Immunity, Volume 55

Supplemental information

Interferon- γ primes macrophages for pathogen

ligand-induced killing via a caspase-8

and mitochondrial cell death pathway

Daniel S. Simpson, Jiyi Pang, Ashley Weir, Isabella Y. Kong, Melanie Fritsch, Maryam Rashidi, James P. Cooney, Kathryn C. Davidson, Mary Speir, Tirta M. Djajawi, Sebastian Hughes, Liana Mackiewicz, Merle Dayton, Holly Anderton, Marcel Doerflinger, Yexuan Deng, Allan Shuai Huang, Stephanie A. Conos, Hazel Tye, Seong H. Chow, Arfatur Rahman, Raymond S. Norton, Thomas Naderer, Sandra E. Nicholson, Gaetan Burgio, Si Ming Man, Joanna R. Groom, Marco J. Herold, Edwin D. Hawkins, Kate E. Lawlor, Andreas Strasser, John Silke, Marc Pellegrini, Hamid Kashkar, Rebecca Feltham, and James E. Vince

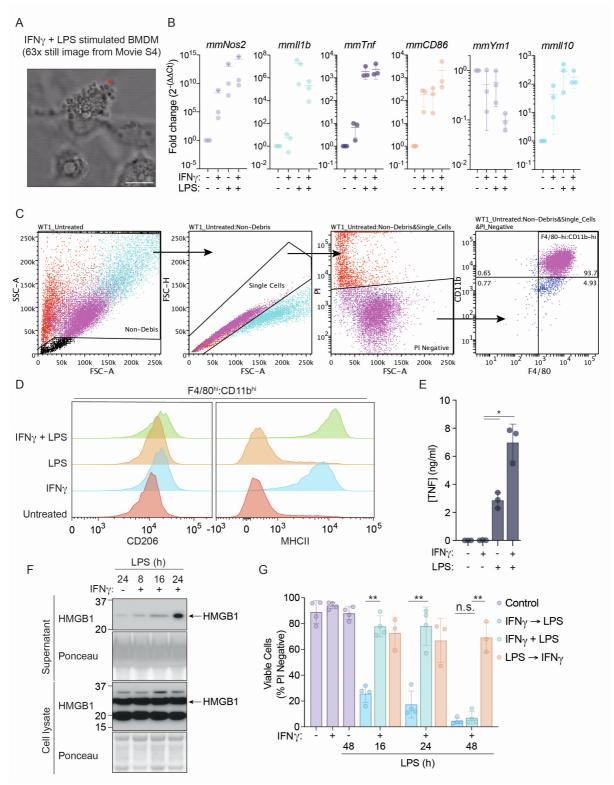


Figure S1. IFN γ primes macrophages for LPS-induced inflammatory-associated apoptotic cell death. Related to Figure 1.

(A) Representative still image from Movie S4 of WT BMDMs primed with IFN γ (50 ng/mL) overnight and then stimulated with LPS (50 ng/mL) for 24 h. Red arrow indicates apoptotic body formation. Scale bar (white) = