182 (24.7)	51 (6.9)	503 (68.3)	1.185	337 (28.4)	33 (2.8)	815 (68.8)	07

1	
2 3	
4	
5	
0 7	
8	
9 10	
11	
12 13	
14	
15 16	
17	
18 10	
20	
21 22	
22	
24 25	
25 26	
27	
28 29	
30	
31 32	
33	
34 35	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 212 23 24 25 26 27 289 301 312 333 345 367 375 3	
37 38	
39	
40 41	
42	
43 44	
44 45	
46	
47	

Age	Xi	krin ^[7]	As	urini	Ar	aweté	Par	akanã	Mun	duruku	Ka	raraô	Total
	male	female	male	female	male	female	male	female	male	female	male	female	n/ total (%)
0-6	5	2	0	0	44	27	10	6	7	6	3	1	111/1,185 (9.4)
>6 a 16	15	11	0	0	61	56	18	18	8	17	6	8	218/1,185 (18.4)
>16 a 31	9	13	0	0	56	66	12	21	14	44	2	6	(18.4) 241/1,185 (20.3)
>31	10	8	0	0	45	49	27	27	26	42	3	6	243/1,185 (20.5)
*not informed	0	0	0	0	0	0	0	0	1	1	0	0	2/1,185 (0.2)
Total	39	34	0	0	206	198	67	72	55	109	14	21	815/1,185 (68.8)

Table 2. Age and sex distribution to anti-SARS-CoV-2 (S1) IgG antibodies among Indigenous villages

[7] Rodrigues et al. (2021); Age distribution: (Overall: χ^2 =8.2; p=0.042); (Xikrin: G=7.8; p=0,0514); (Araweté: χ^2 =12.3; p=0.0065); (Parakanã: χ^2 =3.9; p=0.2753); (Munduruku: χ^2 =23.8; p<0.0001); (Kararaô: G=4.4; p=0.2213). G - G test; χ^2 - Qui-square.

The main clinical manifestations reported among infected individuals were coughing,

dyspnea, coryza, fever, fatigue, diarrhea, ear pain, headache, chest and back pain.

There were seven deaths among the 815 infected persons showing a case fatality rate

of 0.86%.

DISCUSSION

Introduction of new infectious agents among vulnerable indigenous peoples is thought to be a heavy burden because of the low genetic variability among genes that control the immune response,⁸ an important element working as a selective pressure over indigenous peoples since the initial colonization process of the Amazon region of Brazil. SARS-CoV-2, brought the question again as to how the virus would affect native peoples? Despite the theoretical arguments for the possible speculative devastation of indigenous groups,⁶ there was no confirmed evidence of susceptibility to Covid-19 in the presence of coinfections and pre-existing conditions, including obesity and malnutrition as previously suggested.^{4 5}

BMJ Open

Most of the indigenous peoples of the Amazon region of Brazil, including those of the present study, present endemic diseases as malaria, tuberculosis, virus hepatitis and, to HTLV-2 hyperendemic infections among Xikrin, Kararaô, Munduruku and Parakanã.⁹ Presently, there is no scientific evidence for host modulation of SARS-CoV-2 in the presence of these coinfections. Environmental and social conditions are important factors that could impact on COVID-19 among indigenous communities,³⁴ including the lack of drinking water and malnutrition, which might had been potentialized after the prophylactic isolation measures. In a previous report the quality of tests to measure the presence of antibodies was raised.⁷ It is important that antibodies to SARS-CoV-2 are detected using tests with greater sensitivity and specificity to obtain accurate prevalence rates. Rapid tests show low sensitivity and yield false negative results and false-positive results due to crossreactions. Two methodologies were used and the results obtained were not significantly different. In contrast to the genetic and socio-environmental vulnerability the results showed SARS-CoV-2 infection evenly distributed, with a high prevalence of the virus and few

BMJ Open

reported deaths, confirming the official results by SESAI in its COVID-19

> epidemiological bulletin.¹⁰ The prevalence of anti-SARS-CoV-2 IgG antibodies shows a high dissemination of the virus spread favored by inherent social and cultural difficulties of keeping social distance, sharing households with other families and wearing masks correctly. In spite of the high prevalence of infection, during the investigation they were still facing the epidemic, showed by the detection of IgM antibodies in three villages. It is relevant to mention that three villages are more than 100Km apart from each other and there is no simple way of communication among them. This raises another important question in regard to herd protective immunity. Apparently, the communities achieved herd immunity levels,¹¹ similarly as found in Manaus, the capital of the Amazonas State.¹² However, differently from what is seen among urban areas,¹³ virgin soil epidemics generally exhaust susceptible individuals before it comes to an end,¹⁴ and the present epidemic is still not totally explained and understood. The results show new information over the SARS-CoV-2 epidemic among indigenous peoples and provides the Brazilian government with tools to establish adequate

BMJ Open

3	
4	
5 6	
6	
7	
8	
9	
10	
11	
12	
13	
14 15	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
59 60	
υU	

measures to control the epidemic among Brazilian indigenous communities in the Amazon region. CONCLUSION SARS-CoV-2 infection reached the indigenous populations from the State of Para as rapid as the virus entered the Amazon region, confirming our previous alert to the need of serological studies for surveillance, minimizing the burden of the epidemic and to promote indigenous health policies. In spite of the suggestion of high mortality and chaos facing the Amerindian populations (b), the majority of the cases was asymptomatic or mild, with low fatality rate, supporting analysis that shows that the mortality associated with epidemics following contact of Amazonian indigenous communities with urban communities has decreased in recent years.15 Finally, continuing seroepidemiological surveys are of paramount importance for monitoring the outcome of the national contingency plan for the prevention and control of the epidemic, by a mass vaccination program for indigenous peoples started by February 2021.

Acknowledgments We thank the Indigenous populations for authorizing the study and the institutions that provided technical support for the development and implementation of this study. Our especial gratitude to Vilson Monteiro and Hailton Monteiro for laboratorial assistance during the expeditions to Indigenous villages. Contributor ACRV, JFG and RI: conception of idea, data analysis, writing and editing of manuscript; ACRV, RI, JFG, INA, BJSB and CNCL: Acquisition, analysis, or interpretation of data; CNCL, RI, IMVCV: Drafting of the manuscript; ACRV, RI, JFG and IMVCV: Critical revision of the manuscript for important intellectual content; SSL: Statistical analysis; ACRV: Obtained funding; VOF and EPSR: technical and material support. Funding This study was supported by the National Council for Scientific and Technological Development (CNPq Project; MCTIC/CNPq/FNDCT/MS/SCTIE/DECIT n. 401235/2020-3); Coordination for the Improvement of Higher Education Personnel

(CAPES: 88887.612787/2021-00); and Federal University of Pará (UFPA-

1	
2	
3	PROPESP/PAPQ-2021). CNPq Research Grants were received by ACRV (#-
4	
5	
6	00400047 0) DI (1040070/0040 5)
7	301869/2017-0), RI (#312979/2018-5).
8 9	
9 10	
10	
12	
12	
13	Composing interests None dealared
15	Competing interests None declared
16	
17	
18	
19	
20	
21	Patient and public involvement Neither patients, parents nor the public were involved in
22	T allent and public involvement weither patients, parents nor the public were involved in
23	
24	
25	the design, conduct or reporting of this research.
26	
27	
28	
29	
30	
31	Defined anne ad fan mulikastien Niet as múnchie
32	Patient consent for publication Not requirable
33	
34	
35	
36	
37	
38	Ethics approval The study was approved by the leaders of the communities and by the
39	Luncs approval the study was approved by the leaders of the communities and by the
40	
41	
42	National Research Ethics Committee (<i>Comissão Nacional de Ética em Pesquisa</i> –
43	
44	
45	CONEP; CAAE: 33470020.0.1001.0018), in accordance with the Declarations of
46	
47	
48	
49 50	Helsinki.
50	
51 52	
52	
53	
54 55	
رر	

Data availability statement Data are available upon reasonable request (vallinoto@ufpa.br)

REFERENCES

1. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. *Nature* 2020;579(7798):265-269.

https://doi.org/10.1038/s41586-020-2008-3.

2. World Health Organization. Coronavirus disease (COVID-2019) situation reports;

2020. https://www.who.int/emergencies/diseases/novel-coronavirus-

2019/situation-reports/ Accessed March 27, 2020.

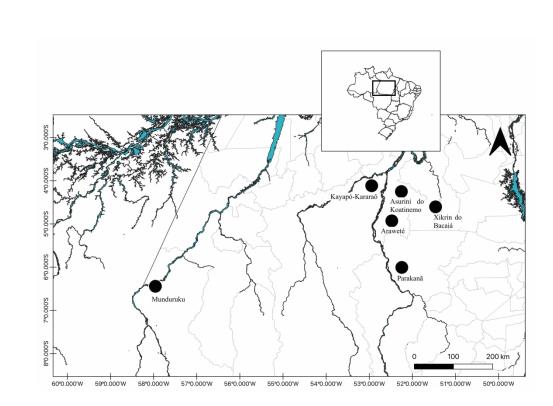
3. Fiocruz. 4º relatório sobre risco de espalhamento da COVID-19 em populações

indígenas. Risco de espalhamento da COVID-19 em populações indígenas:

considerações preliminares sobre vulnerabilidade geográfica e

sociodemográfica. Available from: https://portal.fiocruz.br/documento/4o-relatorio-

BMJ Open


	sobre-risco-de-espalhamento-da-covid-19-em-populacoes-indigenas. Accessed
	June 27, 2020.
4	. Amigo I. Indigenous communities in Brazil fear pandemic's impact. Science.
	2020; 368(6489):352. https://doi.org/10.1126/science.368.6489.352.
5	. Vallinoto ACR, da Silva Torres MK, Vallinoto MC, Cayres-Vallinoto, IMV. The
	challenges of COVID-19 in the Brazilian Amazonian communities and the
	importance of seroepidemiological surveillance studies. Int J Equity Health
	2020;19(1):140. https://doi.org/10.1186/s12939-020-01256-7
6	. Ramírez JD, Sordillo EM, Gotuzzo E, et al. SARS-CoV-2 in the Amazon region:
	A harbinger of doom for Amerindians. PLoS Negl Trop Dis.
	2020;14(10):e0008686. https://doi.org/10.1371/journal.pntd.0008686.
7	. Rodrigues EPS, Abreu IN, Lima CNC, et al. High prevalence of anti-SARS-CoV-
	2 IgG antibody in the Xikrin of Bacajá (Kayapó) indigenous population in the
	brazilian Amazon. Int J Equity Health. 2021;20(1):50.
	https://doi.org/10.1186/s12939-021-01392-8.

8. Dent R, Santos RV. An Unusual and Fast Disappearing Opportunity: Infectious Disease, Indigenous Populations, and New Biomedical Knowledge in Amazonia, 1960-1970. Perspect Sci. 2017;25(5):585-605. https://doi.org/10.1162/POSC_a_00255. Ishak R, Harrington WJ Jr, Azevedo VN, et al. Identification of human T cell lymphotropic virus type IIa infection in the Kayapo, an indigenous population of Brazil. AIDS Res Hum Retroviruses. 1995;11(7):813-21. https://doi.org/10.1089/aid.1995.11.813. 10. SESAI – Secretaria Especial de Saúde Indígena. Boletim epidemiológico SESAI - COVID-19. http://www.saudeindigena.net.br/coronavirus/mapaEp.php. Accessed April 12, 2021). 11. Omer SB, Yildirim I, Forman HP. Herd Immunity and implications for SARS-CoV-2 control. JAMA 2020. https://doi.org/10.1001/jama.2020.20892. 12. Buss LF, Prete CA Jr, Abrahim CMM, et al. Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Science 2020;8:eabe9728. https://doi.org/10.1126/science.abe9728. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59

60

2	
3	
4	13. Hallal PC, Hartwig FP, Horta BL, et al. SARS-CoV-2 antibody prevalence in
5	
6	
7	Describer and the formation of the second state of the second stat
	Brazil: results from two successive nationwide serological household surveys.
8	
9	
10	Lancet Glob Health. 2020;8(11):e1390-e1398. https://doi.org/10.1016/S2214-
11	Lancel Glob Health. 2020,0(11).e1390-e1390. https://doi.org/10.1010/32214-
12	
13	
14	109X(20)30387-9.
15	
16	
17	
18	14. Crosby AW. Virgin soil epidemics as a factor in the aboriginal depopulation in
19	
20	
21	America. <i>William Mary Q.</i> 1976;33:289-99. PMID: 11633588.
22	
23	
24	15. Walker RS, Sattenspiel L, Hill KR. Mortality from contact-related epidemics
25	15. Walker NG, Sallenspier L, Thir NN. Mortality from contact-related epidemics
26	
27	
28	among indigenous populations in Greater Amazonia. <i>Sci Rep</i> . 2015;5:14032.
29	
30	
31	
32	https://doi.org/10.1038/srep14032.
33	
34	
35	
36	
37	
38	Figure 1. Legend.
39	
40	
41	
42	Figure 1. Map showing the geographical location of the indigenous communities
43	
44	
45	
46	investigated enrolled in the present study.
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	

296x209mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Prevalence of SARS-CoV-2 infection among the Brazilian Amazon indigenous populations

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054271.R1
Article Type:	Original research
Date Submitted by the Author:	13-Oct-2021
Complete List of Authors:	Lima, Carlos Neandro ; Universidade Federal do Para Abreu, Isabella; Universidade Federal do Pará Rodrigues, Eliene Putira; Universidade Federal do Para Freitas, Vanessa; Universidade Federal do Pará Botelho, Bruno José ; Universidade Federal do Para Souza, Sandra; Universidade Federal do Para Cayres-Vallinoto, Izaura; Universidade Federal do Para Guerreiro, João; Universidade Federal do Para Ishak, Ricardo; Universidade Federal do Para Vallinoto, Antonio; Universidade Federal do Para
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Global health, Infectious diseases, Immunology (including allergy), Public health
Keywords:	COVID-19, EPIDEMIOLOGY, INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Prevalence of SARS-CoV-2 infection among the Brazilian Amazon indigenous

populations

Carlos Neandro Cordeiro Lima,¹ Isabella Nogueira Abreu,¹ Eliene Putira Sacuena

Rodrigues,² Vanessa de Oliveira Freitas,¹ Bruno José Sarmento Botelho,¹ Sandra

Souza Lima,¹ Izaura Maria Vieira Cayres Vallinoto,¹ João Farias Guerreiro,^{* 2} Ricardo

Ishak,*1 Antonio Carlos Rosário Vallinoto*1

¹ Laboratório de Virologia, Instituto de Ciências Biológicas da Universidade Federal do

Pará, Belém, PA, Brasil;

² Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas da

Universidade Federal do Pará, Belém, PA, Brasil.

* RI, JFG and ACRV are senior authors of the manuscript

Correspondence to Dr. Antonio Carlos Rosário Vallinoto; vallinoto@ufpa.br

ABSTRACT

Objectives The emergence of SARS-CoV-2 and its spread at a pandemic level generated a serious warning over the impact of the infection on vulnerable indigenous populations of the Brazilian Amazon. Thus, the present study aimed to perform seroepidemiological survey for antibodies anti-SARS-CoV-2 in those populations. **Methods** We performed a cross-sectional study to investigate the prevalence of antispike (S1) IgG antibodies among six indigenous ethnic groups living in the State of Pará (Northern Brazil). The villages of Xikrin do Bacajá, Assurini, Araweté, Parakanã, Munduruku and Kararaô were visited from October 2020 to January 2021 and 1,185 individuals, of both sexes, were enrolled in the investigation. Sera were tested for the presence of anti-SARS-CoV-2 IgM and IgG antibodies using two assays (a lateral flow rapid test and an ELISA assay). **Results** The prevalence of IgM and IgG antibodies was 6.9% and 68,1%, respectively,

ranging from 0 to 79.6% with significant differences between ages in two communities

(Araweté, Xikrin and Munduruku) and a virulence rate of 0.86%. Herd immunity was

probably attained but the presence of IgM positivity suggests ongoing cases.

Conclusion SARS-CoV-2 was rapidly spread among the indigenous populations

investigated, but it carried a low mortality. It is necessary to expand the serological

investigations towards other communities in the Amazon region of Brazil.

Keywords: SARS-CoV-2, COVID-19, Indigenous peoples, Amazon.

Strengths and limitations of this study

• Our previous reports called the attention to the distinct cultural and health

aspects of the Amazonian peoples, the impact of the virus among native peoples,

and the importance of performing seroepidemiological surveys among vulnerable

populations.

• The results showed that SARS-CoV-2 infection reached the different indigenous

peoples living in the Brazilian Amazon region in an almost homogeneous way.

BMJ Open

2	
3	
4	 The results highlight that SARS-CoV-2 infection hit the indigenous populations as
5	
6	
7	rapidly as the virus entered the Ameron region without the predicted mortality
8	rapidly as the virus entered the Amazon region, without the predicted mortality.
9	
10	• The high IgG prevalence suggest the herd immunity was probably attained but
11	• The high igo prevalence suggest the herd initiality was probably attained but
12	
13	
14	the presence of IgM positivity showed ongoing cases.
15	
16	
17	
18	 Furthermore, seroepidemiological surveys are of paramount importance for
19	
20	
21	monitoring the outcome of the national contingency plan for the prevention and
22	
23	
24	control of the enidemia
25	control of the epidemic.
26	
27	
28	
29	
30	
31	
21	
22	
32	INTRODUCTION
33	INTRODUCTION
33 34	INTRODUCTION
33 34 35	
33 34 35 36	INTRODUCTION The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first
33 34 35	
33 34 35 36	
33 34 35 36 37	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first
33 34 35 36 37 38	
33 34 35 36 37 38 39 40	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first
33 34 35 36 37 38 39 40 41	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in
33 34 35 36 37 38 39 40 41 42	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first
 33 34 35 36 37 38 39 40 41 42 43 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in
 33 34 35 36 37 38 39 40 41 42 43 44 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in
 33 34 35 36 37 38 39 40 41 42 43 44 45 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic by WHO ² and because of the high morbimortality it highlighted the burden to vulnerable
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic by WHO ² and because of the high morbimortality it highlighted the burden to vulnerable
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic by WHO ² and because of the high morbimortality it highlighted the burden to vulnerable
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic by WHO ² and because of the high morbimortality it highlighted the burden to vulnerable populations, including native indigenous peoples living in the Brazilian Amazonian who
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic by WHO ² and because of the high morbimortality it highlighted the burden to vulnerable
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic by WHO ² and because of the high morbimortality it highlighted the burden to vulnerable populations, including native indigenous peoples living in the Brazilian Amazonian who
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic by WHO ² and because of the high morbimortality it highlighted the burden to vulnerable populations, including native indigenous peoples living in the Brazilian Amazonian who
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic by WHO ² and because of the high morbimortality it highlighted the burden to vulnerable populations, including native indigenous peoples living in the Brazilian Amazonian who
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic by WHO ² and because of the high morbimortality it highlighted the burden to vulnerable populations, including native indigenous peoples living in the Brazilian Amazonian who
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic by WHO ² and because of the high morbimortality it highlighted the burden to vulnerable populations, including native indigenous peoples living in the Brazilian Amazonian who
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic by WHO ² and because of the high morbimortality it highlighted the burden to vulnerable populations, including native indigenous peoples living in the Brazilian Amazonian who

BMJ Open

Three previous reports from our laboratory calls the attention to the distinct cultural (sharing households), health aspects (coinfections and malnutrition) and the modulation of infection among these Amazonian peoples, the impact of the virus among native peoples, and the importance of performing serosurveys among these groups to determine the spectrum of the illness among them.⁵⁷⁸ Considering the vulnerability of indigenous peoples that inhabit the Brazilian Amazon region, their supposed inability to respond immunologically to new pathogens that emerge in the community and, assuming the possible negative impact that the Covid-19 pandemic may have on these communities, the present study aimed to carry out a seroepidemiological investigation in indigenous populations located in the State of Pará, through the screening of anti-SARS-CoV-2 antibodies.

METHODS

In 2020, a large cross-sectional seroepidemiological surveillance among indigenous ethnic groups within Para State (Northern Brazil, Amazon), started to investigate the prevalence of anti-SARS-CoV-2 IgM and IgG antibodies and the impact of the virus on

BMJ Open

the health of communities. The study was approved by the leaders of the communities and by the National Research Ethics Committee (Comissão Nacional de Etica em Pesquisa - CONEP; CAAE: 33470020.0.1001.0018), in accordance with the Declarations of Helsinki. From October 2020 to January 2021, multiprofessional health care expeditions were prepared, composed by our team, the staff of the Health Department of the State of Para (Secretaria de Saúde do Estado do Pará – SESPA) and the Special Indigenous Health Districts of Altamira and Santarém (Distrito Sanitário Especial Indígena – DSEI) of the Special Secretariat of Indigenous Health (Secretaria Especial de Saúde Indígena - SESAI-MS). Six ethnic groups were visited while presenting active cases of COVID-19, before starting the vaccination campaign among indigenous communities. The indigenous people underwent a standard clinical examination that could be performed under field conditions, consisting of anamnesis and physical examination (inspection, palpation, percussion and auscultation), with assessment of anthropometric data, blood pressure, body temperature and digital oximetry, in addition to laboratory support for blood count and biochemical, microbiological and parasitological exams.

Access to the indigenous peoples of the basin of the middle Xingu River (Asurini, Araweté and Parakanã), Iriri River (Kararaô) and Tapajós River (Munduruku) is almost exclusively fluvial, while access to the Xikrin people, located in the Bacajá River channel, is currently preferably done by road (Figure 1). The indigenous people studied were: (i) Araweté, a Tupi-Guarani-speaking people, population of 589 inhabitants, currently distributed in 22 villages with populations from 7 to 71, located on the banks of the

Xingú River and the Ipixuna stream, right bank tributary of the middle Xingu River, in the

municipality of Altamira (PA). A total of 508 people from all villages were sampled (-

4,8853, -52,4281);

(ii) Asurini do Xingu, from the Tupi-Guarani family, totaling 260 individuals distributed in

five villages on the banks of the middle Xingu River (-4,2449, -52,2380); eight people

from Kwatinemu village (n = 139) were studied;

(iii) Parakanã, a Tupi-Guarani indigenous people who live in the Apyterewa land, in the

municipalities of Altamira and São Félix do Xingu, in the Xingu basin, Pará, with a

BMJ Open

population of 782 people living in 16 small villages with population ranging from 17 to 94, of which 210 people were studied (-5,6904, -52,0037); (iv) Xikrin do Bacajá, people of the Kayapó (or Mebengokré) language, Jê linguistic family, who live in 19 small villages (populations from 11 to 141; current population of 1,051 inhabitants, 3.7160, -53.0546) in the middle Bacajá basin, municipalities of Senador José Porfírio and Anapú, PA; One hundred individuals from seven villages were sampled: Kenkrô (39/61), Bakajá (23/109), Mrotdjam (1/128), Pykatum (4/59), Rapkô (7/60), Pytatko (1941) and Moinorô (13/77); (v) Kararaô, another Jê-speaking Kayapó subgroup, living in four small villages (Kararaô, n = 15; Kruakrô, n = 15; Pidjôdjã, n = 42 and Rikrekô, n = 11), located in the lower Iriri river and in the middle Xingu river, in Altamira (PA). A sample of 44 individuals was collected from a total population of 83 (-3,9112, -52,8044): (vi) Munduruku, an indigenous people belonging to the Munduruku linguistic family, from the Tupi trunk, lives in the southwest of Pará, in the Tapajós river channel and tributaries, in the municipalities of Santarém, Itaituba and Jacareacanga. Population of

10,629 distributed in 133 villages. A total of 317 individuals were sampled, 213 from the

Nova Karapanatuba village (213/414) and the others from smaller villages around Nova

Karapanatuba, in Jacareacanga. (-3.9112, -52.8044). A blood sample (5 mL) was drawn to test for the presence of anti-SARS-CoV-2 IgM and IgG antibodies. The prevalence of anti-SARS-CoV-2 IgG and IgM antibodies used a rapid test (lateral flow method; Guangzhou Wondfo Biotech Co., China) and an enzymelinked immunosorbent assay (ELISA; Anti-SARS-CoV-2 S1 IgG, Euroimmun, Brazil), according to the manufacturer's recommendation. The Kappa test was used to assess the agreement between the rapid test results and enzyme-linked immunosorbent assay. The G and chi-square tests were applied to assess the difference in the prevalence of IgG, among the villages, in relation to sex and age. We estimated the virulence rate considering the case of death to each village over the number of individuals that were infected with SARS-CoV-2, according to the seropositivity to IgG.

Patient and public involvement

BMJ Open

2	
3	Neither patients, parents nor the public were involved in the design, conduct or reporting
4 5	
6	
7	of this research.
8 9	
10	
11	
12	
13 14	RESULTS
15	RESOLIS
16	
17	A total of 1,187 subjects was investigated, being 552 males (46.5%) and 635 females
18 19	
20	
21	(53.5%). The age ranged from 1 to 95 years old (mean of 26.2, standard deviation of
22	
23 24	
24 25	19.9).
26	
27	
28	Anti-SARS-CoV-2 IgG was detected among 505 (68.1%) individuals by the rapid test
29 30	
31	and 045 (C0 70) when tested by the EUCA (Table 4). Fight Asymini did not show
32	and 815 (68.7%) when tested by the ELISA (Table 1). Eight Asurini did not show
33	
34 35	antibodies, but among the other villages, it ranged (by the Elisa test) from 51.7%
36	antibodies, but among the other vilages, it ranged (by the Llisa test) nom 51.776
37	
38	(Munduruku) to 79.5% (Araweté and Kararaô). The overall IgG prevalence obtained by
39 40	
40	
42	the rapid test and ELISA were similar and the agreement of the results between both
43	
44 45	
46	tests, as compared, was 80% - classified as good (kappa=0.4987; p<0.001; sensitivity
47	
48	
49 50	of 82.1% and specificity of 71.6%). It was observed 33 (2.8%) individuals with
50 51	
52	indeterminate result to anti-SARS-CoV-2 IgG antibodies in ELISA test. Additionally, it is
53	indeleminate result to anti-SANS-COV-2 IgG antibodies in ELISA test. Additionally, it is
54	
55 56	
57	
58	
59	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60	ror peer review only intep.//binjopen.binj.com/bite/about/guidennes.xitum

worth mentioning that IgM antibodies was detected among 51 (6.9%) individuals from three villages.

There was no statistical significance of IgG prevalence values according to sex (Overall:

 χ^2 =0.001, p=0.9793; Xikrin: χ^2 = 0.056, p=0.8129; Araweté: χ^2 =0.003, p=0.9554;

Parakanã: χ^2 =1.022, p=0.3121; Munduruku: χ^2 =1.496, p=0.2213; Kararaô: χ^2 =0.0278,

p=0.0642); but in the Araweté and Xikrin the frequencies were significantly lower among

those >31 years old (p=0.0065 and p=0.0198) and in the Munduruku a lower frequency

among those <6 years old and greater (p<0.0001) among those older than 31 years old

N.C.Z.O.J.L

(Table 2).

 BMJ Open

Table 1. Prevalence of anti-SARS-CoV-2 (S1) IgG antibodies among Indigenous villages

Population	Age range	Sex		Rapid Test results				E	ELISA IgG anti-Spike S1 results			
	-	Male	Female	N	Negative	IgM	IgG	Ν	Negative	Ind	IgG	_
		N (%)	N (%)	tested	N (%)	N (%)	N (%)	tested	N (%)	N (%)	N (%)	
Xikrin do Bacajá ^[7]	02 a 84	51 (51.0)	49 (49.0)	100	42 (42)	nt	58 (58)	100	27 (27)	0 (0)	73 (73)	01
Asurini	17 a 42	0 (0)	8 (100)	0	nt	nt	nt	08	7 (87.5)	1 (12.5)	0 (0)	0
Araweté	8m a 84	258 (50.8)	250 (49.2)	236	29 (12.3)	11 (4.7)	196 (83)	508	92 (18.1)	12 (2.4)	404 (79.5)	0
Parakanã	7m to 95 y	106 (50.5)	104 (49.5)	195	06 (3.1)	39 (20)	150 (76.9)	210	65 (30.9)	06 (2.8)	139 (66.2)	01
Munduruku	7 m to 89 y	116 (36.6)	201 (63.4)	166	96 (57.8)	nt	70 (42.2)	317	139 (43.9)	14 (4.4)	164 (51.7)	05
Kararaô	1 a 94	21 (47.7)	23 (52.3)	44	13 (29.5)	1 (2.3)	30 (68.2)	44	9 (20.4)	0 (0)	35 (79.5)	0
Total	7m a 95 y	552 (46.5)	635 (53.5)	741	185 (25.0)	51 (6.9)	505 (68.1)	1.187	339 (28.5)	33 (2.8)	815 (68.7)	07

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2 3	
3 4	
5	
6 7	
8	
9 10	
11	
12	
13 14	
15	
16 17	
18	
19 20	
20	
22	
23 24	
25	
26 27	
28	
29	
30 31	
32	
33 34	
35	
36 37	
38	
39 40	
40 41	
42	
43 44	
45	
46	
47	

Table 2. Age and sex distribution to anti-SARS-	oV-2 (S1) IgG antibodie	s among Indigenous villages
---	-------------------------	-----------------------------

	Xi	krin ^[7]	As	urini	Ar	aweté	Par	akanã	Mun	duruku	Ka	raraô	Total
Age	male	female	male	female	male	female	male	female	male	female	male	female	n/ total (%)
0-6	5	2	0	0	44	27	10	6	6	5	3	1	109/1,187 (9.2)
>6 a 16	15	11	0	0	61	56	18	18	8	17	6	8	218/1,187 (18.4)
>16 a 31	9	13	0	0	56	66	12	21	14	44	2	6	243/1,187 (20.5)
>31	10	8	0	0	45	49	27	27	26	42	3	6	243/1,187 (20.5)
*not informed	0	0	0	0	0	0	0	0	1	1	0	0	2/1,187 (0.2)
Total	39	34	0	0	206	198	67	72	55	109	14	21	815/1,187 (68.7)

[7] Rodrigues et al. (2021); Age distribution: (Overall: $\chi^2=8.2$; p=0.042); (Xikrin: G=8.15; p=0,0198); (Araweté: $\chi^2=12.3$; p=0.0065); (Parakanã: $\chi^2=3.9$; p=0.2753); (Munduruku: $\chi^2=23.8$; p<0.0001); (Kararaô: G=4.4; p=0.2213). G - G test; χ^2 - Qui-square.

BMJ Open

The main clinical manifestations reported among infected individuals were coughing,

dyspnea, coryza, fever, fatigue, diarrhea, ear pain, headache, chest and back pain.

There were seven deaths among the 815 infected persons showing a virulence rate of

0.86%.

DISCUSSION

The high prevalence of IgG anti-SARS-CoV-2 antibodies reported herein show that the new corovavirus infection reached indigenous populations in a wide way. Introduction of new infectious agents among vulnerable indigenous peoples is thought to be a heavy burden because of the low genetic variability among genes that control the immune response,⁹ an important element working as a selective pressure over indigenous peoples since the initial colonization process of the Amazon region of Brazil. SARS-CoV-2 brought the question again as to how the virus would affect native peoples? Despite the theoretical arguments for the possible speculative devastation of indigenous groups,⁶ there was no confirmed evidence of susceptibility to Covid-19 in the

presence of coinfections and pre-existing conditions, including obesity and malnutrition

> as previously suggested.45 Most of the indigenous peoples of the Amazon region of Brazil, including those of the present study, present endemic diseases as malaria, tuberculosis, virus hepatitis and, to HTLV-2 hyperendemic infections among Xikrin, Kararaô, Munduruku and Parakanã.¹⁰ Presently, there is no scientific evidence for host modulation of SARS-CoV-2 in the presence of these coinfections, but researches in order to investigate these coinfections are of paramount importance for a better understanding of the outcome of SARS-CoV-2 infection. Furthermore, environmental and social conditions are important factors that could impact on COVID-19 among indigenous communities,³⁴ including the lack of drinking water and malnutrition, which might had been potentialized after the prophylactic isolation measures. In our previous report the quality of tests to measure the presence of antibodies was raised.⁷ It is important that antibodies to SARS-CoV-2 are detected using tests with greater sensitivity and specificity to obtain accurate prevalence rates. Rapid tests

usually show low sensitivity and yield false negative results and false-positive results

Page 17 of 26

 BMJ Open

due to cross-reactions. In the present study, two methodologies were used and the agreement of the results of the rapid test in relation to ELISA was good and the IgG prevalence values similar. In contrast to the genetic and socio-environmental vulnerability the results showed SARS-CoV-2 infection evenly distributed, with a high prevalence of the virus and few reported deaths, confirming the official results by Special Secretariat of Indigenous Health (SESAI) in its COVID-19 epidemiological bulletin.¹¹ The prevalence of anti-SARS-CoV-2 IgG antibodies shows a high dissemination of the virus spread favored by inherent social and cultural difficulties of keeping social distance, sharing households with other families and wearing masks correctly. In spite of the high prevalence of infection, during the investigation they were still facing the epidemic, showed by the detection of IgM antibodies in three villages. It is relevant to mention that three villages are more than 100Km apart from each other and there is no simple way of communication among them. This raises another important question in regard to herd protective immunity. Apparently, the communities achieved herd immunity levels, when reaching at least 60% seropositivity for IgG,¹² similarly as found

in Manaus, the capital of the Amazonas State.¹³ However, differently from what is seen among urban areas,¹⁴ virgin soil epidemics generally exhaust susceptible individuals before it comes to an end,¹⁵ and the present epidemic is still not totally explained and understood. The high seroprevalence of IgG anti-SARS-CoV-2 antibodies reported herein among vulnerable Amazon Indigenous peoples, is comparable to our recent finding among Venezuelan indigenous Warao refugees residing in Belem city, the capital of Para State, where the infection was detected among 83% of the subjects living in conditions of vulnerability.¹⁶ Similar results were reported among indigenous people living in the surrounding area of Manaus, where the number of individuals sharing households was a risk for virus infection.¹⁷ The results show new information over the SARS-CoV-2 epidemic among indigenous peoples and provides the Brazilian government with information to establish adequate measures to control the epidemic among Brazilian indigenous communities in the Amazon region.

CONCLUSION

BMJ Open

SARS-CoV-2 infection reached the indigenous populations from the State of Para as rapid as the virus entered the Amazon region, confirming our previous alert to the need of serological studies for surveillance, minimizing the burden of the epidemic and to promote indigenous health policies.⁵ In spite of the suggestion of high mortality and chaos facing the Amerindian populations,⁶ the majority of the cases was asymptomatic or mild, with low fatality rate, supporting analysis that shows that the mortality associated with epidemics following contact of Amazonian indigenous communities with urban communities has decreased Lip in recent years.18 Finally, continuing seroepidemiological surveys are of paramount importance for monitoring the outcome of the national contingency plan for the prevention and control of the epidemic, by a mass vaccination program for indigenous peoples started by February 2021. Acknowledgments We thank the Indigenous populations for authorizing the study and

the institutions that provided technical support for the development and implementation

of this study. Our especial gratitude to Vilson Monteiro and Hailton Monteiro for laboratorial assistance during the expeditions to Indigenous villages. **Contributor** ACRV, JFG and RI: conception of idea, data analysis, writing and editing of manuscript; ACRV, RI, JFG, INA, BJSB and CNCL: Acquisition, analysis, or interpretation of data; CNCL, RI, IMVCV: Drafting of the manuscript; ACRV, RI, JFG and IMVCV: Critical revision of the manuscript for important intellectual content; SSL: Statistical analysis; ACRV: Obtained funding; VOF and EPSR: technical and material 1.en support. Funding This study was supported by the National Council for Scientific and Technological Development (CNPq Project; MCTIC/CNPq/FNDCT/MS/SCTIE/DECIT n. 401235/2020-3); Coordination for the Improvement of Higher Education Personnel (CAPES: 88887.612787/2021-00); and Federal University of Pará (UFPA-PROPESP/PAPQ-2021). CNPq Research Grants were received by ACRV (#-301869/2017-0), RI (#312979/2018-5).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Competing interests None declared

Patient and public involvement Neither patients, parents nor the public were involved in

the design, conduct or reporting of this research.

Patient consent for publication Not requirable

Ethics approval The study was approved by the leaders of the communities and by the

National Research Ethics Committee (Comissão Nacional de Ética em Pesquisa -

CONEP; CAAE: 33470020.0.1001.0018), in accordance with the Declarations of

Helsinki.

Data availability statement Data are available upon reasonable request (vallinoto@ufpa.br)

REFERENCES

1. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory

disease in China. Nature 2020;579(7798):265-269.

https://doi.org/10.1038/s41586-020-2008-3.

2. World Health Organization. Coronavirus disease (COVID-2019) situation reports;

2020. https://www.who.int/emergencies/diseases/novel-coronavirus-

2019/situation-reports/ Accessed March 27, 2020.

3. Fiocruz. 4º relatório sobre risco de espalhamento da COVID-19 em populações

indígenas. Risco de espalhamento da COVID-19 em populações indígenas:

considerações preliminares sobre vulnerabilidade geográfica e

sociodemográfica. Available from: https://portal.fiocruz.br/documento/4o-relatorio-

sobre-risco-de-espalhamento-da-covid-19-em-populacoes-indigenas. Accessed

June 27, 2020.

4. Amigo I. Indigenous communities in Brazil fear pandemic's impact. Science.

2020; 368(6489):352. https://doi.org/10.1126/science.368.6489.352.

BMJ Open

2		
3	5.	Vallinoto ACR, da Silva Torres MK, Vallinoto MC, Cayres-Vallinoto, IMV. The
4 5	0.	
6		
7		challenges of COVID-19 in the Brazilian Amazonian communities and the
8		
9		
10 11		importance of seroepidemiological surveillance studies. Int J Equity Health
12		
13		
14		2020;19(1):140. https://doi.org/10.1186/s12939-020-01256-7
15		
16 17		
18	6.	Ramírez JD, Sordillo EM, Gotuzzo E, et al. SARS-CoV-2 in the Amazon region:
19		
20		
21		A harbinger of doom for Amerindians. <i>PLoS Negl Trop Dis</i> .
22		
23 24		
25		2020;14(10):e0008686. https://doi.org/10.1371/journal.pntd.0008686.
26		
27		
28	7.	Rodrigues EPS, Abreu IN, Lima CNC, et al. High prevalence of anti-SARS-CoV-
29		
30 31		
32		2 IgG antibody in the Xikrin of Bacajá (Kayapó) indigenous population in the
33		
34		
35		brazilian Amazon. <i>Int J Equity Health</i> . 2021;20(1):50.
36 37		
38		
39		https://doi.org/10.1186/s12939-021-01392-8.
40		
41	•	
42	8.	Ishak R, Guerreiro JF and Vallinoto ACR. Why Did They Not Die?. <i>Austin J</i>
43 44		
45		
46		Public Health Epidemiol. 2021;8(3):1106.
47		
48	0	Dept D. Control DV. An Universal and Fact Disconnection Opportunity Infectious
49	9.	Dent R, Santos RV. An Unusual and Fast Disappearing Opportunity: Infectious
50 51		
52		Disease Indigenous Deputations, and New Dismediael Knewledge in America
53		Disease, Indigenous Populations, and New Biomedical Knowledge in Amazonia,
54		
55		
56 57		
-		

2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
14 15	
16	
17	
18	
19	
20	
21	
22	
23	
23 24	
24 25	
25 26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
36 37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
57 58	
59	
60	

1960-1970. Perspect Sci. 2017;25(5):585-605.

https://doi.org/10.1162/POSC_a_00255.

10. Ishak R, Harrington WJ Jr, Azevedo VN, et al. Identification of human T cell

lymphotropic virus type IIa infection in the Kayapo, an indigenous population of

Brazil. AIDS Res Hum Retroviruses. 1995;11(7):813-21.

https://doi.org/10.1089/aid.1995.11.813.

11. SESAI – Secretaria Especial de Saúde Indígena. Boletim epidemiológico SESAI

4.

- COVID-19. http://www.saudeindigena.net.br/coronavirus/mapaEp.php.

Accessed April 12, 2021).

12. Omer SB, Yildirim I, Forman HP. Herd Immunity and implications for SARS-

CoV-2 control. JAMA 2020. https://doi.org/10.1001/jama.2020.20892.

13. Buss LF, Prete CA Jr, Abrahim CMM, et al. Three-quarters attack rate of SARS-

CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Science

2020;8:eabe9728. https://doi.org/10.1126/science.abe9728.

14. Hallal PC, Hartwig FP, Horta BL, et al. SARS-CoV-2 antibody prevalence in

Brazil: results from two successive nationwide serological household surveys.

BMJ Open

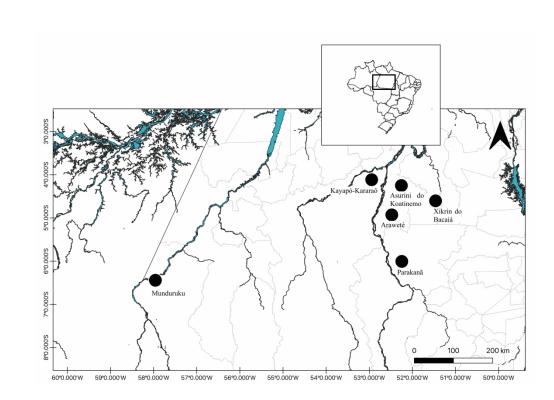

Lancet Glob Health. 2020;8(11):e1390-e1398. https://doi.org/10.1016/S2214-
109X(20)30387-9.
15. Crosby AW. Virgin soil epidemics as a factor in the aboriginal depopulation in
America. <i>William Mary Q.</i> 1976;33:289-99. PMID: 11633588.
16. da Silva HP, Abreu IN, Lima CNC, et al. Migration in times of pandemic: SARS-
CoV-2 infection among the Warao indigenous refugees in Belém, Pará,
Amazonia, Brazil. <i>BMC Public Health</i> . 2021;21(1):1659. doi: 10.1186/s12889-
021-11696-7.
17. Pontes GS, de Melo Silva J, Pinheiro-Silva R, Barbosa AN, Santos LC, de
Pádua Quirino Ramalho A, de Castro Alves CE, da Silva DF, de Oliveira LC, da
Costa AG, Bruno AC. Increased vulnerability to SARS-CoV-2 infection among
indigenous people living in the urban area of Manaus. <i>Sci Rep</i> .
2021;11(1):17534. doi: 10.1038/s41598-021-96843-1.
18. Walker RS, Sattenspiel L, Hill KR. Mortality from contact-related epidemics
among indigenous populations in Greater Amazonia. <i>Sci Rep</i> . 2015;5:14032.
https://doi.org/10.1038/srep14032.
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure Legend.

Figure 1. Map showing the geographical location of the indigenous communities

investigated enrolled in the present study.

to been terrer only

296x209mm (600 x 600 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Prevalence of anti-SARS-CoV-2 antibodies among the Brazilian Amazon indigenous populations

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054271.R2
Article Type:	Original research
Date Submitted by the Author:	22-Nov-2021
Complete List of Authors:	Lima, Carlos Neandro ; Universidade Federal do Para Abreu, Isabella; Universidade Federal do Pará Rodrigues, Eliene Putira; Universidade Federal do Para Freitas, Vanessa; Universidade Federal do Pará Botelho, Bruno José ; Universidade Federal do Para Souza, Sandra; Universidade Federal do Para Cayres-Vallinoto, Izaura; Universidade Federal do Para Guerreiro, João; Universidade Federal do Para Ishak, Ricardo; Universidade Federal do Para Vallinoto, Antonio; Universidade Federal do Para
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Global health, Infectious diseases, Immunology (including allergy), Public health
Keywords:	COVID-19, EPIDEMIOLOGY, INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Prevalence of anti-SARS-CoV-2 antibodies among the Brazilian Amazon indigenous

populations

Carlos Neandro Cordeiro Lima,¹ Isabella Nogueira Abreu,¹ Eliene Putira Sacuena

Rodrigues,² Vanessa de Oliveira Freitas,¹ Bruno José Sarmento Botelho,¹ Sandra

Souza Lima,¹ Izaura Maria Vieira Cayres Vallinoto,¹ João Farias Guerreiro,^{* 2} Ricardo

Ishak,*1 Antonio Carlos Rosário Vallinoto*1

¹ Laboratório de Virologia, Instituto de Ciências Biológicas da Universidade Federal do

Pará, Belém, PA, Brasil;

² Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas da

Universidade Federal do Pará, Belém, PA, Brasil.

* RI, JFG and ACRV are senior authors of the manuscript

Correspondence to Dr. Antonio Carlos Rosário Vallinoto; vallinoto@ufpa.br

ABSTRACT

Objectives The emergence of SARS-CoV-2 and its spread at a pandemic level

generated a serious warning over the impact of the infection on vulnerable indigenous

populations of the Brazilian Amazon. Thus, the present study aimed to perform

seroepidemiological survey for antibodies anti-SARS-CoV-2 in those populations.

Design We performed a cross-sectional study to investigate the prevalence of anti-spike

(S1) IgG antibodies.

Setting Six indigenous ethnic groups living in the State of Pará (Northern Brazil) were

investigated. The villages of Xikrin do Bacajá, Assurini, Araweté, Parakanã, Munduruku

and Kararaô were visited from October 2020 to January 2021 -

Participants A total of 1,185 individuals, of both sexes, were enrolled in the

investigation.

Method Plasma were tested for the presence of anti-SARS-CoV-2 IgM and IgG

antibodies using two assays (a lateral flow rapid test and an ELISA assay).

Results The prevalence of IgM and IgG antibodies was 6.9% and 68,1%, respectively, ranging from 0 to 79.6% with significant differences (p<0.001) between ages in two communities (Araweté, Xikrin and Munduruku) and a virulence rate of 0.86%. Herd immunity was probably attained, similarly as found in other communities of Amazon. **Conclusions** SARS-CoV-2 was rapidly spread among the indigenous populations investigated, but it carried a low mortality. It is necessary to expand the serological investigations towards other communities in the Amazon region of Brazil. Keywords: SARS-CoV-2, COVID-19, Indigenous peoples, Amazon. Strengths and limitations of this study Our previous reports called the attention to the distinct cultural and health aspects of the Amazonian peoples, the impact of the virus among native peoples, and the importance of performing seroepidemiological surveys among vulnerable

populations.

BMJ Open

2	
3	
4	 The results showed that SARS-CoV-2 infection reached the different indigenous
5	
6	
7	needles living in the Prezilian American region in an almost homogeneous way
-	peoples living in the Brazilian Amazon region in an almost homogeneous way.
8	
9	
10	• The results highlight that SARS-CoV-2 infection hit the indigenous populations as
11	• The results highlight that 0AR0-00V-2 intection hit the indigenous populations as
12	
13	
14	rapidly as the virus entered the Amazon region, without the predicted mortality.
15	
16	
17	
18	 The high IgG prevalence suggest the herd immunity was probably attained but
19	
20	
20	the presence of IoM positivity showed encoing ecces
	the presence of IgM positivity showed ongoing cases.
22	
23	
24	• Furthermore, seroepidemiological surveys are of paramount importance for
25	• I dimerniole, screepidemiological surveys are of paramount importance for
26	
27	
28	monitoring the outcome of the national contingency plan for the prevention and
29	
30	
31	
32	control of the epidemic.
33	
34	
35	
36	
37	
38	
39	INTRODUCTION
40	
41	
42	The neural servers south respiratory syndrome corepositive 2 (SARS CoV 2) and the first
43	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the first
44	
45	
46	cases of Coronavirus Diseases 2019 (COVID-19) were reported by November 2019, in
47	
48	
40	
	Wuhan, China. ¹ The rapid spread of the virus determined its classification as pandemic
50	· · ·
51	
52	
53	by WHO ² and because of the high morbimortality it highlighted the burden to vulnerable
54	
55	
56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

populations, including native indigenous peoples living in the Brazilian Amazonian who are susceptible to the virus and could be devastated by their immunological frailty.³⁻⁶ Three previous reports from our laboratory calls the attention to the distinct cultural (sharing households), health aspects (coinfections and malnutrition) and the modulation of infection among these Amazonian peoples, the impact of the virus among native peoples, and the importance of performing serosurveys among these groups to determine the spectrum of the illness among them.⁵⁷⁸ Considering the vulnerability of indigenous peoples that inhabit the Brazilian Amazon region, their supposed inability to respond immunologically to new pathogens that emerge in the community and, assuming the possible negative impact that the Covid-19 pandemic may have on these communities, the present study aimed to carry out a seroepidemiological investigation in indigenous populations located in the State of Pará, through the screening of anti-SARS-CoV-2 antibodies.

METHODS

Type of study and ethic aspects

BMJ Open

In 2020, a large cross-sectional seroepidemiological surveillance among indigenous ethnic groups within Para State (Northern Brazil, Amazon), started to investigate the prevalence of anti-SARS-CoV-2 IgM and IgG antibodies and the impact of the virus on the health of communities. The study was approved by the leaders of the communities and by the National Research Ethics Committee (Comissão Nacional de Ética em Pesquisa - CONEP; CAAE: 33470020.0.1001.0018), in accordance with the e e Declarations of Helsinki.

Study population

From October 2020 to January 2021, multiprofessional health care expeditions were prepared, composed by our team, the staff of the Health Department of the State of Para (Secretaria de Saúde do Estado do Pará - SESPA) and the Special Indigenous Health Districts of Altamira and Santarém (Distrito Sanitário Especial Indígena – DSEI) of the Special Secretariat of Indigenous Health (Secretaria Especial de Saúde Indígena - SESAI-MS). Six ethnic groups were visited while presenting active cases of COVID-19, before starting the vaccination campaign among indigenous communities. The

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

indigenous people underwent a standard clinical examination that could be performed under field conditions, consisting of anamnesis and physical examination (inspection, palpation, percussion and auscultation), with assessment of anthropometric data, blood pressure, body temperature and digital oximetry, in addition to laboratory support for blood count and biochemical, microbiological and parasitological exams. Access to the indigenous peoples of the basin of the middle Xingu River (Asurini, Araweté and Parakanã), Iriri River (Kararaô) and Tapajós River (Munduruku) is almost exclusively fluvial, while access to the Xikrin people, located in the Bacajá River channel, is currently preferably done by road (Figure 1). The indigenous people studied were: (i) Araweté, a Tupi-Guarani-speaking people, population of 589 inhabitants, currently distributed in 22 villages with populations from 7 to 71, located on the banks of the Xingú River and the Ipixuna stream (-4,8853, -52,4281), right bank tributary of the middle Xingu River, in the municipality of Altamira (PA). A total of 508 people from all villages were sampled;

Page 9 of 27

BMJ Open

(ii) Asurini do Xingu, from the Tupi-Guarani family, totaling 260 individuals distributed in five villages on the banks of the middle Xingu River (-4,2449, -52,2380); eight people from Kwatinemu village (n = 139) were studied; (iii) Parakanã, a Tupi-Guarani indigenous people who live in the Apyterewa land, in the municipalities of Altamira and São Félix do Xingu, in the Xingu basin (-5,6904, -52,0037), Pará, with a population of 782 people living in 16 small villages with population ranging from 17 to 94, of which 210 people were studied; (iv) Xikrin do Bacajá, people of the Kayapó (or Mebengokré) language, Jê linguistic family, who live in 19 small villages (populations from 11 to 141; current population of 1,051 inhabitants, in the middle Bacajá basin (-3.7160, -53.0546), municipalities of Senador José Porfírio and Anapú, PA; One hundred individuals from seven villages were sampled: Kenkrô (39/61), Bakajá (23/109), Mrotdjam (1/128), Pykatum (4/59), Rapkô (7/60), Pytatko (1941) and Moinorô (13/77); (v) Kararaô, another Jê-speaking Kayapó subgroup, living in four small villages

(Kararaô, n = 15; Kruakrô, n = 15; Pidjôdjã, n = 42 and Rikrekô, n = 11), located in the

lower Iriri river and in the middle Xingu river (-3,9112, -52,8044), in Altamira (PA). A

> sample of 44 individuals was collected from a total population of 83; (vi) Munduruku, an indigenous people belonging to the Munduruku linguistic family, from the Tupi trunk, lives in the southwest of Pará, in the Tapajós river channel and tributaries, in the municipalities of Santarém, Itaituba and Jacareacanga (-3.9112, -52.8044). Population of 10,629 distributed in 133 villages. A total of 317 individuals were sampled, 213 from the Nova Karapanatuba village (213/414) and the others from smaller villages around Nova Karapanatuba, in Jacareacanga (PA). 4.64

Anti-SARS-CoV-2 antibody assays

A blood sample (5 mL) was drawn and the plasma tested for the presence of anti-SARS-CoV-2 IgM and IgG antibodies. The prevalence of anti-SARS-CoV-2 IgM and IgG antibodies used a rapid test (lateral flow method; Guangzhou Wondfo Biotech Co., China) and an enzyme-linked immunosorbent assay (ELISA; Anti-SARS-CoV-2 S1 lgG, Euroimmun, Brazil), respectively, according to the manufacturer's recommendation. Data analysis

BMJ Open

The Kappa test was used to assess the agreement between the rapid test results and

enzyme-linked immunosorbent assay. The G and chi-square tests were applied to

assess the difference in the prevalence of IgG, among the villages, in relation to sex

and age.

We estimated the virulence rate considering the case of death to each village over the

number of individuals that were infected with SARS-CoV-2, according to the

seropositivity to IgG.

e ele Patient and public involvement

Neither patients, parents nor the public were involved in the design, conduct or reporting

of this research.

RESULTS

A total of 1,187 subjects was investigated, being 552 males (46.5%) and 635 females

(53.5%). The age ranged from 1 to 95 years old (mean of 26.2, standard deviation of

19.9).

Anti-SARS-CoV-2 IgG was detected among 505 (68.1%) individuals by the rapid test and 815 (68.7%) when tested by the ELISA (Table 1). Eight Asurini did not show antibodies, but among the other villages, it ranged (by the Elisa test) from 51.7% (Munduruku) to 79.5% (Araweté and Kararaô). The overall IgG prevalence obtained by the rapid test and ELISA were similar and the agreement of the results between both tests, as compared, was 80% - classified as good (kappa=0.4987; p<0.001; sensitivity of 82.1% and specificity of 71.6%). It was observed 33 (2.8%) individuals with indeterminate result to anti-SARS-CoV-2 IgG antibodies in ELISA test. Additionally, it is worth mentioning that IgM antibodies was detected among 51 (6.9%) individuals from three villages. There was no statistical significance of IgG prevalence values according to sex (Overall: χ^2 =0.001, p=0.9793; Xikrin: χ^2 = 0.056, p=0.8129; Araweté: χ^2 =0.003, p=0.9554;

Parakanã: χ^2 =1.022, p=0.3121; Munduruku: χ^2 =1.496, p=0.2213; Kararaô: χ^2 =0.0278,

p=0.0642). In regarding to the ages, in the Araweté and Xikrin the frequencies were

significantly lower among those >31 years old (p=0.0065 and p=0.0198) and in the

BMJ Open

1 2	
3 4 5	Munduruku a lower frequency among those <6 years old and greater (p<0.0001) among
6 7 8	those older than 31 years old (Table 2).
9 10 11	
12 13 14	
15 16 17	
18 19 20	
21 22	
23 24 25	
26 27 28	
29 30 31	
32 33 34	
35 36	
37 38 39	
40 41 42	
43 44 45	
46 47 48	
49 50 51	
52 53	
54 55 56	
57 58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Table 1. Prevalence of anti-SARS-CoV-2 (S1) IgG antibodies among Indigenous villages

Age range	Sex		Rapid Test results				ELISA IgG anti-Spike S1 results				N Deaths
-	Male	Female	N	Negative	IgM	IgG	Ν	Negative	Ind	IgG	-
	N (%)	N (%)	tested	N (%)	N (%)	N (%)	tested	N (%)	N (%)	N (%)	
02 a 84	51 (51.0)	49 (49.0)	100	42 (42)	nt	58 (58)	100	27 (27)	0 (0)	73 (73)	01
17 a 42	0 (0)	8 (100)	0	nt	nt	nt	08	7 (87.5)	1 (12.5)	0 (0)	0
8m a 84	258 (50.8)	250 (49.2)	236	29 (12.3)	11 (4.7)	196 (83)	508	92 (18.1)	12 (2.4)	404 (79.5)	0
7m to 95 y	106 (50.5)	104 (49.5)	195	06 (3.1)	39 (20)	150 (76.9)	210	65 (30.9)	06 (2.8)	139 (66.2)	01
7 m to 89 y	116 (36.6)	201 (63.4)	166	96 (57.8)	nt	70 (42.2)	317	139 (43.9)	14 (4.4)	164 (51.7)	05
1 a 94	21 (47.7)	23 (52.3)	44	13 (29.5)	1 (2.3)	30 (68.2)	44	9 (20.4)	0 (0)	35 (79.5)	0
7m a 95 y	552 (46.5)	635 (53.5)	741	185 (25.0)	51 (6.9)	505 (68.1)	1.187	339 (28.5)	33 (2.8)	815 (68.7)	07
-	17 a 42 8m a 84 7m to 95 y 7 m to 89 y 1 a 94	N (%) 02 a 84 51 (51.0) 17 a 42 0 (0) 8m a 84 258 (50.8) 7m to 95 y 106 (50.5) 7 m to 89 y 116 (36.6) 1 a 94 21 (47.7)	N (%) N (%) 02 a 84 51 (51.0) 49 (49.0) 17 a 42 0 (0) 8 (100) 8m a 84 258 (50.8) 250 (49.2) 7m to 95 y 106 (50.5) 104 (49.5) 7 m to 89 y 116 (36.6) 201 (63.4) 1 a 94 21 (47.7) 23 (52.3)	N (%) N (%) tested 02 a 84 51 (51.0) 49 (49.0) 100 17 a 42 0 (0) 8 (100) 0 8m a 84 258 (50.8) 250 (49.2) 236 7m to 95 y 106 (50.5) 104 (49.5) 195 7 m to 89 y 116 (36.6) 201 (63.4) 166 1 a 94 21 (47.7) 23 (52.3) 44	N (%) N (%) tested N (%) 02 a 84 51 (51.0) 49 (49.0) 100 42 (42) 17 a 42 0 (0) 8 (100) 0 nt 8m a 84 258 (50.8) 250 (49.2) 236 29 (12.3) 7m to 95 y 106 (50.5) 104 (49.5) 195 06 (3.1) 7 m to 89 y 116 (36.6) 201 (63.4) 166 96 (57.8) 1 a 94 21 (47.7) 23 (52.3) 44 13 (29.5)	N (%) N (%) tested N (%) N (%) 02 a 84 51 (51.0) 49 (49.0) 100 42 (42) nt 17 a 42 0 (0) 8 (100) 0 nt nt 8m a 84 258 (50.8) 250 (49.2) 236 29 (12.3) 11 (4.7) 7m to 95 y 106 (50.5) 104 (49.5) 195 06 (3.1) 39 (20) 7 m to 89 y 116 (36.6) 201 (63.4) 166 96 (57.8) nt 1 a 94 21 (47.7) 23 (52.3) 44 13 (29.5) 1 (2.3)	N (%) N (%) N (%) N (%) N (%) N (%) 02 a 84 51 (51.0) 49 (49.0) 100 42 (42) nt 58 (58) 17 a 42 0 (0) 8 (100) 0 nt nt nt 8m a 84 258 (50.8) 250 (49.2) 236 29 (12.3) 11 (4.7) 196 (83) 7m to 95 y 106 (50.5) 104 (49.5) 195 06 (3.1) 39 (20) 150 (76.9) 7m to 89 y 116 (36.6) 201 (63.4) 166 96 (57.8) nt 70 (42.2) 1 a 94 21 (47.7) 23 (52.3) 44 13 (29.5) 1 (2.3) 30 (68.2)	N (%) N (%) tested N (%) N (%) N (%) tested 02 a 84 51 (51.0) 49 (49.0) 100 42 (42) nt 58 (58) 100 17 a 42 0 (0) 8 (100) 0 nt nt nt 08 8m a 84 258 (50.8) 250 (49.2) 236 29 (12.3) 11 (4.7) 196 (83) 508 7m to 95 y 106 (50.5) 104 (49.5) 195 06 (3.1) 39 (20) 150 (76.9) 210 7 m to 89 y 116 (36.6) 201 (63.4) 166 96 (57.8) nt 70 (42.2) 317 1 a 94 21 (47.7) 23 (52.3) 44 13 (29.5) 1 (2.3) 30 (68.2) 44	N (%) N (%) rested N (%) N (%) N (%) tested N (%) 02 a 84 51 (51.0) 49 (49.0) 100 42 (42) nt 58 (58) 100 27 (27) 17 a 42 0 (0) 8 (100) 0 nt nt nt 08 7 (87.5) 8m a 84 258 (50.8) 250 (49.2) 236 29 (12.3) 11 (4.7) 196 (83) 508 92 (18.1) 7m to 95 y 106 (50.5) 104 (49.5) 195 06 (3.1) 39 (20) 150 (76.9) 210 65 (30.9) 1 a 94 21 (47.7) 23 (52.3) 44 13 (29.5) 1 (2.3) 30 (68.2) 44 9 (20.4)	N (%) N (%) tested N (%) N (%) N (%) tested N (%) N (%) 02 a 84 51 (51.0) 49 (49.0) 100 42 (42) nt 58 (58) 100 27 (27) 0 (0) 17 a 42 0 (0) 8 (100) 0 nt nt nt 08 7 (87.5) 1 (12.5) 8m a 84 258 (50.8) 250 (49.2) 236 29 (12.3) 11 (4.7) 196 (83) 508 92 (18.1) 12 (2.4) 7m to 95 y 106 (50.5) 104 (49.5) 195 06 (3.1) 39 (20) 150 (76.9) 210 65 (30.9) 06 (2.8) 7 m to 89 y 116 (36.6) 201 (63.4) 166 96 (57.8) nt 70 (42.2) 317 139 (43.9) 14 (4.4) 1 a 94 21 (47.7) 23 (52.3) 44 13 (29.5) 1 (2.3) 30 (68.2) 44 9 (20.4) 0 (0)	N (%) N (%) tested N (%) N (%) </td

1	
2 3	
4	
5	
6 7	
8	
9	
10 11	
12	
13	
14 15	
16	
17	
18 10	
19 20	
21	
22 23	
23 24	
24 25	
26 27	
28	
29	
30 31	
32	
33	
34 35	
36	
37	
38 39	
40	
41	
42 43	
43 44	
45	
46 47	
4/	

Age	Xikrin ^[7]		Asurini		Araweté		Parakanã		Munduruku		Kararaô		Total
	male	female	male	female	male	female	male	female	male	female	male	female	n/ total (%)
0-6	5	2	0	0	44	27	10	6	6	5	3	1	109/1,187 (9.2)
>6 a 16	15	11	0	0	61	56	18	18	8	17	6	8	218/1,187 (18.4)
>16 a 31	9	13	0	0	56	66	12	21	14	44	2	6	243/1,187 (20.5)
>31	10	8	0	0	45	49	27	27	26	42	3	6	243/1,187 (20.5)
*not informed	0	0	0	0	0	0	0	0	1	1	0	0	2/1,187 (0.2)
Total	39	34	0	0	206	198	67	72	55	109	14	21	815/1,187 (68.7)

Table 2. Age and sex distribution to anti-SARS-CoV-2 (S1) IgG antibodies among Indigenous villages

[7] Rodrigues et al. (2021); Age distribution: (Overall: χ^2 =8.2; p=0.042); (Xikrin: G=8.15; p=0,0198); (Araweté: χ^2 =12.3; p=0.0065); (Parakanã: χ^2 =3.9; p=0.2753); (Munduruku: χ^2 =23.8; p<0.0001); (Kararaô: G=4.4; p=0.2213). G - G test; χ^2 - Chi-square.

The main clinical manifestations reported among infected individuals were coughing,

dyspnea, coryza, fever, fatigue, diarrhea, ear pain, headache, chest and back pain.

There were seven deaths among the 815 infected persons showing a virulence rate of

0.86%.

DISCUSSION

The high prevalence of IgG anti-SARS-CoV-2 antibodies reported herein show that the new Corovavirus infection reached indigenous populations in a wide way. Introduction of new infectious agents among vulnerable indigenous peoples is thought to be a heavy burden because of the low genetic variability among genes that control the immune response,⁹ an important element working as a selective pressure over indigenous peoples since the initial colonization process of the Amazon region of Brazil. SARS-CoV-2 brought the question again as to how the virus would affect native peoples? Despite the theoretical arguments for the possible speculative devastation of indigenous groups,⁶ there was no confirmed evidence of susceptibility to Covid-19 in the

BMJ Open

presence of coinfections and pre-existing conditions, including obesity and malnutrition as previously suggested.45 Most of the indigenous peoples of the Amazon region of Brazil, including those of the present study, present endemic diseases as malaria, tuberculosis, virus hepatitis and, to HTLV-2 hyperendemic infections among Xikrin, Kararaô, Munduruku and Parakanã.¹⁰ Presently, there is no scientific evidence for host modulation of SARS-CoV-2 in the presence of these coinfections, but researches in order to investigate these coinfections are of paramount importance for a better understanding of the outcome of SARS-CoV-2 infection. Furthermore, environmental and social conditions are important factors that could impact on COVID-19 among indigenous communities,³⁴ including the lack of drinking water and malnutrition, which might had been potentialized after the prophylactic isolation measures. In our previous report the quality of tests to measure the presence of antibodies was raised.⁷ It is important that antibodies to SARS-CoV-2 are detected using tests with greater sensitivity and specificity to obtain accurate prevalence rates. Rapid tests

usually show low sensitivity and yield false negative results and false-positive results

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

due to cross-reactions. In the present study, two methodologies were used and the agreement of the results of the rapid test in relation to ELISA was good and the IgG prevalence values similar. In contrast to the genetic and socio-environmental vulnerability the results showed SARS-CoV-2 infection evenly distributed, with a high prevalence of the virus and few reported deaths, confirming the official results by Special Secretariat of Indigenous Health (SESAI) in its COVID-19 epidemiological bulletin.¹¹ The prevalence of anti-SARS-CoV-2 IgG antibodies shows a high dissemination of the virus spread favored by inherent social and cultural difficulties of keeping social distance, sharing households with other families and wearing masks correctly The detection of IgM antibody in three villages might suggest recent infection in the villages. But the confirmation could only be done by antigen or nucleic acid tests, which were not available at the time of the study. Additionally, recent report has shown IgM persistence for up to 8 months post-Covid, pointing to the need for no longer using IgM as a diagnostic criterion for acute or recent COVID-19.12

Page 19 of 27

 BMJ Open

It is relevant to mention that three villages are more than 100Km apart from each other and there is no simple way of communication among them. This raises another important question in regard to herd protective immunity. Apparently, the communities achieved herd immunity levels, when reaching at least 60% seropositivity for IgG,¹³ similarly as found in Manaus, the capital of the Amazonas State.¹⁴ However, differently from what is seen among urban areas,¹⁵ virgin soil epidemics generally exhaust susceptible individuals before it comes to an end,¹⁶ and the present epidemic is still not totally explained and understood. The high seroprevalence of IgG anti-SARS-CoV-2 antibodies reported herein among vulnerable Amazon Indigenous peoples, is comparable to our recent finding among Venezuelan indigenous Warao refugees residing in Belem city, the capital of Para State, where the infection was detected among 83% of the subjects living in conditions of vulnerability.¹⁷ Similar results were reported among indigenous people living in the surrounding area of Manaus, where the number of individuals sharing households was a risk for virus infection.¹⁸ The results show new information over the SARS-CoV-2 epidemic among indigenous peoples and provides the Brazilian government with information to establish adequate

measures to control the epidemic among Brazilian indigenous communities in the

Amazon region.

CONCLUSION

SARS-CoV-2 infection reached the indigenous populations from the State of Para as rapid as the virus entered the Amazon region, confirming our previous alert to the need of serological studies for surveillance, minimizing the burden of the epidemic and to promote indigenous health policies.⁵ In spite of the suggestion of high mortality and chaos facing the Amerindian populations,⁶ the majority of the cases was asymptomatic or mild, with low fatality rate, supporting analysis that shows that the mortality associated with epidemics following contact of Amazonian indigenous communities with urban communities has decreased in recent years.19 Finally, continuing seroepidemiological surveys are of paramount importance for monitoring the outcome of the national contingency plan for the prevention and control

BMJ Open

of the epidemic, by a mass vaccination program for indigenous peoples started by February 2021. Acknowledgments We thank the Indigenous populations for authorizing the study and the institutions that provided technical support for the development and implementation of this study. Our especial gratitude to Vilson Monteiro and Hailton Monteiro for laboratorial assistance during the expeditions to Indigenous villages. **Contributor** ACRV, JFG and RI: conception of idea, data analysis, writing and editing of manuscript; ACRV, RI, JFG, INA, BJSB and CNCL: Acquisition, analysis, or interpretation of data; CNCL, RI, IMVCV: Drafting of the manuscript; ACRV, RI, JFG and IMVCV: Critical revision of the manuscript for important intellectual content; SSL: Statistical analysis; ACRV: Obtained funding; VOF and EPSR: technical and material support.

Funding This study was supported by the National Council for Scientific and

Technological Development (CNPq Project; MCTIC/CNPq/FNDCT/MS/SCTIE/DECIT n.

401235/2020-3); Coordination for the Improvement of Higher Education Personnel

(CAPES: 88887.612787/2021-00); and Federal University of Pará (UFPA-

PROPESP/PAPQ-2021). CNPq Research Grants were received by ACRV (#-

301869/2017-0), RI (#312979/2018-5).

Competing interests None declared

Patient and public involvement Neither patients, parents nor the public were involved in

the design, conduct or reporting of this research.

Patient consent for publication Not requirable

Ethics approval The study was approved by the leaders of the communities and by the

National Research Ethics Committee (Comissão Nacional de Ética em Pesquisa -

CONE	P; CAAE: 33470020.0.1001.0018), in accordance with the Declarations of
Helsin	ki.
Data	availability statement Data are available upon reasonable request
(<u>vallin</u> d	oto@ufpa.br)
REFE	RENCES
1.	Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory
	disease in China. <i>Nature</i> 2020;579(7798):265-269.
	https://doi.org/10.1038/s41586-020-2008-3.
2.	World Health Organization. Coronavirus disease (COVID-2019) situation reports;
	2020. https://www.who.int/emergencies/diseases/novel-coronavirus-
	2019/situation-reports/ Accessed March 27, 2020.
3.	Fiocruz. 4º relatório sobre risco de espalhamento da COVID-19 em populações
	indígenas. Risco de espalhamento da COVID-19 em populações indígenas:
	considerações preliminares sobre vulnerabilidade geográfica e
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
6 7 8 9	
8	
9	
10	
11 12	
12	
14	
15	
12 13 14 15 16 17	
17	
18	
19	
20	
19 20 21	
22	
23 24	
24	
25	
26	
27	
28	
29	
30 21	
31 32	
32 33	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51 52	
52 53	
53 54	
54 55	
55 56	
57	
58	
59	
60	

sociodemográfica. Available from:<u>https://portal.fiocruz.br/documento/4o-relatorio-</u> sobre-risco-de-espalhamento-da-covid-19-em-populacoes-indigenas. Accessed June 27, 2020.

- 4. Amigo I. Indigenous communities in Brazil fear pandemic's impact. *Science*. 2020; 368(6489):352. https://doi.org/10.1126/science.368.6489.352.
- 5. Vallinoto ACR, da Silva Torres MK, Vallinoto MC, Cayres-Vallinoto, IMV. The

challenges of COVID-19 in the Brazilian Amazonian communities and the importance of seroepidemiological surveillance studies. *Int J Equity Health* 2020;19(1):140. https://doi.org/10.1186/s12939-020-01256-7

6. Ramírez JD, Sordillo EM, Gotuzzo E, et al. SARS-CoV-2 in the Amazon region:

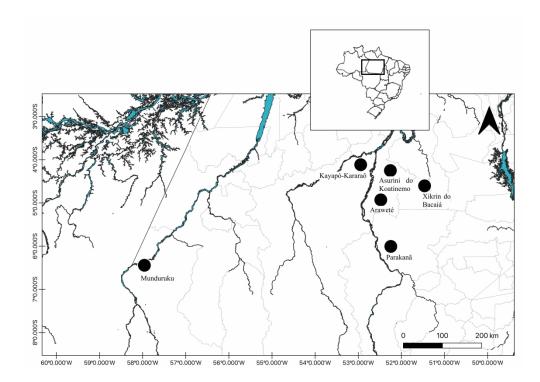
A harbinger of doom for Amerindians. PLoS Negl Trop Dis.

2020;14(10):e0008686. https://doi.org/10.1371/journal.pntd.0008686.

7. Rodrigues EPS, Abreu IN, Lima CNC, et al. High prevalence of anti-SARS-CoV-

2 IgG antibody in the Xikrin of Bacajá (Kayapó) indigenous population in the

brazilian Amazon. Int J Equity Health. 2021;20(1):50.


https://doi.org/10.1186/s12939-021-01392-8.

8.	Ishak R, Guerreiro JF and Vallinoto ACR. Why Did They Not Die?. Austin J
	Public Health Epidemiol. 2021;8(3):1106.
9.	Dent R, Santos RV. An Unusual and Fast Disappearing Opportunity: Infectious
	Disease, Indigenous Populations, and New Biomedical Knowledge in Amazonia,
	1960-1970. <i>Perspect Sci.</i> 2017;25(5):585-605.
	https://doi.org/10.1162/POSC_a_00255.
10.	Ishak R, Harrington WJ Jr, Azevedo VN, et al. Identification of human T cell
	lymphotropic virus type IIa infection in the Kayapo, an indigenous population of
	Brazil. AIDS Res Hum Retroviruses. 1995;11(7):813-21.
	https://doi.org/10.1089/aid.1995.11.813.
11.	SESAI – Secretaria Especial de Saúde Indígena. Boletim epidemiológico SESAI
	- COVID-19. http://www.saudeindigena.net.br/coronavirus/mapaEp.php.
	Accessed April 12, 2021).
12.	Bichara CDA, Amoras ESG, Vaz GL, Bichara CNC, Amaral IPC, Vallinoto ACR.
	Persistence of Anti-SARS-CoV-2 IgM Antibody up to 8 Months Post-COVID-19.
	Case Rep Clin Med 2021, 10, 227-231. https://www.scirp.org/journal/crcm.

13. Omer SB, Yildirim I, Forman HP. Herd Immunity and implications for SARS-
CoV-2 control. <i>JAMA</i> 2020. https://doi.org/10.1001/jama.2020.20892.
14. Buss LF, Prete CA Jr, Abrahim CMM, et al. Three-quarters attack rate of SARS-
CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. <i>Science</i>
2020;8:eabe9728. https://doi.org/10.1126/science.abe9728.
15. Hallal PC, Hartwig FP, Horta BL, et al. SARS-CoV-2 antibody prevalence in
Brazil: results from two successive nationwide serological household surveys.
Lancet Glob Health. 2020;8(11):e1390-e1398. https://doi.org/10.1016/S2214-
109X(20)30387-9.
16. Crosby AW. Virgin soil epidemics as a factor in the aboriginal depopulation in
America. <i>William Mary Q.</i> 1976;33:289-99. PMID: 11633588.
17. da Silva HP, Abreu IN, Lima CNC, et al. Migration in times of pandemic: SARS-
CoV-2 infection among the Warao indigenous refugees in Belém, Pará,
Amazonia, Brazil. BMC Public Health. 2021;21(1):1659. doi: 10.1186/s12889-
021-11696-7.

60

-	
1	
2	
3	18. Pontes GS, de Melo Silva J, Pinheiro-Silva R, Barbosa AN, Santos LC, de
4	
5	
6	
7	Pádua Quirino Ramalho A, de Castro Alves CE, da Silva DF, de Oliveira LC, da
8	
9	
10	
11	Costa AG, Bruno AC. Increased vulnerability to SARS-CoV-2 infection among
12	
13	
14	indigenous people living in the urban area of Manaus. <i>Sci Rep</i> .
15	indigeneds people inving in the droah dred of Mahads. <i>Our rep</i> .
16	
17	
18	2021;11(1):17534. doi: 10.1038/s41598-021-96843-1.
19	
20	
21	19. Walker RS, Sattenspiel L, Hill KR. Mortality from contact-related epidemics
22	
23	
24	among indigenous populations in Greater Amazonia. Sci Rep. 2015;5:14032.
25	among indigenous populations in Oreater Amazonia. <i>Oci Nep</i> . 2013, 3. 14032.
26	
27	
28	https://doi.org/10.1038/srep14032.
29	
30	Figure Legend.
31	
32	
33	
34	
35	Figure Legend.
36	ligure Legend.
37	
38	Figure 1. Map showing the geographical location of the indigenous communities
39	
40	
41	
42	investigated enrolled in the present study.
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
J0	

296x209mm (600 x 600 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Anti-SARS-CoV-2 antibodies among indigenous populations of the Brazilian Amazon: a cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054271.R3
Article Type:	Original research
Date Submitted by the Author:	06-Jan-2022
Complete List of Authors:	Lima, Carlos Neandro ; Universidade Federal do Para Abreu, Isabella; Universidade Federal do Pará Rodrigues, Eliene Putira; Universidade Federal do Para Freitas, Vanessa; Universidade Federal do Pará Botelho, Bruno José ; Universidade Federal do Para Souza, Sandra; Universidade Federal do Para Cayres-Vallinoto, Izaura; Universidade Federal do Para Guerreiro, João; Universidade Federal do Para Ishak, Ricardo; Universidade Federal do Para Vallinoto, Antonio; Universidade Federal do Para
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Global health, Infectious diseases, Immunology (including allergy), Public health
Keywords:	COVID-19, EPIDEMIOLOGY, INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	1	Anti-SARS-CoV-2 antibodies among indigenous populations of the Brazilian Amazon: a
5 6		
7 8 9	2	cross-sectional study
10 11 12	3	
13		
14 15 16	4	Carlos Neandro Cordeiro Lima, ¹ Isabella Nogueira Abreu, ¹ Eliene Putira Sacuena
17 18 19	5	Rodrigues, ² Vanessa de Oliveira Freitas, ¹ Bruno José Sarmento Botelho, ¹ Sandra
20 21 22	6	Souza Lima, ¹ Izaura Maria Vieira Cayres Vallinoto, ¹ João Farias Guerreiro, ^{* 2} Ricardo
23		
24 25 26	7	Ishak,*1 Antonio Carlos Rosário Vallinoto*1
27 28 29	8	
30		
31 32 33	9	¹ Laboratório de Virologia, Instituto de Ciências Biológicas da Universidade Federal do
34 35 36	10	Pará, Belém, PA, Brasil;
37 38 39	11	² Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas da
40 41		
42 43 44	12	Universidade Federal do Pará, Belém, PA, Brasil.
45 46 47	13	
48 49 50	14	* RI, JFG and ACRV are senior authors of the manuscript
51		
52 53 54	15	
55 56 57 58	16	Correspondence to Dr. Antonio Carlos Rosário Vallinoto; vallinoto@ufpa.br
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		2
2		
3	17	
4	17	
5		
6 7	18	ABSTRACT
8	10	ABSTRACT
9		
10	19	Objectives The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-
11	19	Objectives the energence of severe acute respiratory syndrome coronavirus 2 (OARO-
12 13		
14	20	CoV-2) and its pandemic spread generated serious concern about the impact of the
15	20	
16		
17	21	infection on vulnerable indigenous populations of the Brazilian Amazon. Thus, the
18 19		
20		
21	22	present study aimed to perform a seroepidemiological survey of anti-SARS-CoV-2
22		
23		
24 25	23	antibodies in those populations.
26		
27		
28	24	Setting Six indigenous ethnic groups living in the State of Pará (Northern Brazil) were
29		
30 21		
31 32	25	investigated. The villages of Xikrin do Bacajá, Assurini, Araweté, Parakanã, Munduruku
33		
34		
35	26	and Kararaô were visited from October 2020 to January 2021.
36 37		
38		
39	27	Design and participants We performed a cross-sectional study to investigate the
40		
41		
42	28	prevalence of anti-spike (S1) IgG antibodies. Plasma was tested for the presence of
43 44		
45	20	anti CARC CaV 2 IrM and IrC antihadian using two appared (a lateral flow ranid test and
46	29	anti-SARS-CoV-2 IgM and IgG antibodies using two assays (a lateral flow rapid test and
47		
48	20	an ELISA). A total of 1,185 individuals of both sexes were enrolled in the study.
49 50	30	an ELISA). A total of 1, 103 individuals of both sexes were enrolled in the study.
51		
52	31	Results The prevalence of IgM and IgG antibodies were 6.9% and 68.1%, respectively,
53	51	
54		
55 56	32	ranging from 0% to 79.6%, with significant differences (p<0.001) between age groups in
57		
58		
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		r or peer review only - http://binjopen.onj.com/site/about/guidelines.xittini

Page 4 of 29

1 2		
3 4 5	33	three communities (Araweté, Xikrin and Munduruku) and a virulence rate of 0.86%. The
6 7 8	34	overall IgG prevalence obtained by rapid tests and ELISAs were similar, and the
9 10 11 12	35	agreement of the results between the two tests was 80%, which was classified as good
13 14 15	36	(kappa=0.4987; p<0.001; sensitivity of 82.1% and specificity of 71.6%). Herd immunity
16 17 18 19	37	was probably attained, similar to that found in other communities of the Amazon.
20 21 22	38	Conclusions SARS-CoV-2 spread rapidly among the indigenous populations
23 24 25 26	39	investigated, but it had a low mortality rate. It is necessary to expand serological
27 28 29	40	investigations to other communities in the Amazon region of Brazil.
30 31 32 33	41	
34 35 36	42	Keywords: SARS-CoV-2, COVID-19, Indigenous peoples, Amazon.
37 38 39 40	43	
40 41 42 43	44	
44 45 46 47	45	
48 49 50	46	Strengths and limitations of this study
51 52 53	47	• The sample size of the present study was high and representative of the
54 55 56 57	48	populations.
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 ว		
2 3 4 5	49	• Serological tests of high sensitivity and specificity were used in the present study.
6 7 8	50	• Failure to assess infection by RT-PCR was a limitation of the study.
9 10 11 12 13	51	
14 15 16	52	INTRODUCTION
17 18 19 20	53	Infection with novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
21 22 23	54	and the first cases of coronavirus disease 2019 (COVID-19) were reported by
24 25 26 27	55	November 2019 in Wuhan, China. ¹ The rapid spread of the virus determined its
28 29 30	56	classification as a pandemic by the World Health Organization (WHO) ^{2,} and the high
31 32 33 34	57	associated morbimortality highlighted the burden imposed on vulnerable populations,
35 36 37	58	including native indigenous peoples living in the Brazilian Amazon who were susceptible
38 39 40 41	59	to the virus and could be substantially affected due to their immunological vulnerablity. ³⁻
42 43 44	60	⁶ Three previous reports from our laboratory highlight the distinct cultural (sharing
45 46 47 48	61	households) and health aspects (coinfections and malnutrition) and mode of infection
49 50 51 52	62	among these Amazonian populations, the impact of the virus among native people, and
53 54 55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 6 of 29

5

1	
2 3 4 5	63
6 7 8	64
9 10 11 12	65
13 14 15	66
16 17 18 19	67
20 21 22	68
23 24 25 26	69
27 28 29	70
30 31 32 33	71
34 35 36	72
37 38 39 40	73
41 42 43	74
44 45 46 47	75
48 49 50	76
51 52 53 54	77
55 56 57	78
58 59	

63	the importance of performing serosurveys among such populations to determine the
64	spectrum of illness. ⁵⁷⁸
65	Due to the vulnerability of indigenous people who inhabit the Brazilian Amazon region
66	and their supposed inability to respond immunologically to new pathogens that emerge
67	in the community, the following question was asked: What was the impact of SARS-
68	CoV-2 infection on indigenous people living in the Brazilian Amazon region? Assuming
69	the possible negative impact that the COVID-19 pandemic may have had on these
70	communities, in this study, we carried out a seroepidemiological investigation in
71	indigenous populations located in the State of Pará by performing anti-SARS-CoV-2
72	antibody screening.
73	
74	METHODS
75	Type of study and ethical considerations
76	In 2020, a large cross-sectional seroepidemiological surveillance study among
77	indigenous ethnic groups within Para State (Northern Brazil, Amazon) was initiated to
78	investigate the prevalence of anti-SARS-CoV-2 IgM and IgG antibodies and the impact

1		0
2		
3 4	79	of the virus on the health of communities. The study was approved by the leaders of the
5		
6 7	80	communities and by the National Research Ethics Committee (Comissão Nacional de
8	00	
9 10		
11	81	<i>Ética em Pesquisa</i> – CONEP; CAAE: 33470020.0.1001.0018), in accordance with the
12 13		
14	82	Declarations of Helsinki.
15 16		
17	83	
18 19	00	
20		
21 22	84	Study population
23		
24 25	85	From October 2020 to January 2021, multiprofessional health care expeditions,
25 26		
27		
28 29	86	composed of members of our team and staff of the Health Department of the State of
30		
31 32	87	Para (Secretaria de Saúde do Estado do Pará – SESPA) and the Special Indigenous
33		
34 35	88	Health Districts of Altamira and Santarém (Distrito Sanitário Especial Indígena – DSEI)
36	00	
37 38		
39	89	of the Special Secretariat of Indigenous Health (Secretaria Especial de Saúde Indígena
40 41		
42	90	- SESAI-MS), were established. Six ethnic groups with active cases of COVID-19 in
43 44		
44	91	members were visited before initiation of the vaccination campaign among indigenous
46 47	91	members were visited before initiation of the vaccination campaign among indigenous
47 48		
49 50	92	communities. Indigenous individuals underwent a standard clinical examination that was
50 51		
52	93	performed under field conditions; the examination consisted of anamnesis and a
53 54		
55	~ .	abusised successing time states and successful to time.
56 57	94	physical examination (inspection, palpation, percussion and auscultation), with
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3 4	95	assessments of anthropometric, blood pressure, body temperature and digital oximetry
4 5		
6		
7	96	data. Laboratory support was provided for blood counts and biochemical,
8 9		
9 10		
11	97	microbiological and parasitological exams.
12		
13 14	00	The villages of the indigenesis needs of the basis of the middle Vingy Diver (Asyrini
15	98	The villages of the indigenous people of the basin of the middle Xingu River (Asurini,
16		
17	99	Araweté and Parakanã), Iriri River (Kararaô) and Tapajós River (Munduruku) are
18 19	55	viewete and Falakana), init tiver (trafarao) and Fapajos tiver (manadraka) are
20		
21	100	usually accessed by the river, while the village of the Xikrin people, located in the
22		
23 24		
24 25	101	Bacajá River channel, are accessed by road (Figure 1). The indigenous people studied
26		
27		
28	102	were as follows:
29 30		
31	103	(i) Araweté: a Tupi-Guarani-speaking population of 589 inhabitants who are currently
32	102	(i) Arawete. a Tupi-Guarani-speaking population of 569 initiabitants who are currently
33 34		
35	104	distributed in 22 villages, with populations from 7 to 71 individuals. Villages are located
36	-	
37		
38 39	105	on the banks of the Xingú River and the Ipixuna stream (-4,8853, -52,4281) and the
40		
41		
42	106	right bank tributary of the middle Xingu River, in the municipality of Altamira (PA). A total
43 44		
45	107	of 508 people from all villages were examined.
46	107	or soo people from all villages were examined.
47		
48 49	108	(ii) Asurini do Xingu: from the Tupi-Guarani family, with 260 individuals distributed in five
50	100	
51		
52	109	villages on the banks of the middle Xingu River (-4,2449, -52,2380); eight people from
53 54		
55		
56	110	the Kwatinemu village (n = 139) were examined.
57 58		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4 5	111	(iii) Parakanã: indigenous Tupi-Guarani people who live in the Apyterewa land, in the
6 7 8	112	municipalities of Altamira and São Félix do Xingu, in the Xingu basin (-5,6904, -
9 10 11 12	113	52,0037), Pará. The total population is 782 people distributed in 16 small villages, with
13 14 15	114	populations ranging from 17 to 94 individuals. Two hundred ten people were examined.
16 17 18 19	115	(iv) Xikrin do Bacajá: people who speak the Kayapó (or Mebengokré) language, Jê
20 21 22	116	linguistic family, and live in 19 small villages (populations from 11 to 141 individuals;
23 24 25 26	117	current population of 1,051 inhabitants) in the middle Bacajá basin (-3.7160, -53.0546)
27 28 29	118	and municipalities of Senador José Porfírio and Anapú, PA. One hundred individuals
30 31 32 33	119	from seven villages were examined: Kenkrô (39/61), Bakajá (23/109), Mrotdjam (1/128),
34 35 36	120	Pykatum (4/59), Rapkô (7/60), Pytatko (1941) and Moinorô (13/77);
37 38 39 40	121	(v) Kararaô: another Jê-speaking Kayapó subgroup distributed in four small villages
41 42 43	122	(Kararaô, n = 15; Kruakrô, n = 15; Pidjôdjã, n = 42 and Rikrekô, n = 11) located in the
44 45 46 47	123	lower Iriri River and in the middle Xingu River (-3,9112, -52,8044), Altamira, PA. Forty-
48 49 50	124	four individuals were examined among a total population of 83 individuals.
51 52 53 54	125	(vi) Munduruku: an indigenous population belonging to the Munduruku linguistic family
55 56 57	126	of the Tupi language trunk who lives in southwestern Pará in the Tapajós River channel
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		5
2		
3	127	and tributaries in the municipalities of Santarém, Itaituba and Jacareacanga (-3.9112, -
4 5	127	and inducates in the municipanties of Santarem, italituda and Jacareacanga (-3.9112, -
6		
7	128	52.8044). The total population of 10,629 is distributed in 133 villages. A total of 317
8		
9 10		
11	129	individuals were examined: 213 from Nova Karapanatuba village (213/414) and 201
12		
13 14	130	from smaller villages around Nova Karapanatuba in Jacareacanga, PA.
15	130	nom smaller villages around Nova Karapanatuba in Jacareacanga, FA.
16		
17 18	131	
19		
20		
21 22	132	Anti-SARS-CoV-2 antibody assays
23		
24	133	A blood sample (5 mL) was collected, and the plasma was tested for the presence of
25 26	155	The plasma was tested for the plasma was tested for the plasma was
27		
28	134	anti-SARS-CoV-2 IgM and IgG antibodies. Anti-SARS-CoV-2 IgM and IgG antibodies
29 30		
31	405	were detected using a regid test (lateral flow reating). Over they Wandfe Distach Co
32	135	were detected using a rapid test (lateral flow method; Guangzhou Wondfo Biotech Co.,
33 34		
35	136	China) and an enzyme-linked immunosorbent assay (ELISA; Anti-SARS-CoV-2 S1 IgG,
36		
37 38		
39	137	Euroimmun, Brazil), respectively, according to the manufacturers' recommendations.
40		
41 42	138	Data analysis
43	150	
44		
45 46	139	The Kappa test was used to assess the agreement between the rapid test and ELISA
47		
48	1 1 0	requite C and abi equare tests were performed to seese difference in the provalence
49 50	140	results. G and chi-square tests were performed to assess difference in the prevalence
51		
52	141	of IgG among the villages in relation to sex and age.
53 54		
55		
56 57		
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4 5	142	We estimated the virulence rate as the number of deaths in each village divided by the
6 7 8	143	number of individuals who were infected with SARS-CoV-2, according to IgG
9 10 11 12	144	seropositivity.
13 14 15	145	
16 17 18 19	146	Patient and public involvement
20 21 22	147	The study subjects, parents of study subjects or the public had no involvement in the
23 24 25	148	design, conduct or reporting of this research.
26 27 28 29	149	
30		
31 32	150	RESULTS
32 33 34 35	150 151	RESULTS A total of 1,187 subjects were investigated, including 552 males (46.5%) and 635
32 33 34 35 36 37 38		
32 33 34 35 36 37	151	A total of 1,187 subjects were investigated, including 552 males (46.5%) and 635
32 33 34 35 36 37 38 39 40 41 42 43 44 45	151 152	A total of 1,187 subjects were investigated, including 552 males (46.5%) and 635 females (53.5%). The ages ranged from 1 to 95 years old (mean of 26.2, standard deviation of 19.9 years).
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	151 152 153 154	A total of 1,187 subjects were investigated, including 552 males (46.5%) and 635 females (53.5%). The ages ranged from 1 to 95 years old (mean of 26.2, standard deviation of 19.9 years). Anti-SARS-CoV-2 IgG was detected in 505 (68.1%) individuals by rapid tests and 815
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	151 152 153 154 155	A total of 1,187 subjects were investigated, including 552 males (46.5%) and 635 females (53.5%). The ages ranged from 1 to 95 years old (mean of 26.2, standard deviation of 19.9 years). Anti-SARS-CoV-2 IgG was detected in 505 (68.1%) individuals by rapid tests and 815 (68.7%) individuals by ELISAs (Table 1). Eight Asurini individuals were negative for
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	151 152 153 154 155 156	A total of 1,187 subjects were investigated, including 552 males (46.5%) and 635 females (53.5%). The ages ranged from 1 to 95 years old (mean of 26.2, standard deviation of 19.9 years). Anti-SARS-CoV-2 IgG was detected in 505 (68.1%) individuals by rapid tests and 815 (68.7%) individuals by ELISAs (Table 1). Eight Asurini individuals were negative for antibodies, but among the other indigenous populations, antibody positivity (by ELISA)
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	151 152 153 154 155	A total of 1,187 subjects were investigated, including 552 males (46.5%) and 635 females (53.5%). The ages ranged from 1 to 95 years old (mean of 26.2, standard deviation of 19.9 years). Anti-SARS-CoV-2 IgG was detected in 505 (68.1%) individuals by rapid tests and 815 (68.7%) individuals by ELISAs (Table 1). Eight Asurini individuals were negative for

Page 12 of 29

1		1
2 3 4 5	158	prevalence obtained by rapid tests and ELISAs were similar, and the agreement of the
6 7 8	159	results between the two tests was 80%, which was classified as good (kappa=0.4987;
9 10 11 12	160	p<0.001; sensitivity of 82.1% and specificity of 71.6%). Thirty-three (2.8%) individuals
13 14 15	161	had indeterminate anti-SARS-CoV-2 IgG antibody results by ELISA. Additionally, IgM
16 17 18 19	162	antibodies were detected in 51 (6.9%) individuals from three villages.
20 21 22	163	There was no significant difference in the IgG prevalence between the sexes (overall: χ^2
23 24 25 26	164	=0.001, p=0.9793; Xikrin: χ²= 0.056, p=0.8129; Araweté: χ²=0.003, p=0.9554;
27 28 29	165	Parakanã: χ^2 =1.022, p=0.3121; Munduruku: χ^2 =1.496, p=0.2213; Kararaô: χ^2 =0.0278,
30 31 32 33	166	p=0.0642). Regarding age, in Araweté and Xikrin, the prevalences were significantly
34 35 36	167	lower among those >31 years old (p=0.0065 and p=0.0198), and in Munduruku, the
37 38 39	168	prevalence was lower among those aged <6 years (p<0.0001) and more than 31 years
40 41 42 43	169	(Table 2).
44 45 46		
47 48 49 50		
51 52 53		
54 55 56 57		
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Table 1. Prevalence of anti-SARS-CoV-2 (S1) IgG antibodies among indigenous populations by village

Population	Age range	Se	ex		Rapid te	st results		ELISA IgG anti-spike S1 results				
		Male	Female	N	Negative	IgM	IgG	Ν	Negative	Ind	IgG	-
		N (%)	N (%)	tested	N (%)	N (%)	N (%)	tested	N (%)	N (%)	N (%)	
Xikrin do Bacajá ^[7]	2 y to 84 y	51 (51.0)	49 (49.0)	100	42 (42)	nt	58 (58)	100	27 (27)	0 (0)	73 (73)	01
Asurini	17 y to 42 y	0 (0)	8 (100)		nt	nt	nt	08	7 (87.5)	1 (12.5)	0 (0)	0
Araweté	8 m to 84 y	258 (50.8)	250 (49.2)	236	29 (12.3)	11 (4.7)	196 (83)	508	92 (18.1)	12 (2.4)	404 (79.5)	0
Parakanã	7 m to 95 y	106 (50.5)	104 (49.5)	195	06 (3.1)	39 (20)	150 (76.9)	210	65 (30.9)	06 (2.8)	139 (66.2)	01
Munduruku	7 m to 89 y	116 (36.6)	201 (63.4)	166	96 (57.8)	nt	70 (42.2)	317	139 (43.9)	14 (4.4)	164 (51.7)	05
Kararaô	1 y to 94 y	21 (47.7)	23 (52.3)	44	13 (29.5)	1 (2.3)	30 (68.2)	44	9 (20.4)	0 (0)	35 (79.5)	0
Total	7 m to 95 y	552 (46.5)	635 (53.5)	741	185 (25.0)	51 (6.9)	505 (68.1)	1.187	339 (28.5)	33 (2.8)	815 (68.7)	07
171 m (months); y 172 173	(years), nt (not t	ested); [7] Rod	lrigues et al. (2	021); Ind:	Indeterminate							

Age (y)	Xi	krin ^[7]	As	surini	Ara	aweté	Par	akanã	Mun	duruku	Ka	raraô	Total
8-())	male	female	male	female	male	female	male	female	male	female	male	female	n/total (%)
0-6	5	2	0	0	44	27	10	6	6	5	3	1	109/1,187 (9.2)
>6 to 16	15	11	0	0	61	56	18	18	8	17	6	8	218/1,187 (18.4)
>16 to 31	9	13	0	0	56	66	12	21	14	44	2	6	243/1,187 (20.5)
>31	10	8	0	0	45	49	27	27	26	42	3	6	243/1,187 (20.5)
*not informed	0	0	0	0	0	0	0	0	1	1	0	0	2/1,187 (0.2)
Total	39	34	0	0	206	198	67	72	55	109	14	21	815/1,187 (68.7)

176 Table 2. Anti-SARS-CoV-2 (S1) Ig	gG antibodies among ii	ndigenous villages by age and sex

177 [7] Rodrigues et al. (2021); Age distribution: (Overall: $\chi^2=8.2$; p=0.042); (Xikrin: G=8.15; p=0,0198); (Araweté: $\chi^2=12.3$; p=0.0065); (Parakanã: $\chi^2=3.9$; p=0.2753); 178 (Munduruku: $\chi^2=23.8$; p<0.0001); (Kararaô: G=4.4; p=0.2213). G - G test; χ^2 - chi-square.

1		1
2		
3 4	179	
5 6		
7	180	The main clinical manifestations reported among infected individuals were coughing,
8 9		
10	181	dyspnea, coryza, fever, fatigue, diarrhea, ear pain, headache, and chest and back pain.
11 12	101	dyspitea, coryza, lever, laugue, diarmea, ear pain, headache, and chest and back pain.
13		
14 15	182	There were seven deaths among 815 infected persons, resulting in a virulence rate of
16		
17 18	183	0.86%.
19 20		
20 21	184	
22 23		
24	185	DISCUSSION
25 26	105	
27		
28 29	186	The high prevalence of IgG anti-SARS-CoV-2 antibodies reported herein shows that
30		
31 32	187	novel coronavirus infection broadly impacted indigenous populations. The introduction
33 34		
35	188	of new infectious agents among vulnerable indigenous populations is thought to impose
36 37		
38	189	a heavy burden because of the low genetic variability among genes that control the
39 40		
41 42	190	immune response, ⁹ an important selective pressure in indigenous people since the
43	190	inimune response, an important selective pressure in indigenous people since the
44 45		
46	191	initial colonization of the Amazon region of Brazil.
47 48		
49 50	192	The pandemic raised the question of how SARS-CoV-2 would affect native peoples.
50 51		
52 53	193	Despite theoretical arguments for the possible devastation of indigenous groups, ⁶ there
54		
55 56	194	was no confirmed evidence of susceptibility to SARS-CoV-2 infection in the presence of
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 16 of 29

1		1
2 3 4	195	coinfections or pre-existing conditions, including obesity and malnutrition, as previously
5 6 7	196	suggested. ^{4 5}
8 9	190	suggested.
10 11 12 13	197	Most of the indigenous people of the Amazon region of Brazil, including some of those
14 15 16	198	in the present study, namely the Xikrin, Kararaô, Munduruku and Parakanã, are
17 18 19 20	199	continuously exposed to endemic diseases such as malaria, tuberculosis, virus hepatitis
20 21 22 23	200	and HTLV-2 hyperendemic infections. ¹⁰ Presently, there is no scientific evidence of host
24 25 26 27	201	modulation of SARS-CoV-2 in the presence of these coinfections, but research to
27 28 29 30	202	investigate these coinfections is of paramount importance to better understand of the
31 32 33	203	outcomes of SARS-CoV-2 infection. Furthermore, environmental and social conditions,
34 35 36 37	204	including a lack of drinking water and malnutrition, are important factors that could
38 39 40	205	impact COVID-19 dynamics among indigenous communities, ³⁴ and these factors might
41 42 43 44	206	have been potentiated after prophylactic isolation measures.
45 46 47	207	In our previous report, the quality of tests to measure the presence of antibodies was
48 49 50 51	208	analyzed. ⁷ It is important that antibodies to SARS-CoV-2 are detected using tests with
52 53 54	209	good sensitivity and specificity to obtain accurate prevalence rates. Rapid tests usually
55 56 57 58	210	have low sensitivity and yield false-negative or false-positive results due to cross-
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3 4 5	211	reactions. In the present study, two methodologies were used; the agreement of the
6 7 8	212	results between the rapid test and ELISA was good, and the IgG prevalence values
9 10 11 12	213	were similar.
13 14 15 16	214	The results showed that SARS-CoV-2 infections were evenly distributed, with a high
17 18 19	215	viral prevalence but few reported deaths, despite genetic and socioenvironmental
20 21 22 23	216	vulnerability, confirming the official results of the COVID-19 Epidemiological Bulletin
23 24 25 26	217	published by the Special Secretariat of Indigenous Health (SESAI).11
27 28 29	218	The prevalence of anti-SARS-CoV-2 IgG antibodies indicated wide dissemination of the
30 31 32 33	219	virus, caused by inherent social and cultural challenges in social distancing, household
34 35 36	220	isolation and mask wearing.
37 38 39 40	221	The detection of IgM antibodies in three villages might suggest recent infection in these
41 42 43	222	villages. However, IgM positivity can be confirmed by only antigen or nucleic acid tests,
44 45 46 47	223	which were not available at the time of the study. Additionally, a recent report showed
48 49 50	224	IgM persistence for up to 8 months post-SARS-CoV-2 infection, suggesting that IgM
51 52 53 54	225	positivity should no longer be considered a diagnostic criterion to confirm acute or
55 56 57	226	recent SARS-CoV-2 infection. ¹²
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 Page 18 of 29

2 3 4 5	227	Notably, three villages are located more than 100 km away from each other, and there
6 7 8 9	228	is no simple method of communication among them. This raises another important
10 11 12	229	question regarding herd immunity. Apparently, the communities achieved herd immunity
13 14 15 16	230	when at least 60% IgG seropositivity was reached, ¹³ similar to that in Manaus, the
17 18 19	231	capital of Amazonas State. ¹⁴ However, unlike in urban areas, ¹⁵ in rural areas, virgin soil
20 21 22 23	232	epidemics generally affect most susceptible individuals before the epidemic ends, ¹⁶ and
23 24 25 26	233	the dynamics of the present epidemic are still not completely understood. The high
27 28 29	234	seroprevalence of IgG anti-SARS-CoV-2 antibodies reported herein among vulnerable
30 31 32 33	235	Amazon indigenous peoples is comparable to our recent finding among Venezuelan
34 35 36	236	indigenous Warao refugees residing in Belem city, the capital of Para state, where
37 38 39 40	237	infection was detected in 83% of the subjects. ¹⁷ Similar results were reported among
41 42 43	238	indigenous people living in the surrounding area of Manaus, where the number of
44 45 46 47	239	individuals sharing households was a risk for virus infection. ¹⁸
48 49 50	240	The main limitation of our study was that it was not possible to assess the presence of
51 52 53 54	241	SARS-CoV-2 infection by RT–qPCR at the time of visits to the villages, but the results
55 56 57	242	provide new information about the SARS-CoV-2 epidemic among indigenous peoples
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

and can provide the Brazilian government with information to establish adequate epidemic control measures among Brazilian indigenous communities in the Amazon region. CONCLUSION SARS-CoV-2 infection rapidly spread among indigenous populations in the state of Para in the Amazon region, supporting our previous call for serological surveillance studies to minimize the of burden the epidemic and promote indigenous health policies.⁵ Despite the suggestion of high mortality and morbidity among Amerindian populations,⁶ the majority of cases were asymptomatic or mild, with a low fatality rate, supporting the suggestion that mortality associated with epidemics that spread from urban communities to Amazonian indigenous communities has decreased in recent years.¹⁹ Finally, continuing seroepidemiological surveys is of paramount importance in monitoring the outcome of the national contingency plan for the prevention and control of the epidemic, which includes a mass vaccination program for indigenous peoples, started in February 2021.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 29

1 ว		
2 3		
4	259	
5 6		
7	260	Acknowledgments We thank the indigenous populations for authorizing the study and
8	200	Action of a start and the margeneas populations for a start of a start and
9		
10 11	261	the institutions that provided technical support for the development and implementation
12		
13		
14 15	262	of this study. We are especially grateful to Vilson Monteiro and Hailton Monteiro for
16		
17	262	laboratorial assistance during the expeditions to indigenous villages.
18	263	laboratorial assistance during the expeditions to indigenous villages.
19 20		
21	264	
22		
23 24		
25	265	Contributors ACRV, JFG and RI: study conception, data analysis, manuscript writing
26		
27	266	and aditions ACDV DL IEC INA DICE and CNCL approxibition analysis on
28 29	266	and editing; ACRV, RI, JFG, INA, BJSB and CNCL: acquisition, analysis, or
30		
31	267	interpretation of the data; CNCL, RI, IMVCV: drafting of the manuscript; ACRV, RI, JFG
32 33		
34		
35	268	and IMVCV: critical revision of the manuscript for important intellectual content; SSL:
36 37		
38	200	statistical analysis; ACRV: obtained funding; VOF and EPSR: technical and material
39	269	statistical analysis, ACRV. Obtained funding, VOI and EPSIX. technical and material
40 41		
42	270	support.
43		
44 45		
45 46	271	
47		
48 40	272	Funding This study was supported by the National Council for Scientific and
49 50	272	Turung This study was supported by the National Council for Scientific and
51		
52	273	Technological Development (CNPq Project; MCTIC/CNPq/FNDCT/MS/SCTIE/DECIT n.
53 54		
55		
56	274	401235/2020-3); Coordination for the Improvement of Higher Education Personnel
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	275	(CAPES: 88887.612787/2021-00); and Federal University of Pará (UFPA-
5 6 7		
7 8 9	276	PROPESP/PAPQ-2021). CNPq Research Grants were received by ACRV (#-
10 11 12	277	301869/2017-0) and RI (#312979/2018-5).
13 14 15	278	
16 17 18 19	279	Competing interests None declared
20 21 22 23	280	
24 25 26	281	Patient and public involvement The study subjects, parents of the study subjects or the
27 28 29 30	282	public were not involved in the design, conduct or reporting of this research.
31 32 33	283	
34 35 36	284	Patient consent for publication Not requirable
37 38 39 40	285	
41 42 43 44	286	Ethics approval The study was approved by the leaders of the communities and by the
45 46 47	287	National Research Ethics Committee (Comissão Nacional de Ética em Pesquisa –
48 49 50 51	288	CONEP; CAAE: 33470020.0.1001.0018), in accordance with the Declarations of
52 53 54	289	Helsinki.
55 56 57 58	290	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3										
4	291	Data	availability	statement	Data	are	available	upon	reasonable	request
5 6 7	292	(<u>vallin</u>	oto@ufpa.br)							
8 9										
10 11	293									
12 13 14	294	REFE	RENCES							
15 16 17 18	295	1.	Wu F, Zhao	S, Yu B, et a	al. A nev	V COROI	navirus asso	ociated v	with human re	spiratory
19 20 21 22	296		disease in C	hina. <i>Nature</i>	2020;5	79(779	98):265-269).		
22 23 24 25	297		https://doi.or	g/10.1038/s4	41586-0	20-20	08-3.			
26 27	298	2.	World Health	n Organizatio	on. Coro	onaviru	ıs disease (COVID-:	2019) situatior	ı reports;
28 29 30	299		2020. <u>https:/</u>	/www.who.ir	nt/emerc	encies	s/diseases/r	novel-co	ronavirus-	
31 32									<u> </u>	
33 34 35 36	300		2019/situatic	<u>n-reports/</u> A	ccessed	d Marc	h 27, 2020.			
37 38 39	301	3.	Fiocruz. 4º re	elatório sobr	e risco d	de esp	alhamento	da COV	ID-19 em pop	ulações
40 41 42	302		indígenas. R	isco de espa	alhamer	nto da	COVID-19 e	em popu	llações indíge	nas:
43 44 45 46	303		consideraçõ	es prelimina	res sobr	e vuln	erabilidade	geográf	ica e	
47 48 49	304		sociodemog	ráfica. Availa	able fron	n: <u>https</u>	://portal.fioc	cruz.br/d	ocumento/4o-	<u>relatorio-</u>
50 51 52 53	305		sobre-risco-c	de-espalham	<u>iento-da</u>	I-covid	l-19-em-pop	ulacoes	<u>-indigenas</u> . Ac	cessed
54 55 56	306		June 27, 202	20.						
57 58 59 60			For pe	er review only -	http://bmj	jopen.bi	mj.com/site/ab	out/guide	lines.xhtml	

BMJ Open

2 3 4	307	4.	Amigo I. Indigenous communities in Brazil fear pandemic's impact. Science.
5 6 7 8	308		2020; 368(6489):352. https://doi.org/10.1126/science.368.6489.352.
9 10 11	309	5.	Vallinoto ACR, da Silva Torres MK, Vallinoto MC, Cayres-Vallinoto, IMV. The
12 13 14 15	310		challenges of COVID-19 in the Brazilian Amazonian communities and the
16 17 18 19	311		importance of seroepidemiological surveillance studies. Int J Equity Health
20 21 22	312		2020;19(1):140. https://doi.org/10.1186/s12939-020-01256-7
23 24 25 26	313	6.	Ramírez JD, Sordillo EM, Gotuzzo E, et al. SARS-CoV-2 in the Amazon region:
27 28 29	314		A harbinger of doom for Amerindians. PLoS Negl Trop Dis.
30 31 32 33	315		2020;14(10):e0008686. https://doi.org/10.1371/journal.pntd.0008686.
34 35 36	316	7.	Rodrigues EPS, Abreu IN, Lima CNC, et al. High prevalence of anti-SARS-CoV-
37 38 39 40	317		2 IgG antibody in the Xikrin of Bacajá (Kayapó) indigenous population in the
41 42 43	318		brazilian Amazon. Int J Equity Health. 2021;20(1):50.
44 45 46 47	319		https://doi.org/10.1186/s12939-021-01392-8.
48 49 50	320	8.	Ishak R, Guerreiro JF and Vallinoto ACR. Why Did They Not Die?. Austin J
51 52 53 54	321		Public Health Epidemiol. 2021;8(3):1106.
54 55 56 57			
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			2
2 3 4 5	322	9.	Dent R, Santos RV. An Unusual and Fast Disappearing Opportunity: Infectious
6 7 8 9	323		Disease, Indigenous Populations, and New Biomedical Knowledge in Amazonia,
9 10 11 12	324		1960-1970. Perspect Sci. 2017;25(5):585-605.
13 14 15	325		https://doi.org/10.1162/POSC_a_00255.
16 17 18 19	326	10.	Ishak R, Harrington WJ Jr, Azevedo VN, et al. Identification of human T cell
20 21 22	327		lymphotropic virus type IIa infection in the Kayapo, an indigenous population of
23 24 25	328		Brazil. AIDS Res Hum Retroviruses. 1995;11(7):813-21.
26 27 28 29	329		https://doi.org/10.1089/aid.1995.11.813.
30 31 32	330	11.	SESAI – Secretaria Especial de Saúde Indígena. Boletim epidemiológico SESAI
33 34 35 36	331		- COVID-19. http://www.saudeindigena.net.br/coronavirus/mapaEp.php.
37 38 39	332		Accessed April 12, 2021).
40 41 42 43	333	12.	Bichara CDA, Amoras ESG, Vaz GL, Bichara CNC, Amaral IPC, Vallinoto ACR.
44 45 46	334		Persistence of Anti-SARS-CoV-2 IgM Antibody up to 8 Months Post-COVID-19.
47 48 49 50	335		Case Rep Clin Med 2021, 10, 227-231. https://www.scirp.org/journal/crcm.
51 52 53	336	13.	Omer SB, Yildirim I, Forman HP. Herd Immunity and implications for SARS-
54 55 56 57	337		CoV-2 control. <i>JAMA</i> 2020. https://doi.org/10.1001/jama.2020.20892.
57 58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3 4 5	338	14. Buss LF, Prete CA Jr, Abrahim CMM, et al. Three-quarters attack rate of SARS-
6 7 8 9	339	CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Science
10 11 12	340	2020;8:eabe9728. https://doi.org/10.1126/science.abe9728.
13 14 15 16	341	15. Hallal PC, Hartwig FP, Horta BL, et al. SARS-CoV-2 antibody prevalence in
17 18 19	342	Brazil: results from two successive nationwide serological household surveys.
20 21 22	343	Lancet Glob Health. 2020;8(11):e1390-e1398. https://doi.org/10.1016/S2214-
23 24 25 26	344	109X(20)30387-9.
27 28 29 30	345	16. Crosby AW. Virgin soil epidemics as a factor in the aboriginal depopulation in
31 32 33	346	America. <i>William Mary Q.</i> 1976;33:289-99. PMID: 11633588.
34 35 36 37	347	17. da Silva HP, Abreu IN, Lima CNC, et al. Migration in times of pandemic: SARS-
38 39 40	348	CoV-2 infection among the Warao indigenous refugees in Belém, Pará,
41 42 43 44	349	Amazonia, Brazil. <i>BMC Public Health</i> . 2021;21(1):1659. doi: 10.1186/s12889-
45 46 47	350	021-11696-7.
48 49 50 51	351	18. Pontes GS, de Melo Silva J, Pinheiro-Silva R, Barbosa AN, Santos LC, de
52 53 54	352	Pádua Quirino Ramalho A, de Castro Alves CE, da Silva DF, de Oliveira LC, da
55 56 57 58	353	Costa AG, Bruno AC. Increased vulnerability to SARS-CoV-2 infection among
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4 5	354	indigenous people living in the urban area of Manaus. Sci Rep.
6 7 8 9	355	2021;11(1):17534. doi: 10.1038/s41598-021-96843-1.
10 11 12	356	19. Walker RS, Sattenspiel L, Hill KR. Mortality from contact-related epidemics
13 14 15 16	357	among indigenous populations in Greater Amazonia. <i>Sci Rep</i> . 2015;5:14032.
17 18 19	358	https://doi.org/10.1038/srep14032.
20 21 22	359	
23 24 25 26	360	Figure Legend.
27 28 29	361	Figure 1. Map showing the geographical location of the indigenous communities
30 31 32 33 34	362	enrolled in the present study.
35 36		
37 38 39		
40 41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53		
54 55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

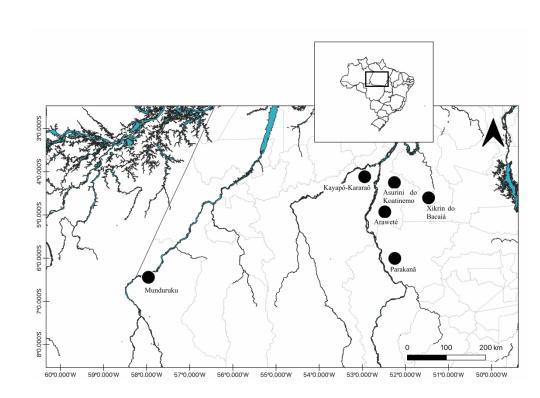


Figure 1. Map showing the geographical location of the indigenous communities enrolled in the present study.

296x209mm (600 x 600 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4
5
6 7
8 9
10 11
12 13
14
15 16
17 18
19 20
21 22
23
24 25
26 27
28 29
30 31
32 33
34
35 36
37 38
39 40
41 42
43 44
45
46 47
48 49
50 51
52 53
54 55
56
57 58
59 60

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		Page 1, lines 1 and 2
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found
		Page 2, lines 26 – 36
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
		Page 3, lines 55 – 65
Objectives	3	State specific objectives, including any prespecified hypotheses
		Page 3, lines 66 – 72
Methods		
Study design	4	Present key elements of study design early in the paper
		Page 4, lines 75 – 81
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection
		Pages 4 – 6, lines 84 – 127
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
		participants
		Pages 4 – 6 , lines 84 – 127
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effec
		modifiers. Give diagnostic criteria, if applicable
		Pages 6 and 7, lines 130 – 134
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there
		more than one group
		Pages 6 and 7, lines 84 – 134
Bias	9	Describe any efforts to address potential sources of bias
		Page 7, lines 136 – 140
Study size	10	Explain how the study size was arrived at
		Page 7, lines 136 – 140
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
		Page 7, lines 136 – 140
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		Page 7, lines 136 – 140
		(b) Describe any methods used to examine subgroups and interactions
		Page 7, lines 136 – 140
		(c) Explain how missing data were addressed
		Page 7, lines 136 – 140
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy
		(<u>e</u>) Describe any sensitivity analyses
		Pages7, lines 136 – 140
Results		

		eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed
		Pages 7 and 8; lines 147 – 162
		(b) Give reasons for non-participation at each stage
		Pages 7 and 8; lines 147 – 162
		(c) Consider use of a flow diagram
		Not applicable
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders
		Pages 7 and 8; lines 147 – 162
		(b) Indicate number of participants with missing data for each variable of interest
		Pages 7 and 8; lines 147 – 162
Outcome data	15*	Report numbers of outcome events or summary measures
		Pages 7 and 8; lines 147 – 162
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates an
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included
		Pages 7 and 8; lines 147 – 162
		(b) Report category boundaries when continuous variables were categorized
		Pages 7 and 8; lines $147 - 162$
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
		Pages 7 and 8; lines 147 – 162
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and
	- ,	sensitivity analyses
		Pages 7 and 8; lines $147 - 162$
D'		
Discussion	10	Commenter la cita de la cita de la chieviere
Key results	18	Summarise key results with reference to study objectives
τ· ·, .·	10	Page 11 – 14; lines 178 - 236
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias
		Page 13; lines 227 - 228
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations
		multiplicity of analyses, results from similar studies, and other relevant evidence
		Page 13 – 14; lines 234 - 243
Generalisability	21	Discuss the generalisability (external validity) of the study results
		Page 12 – 14; lines 203 - 226
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based
		Page 14 – 15; lines 256 - 260

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at

http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer teriew only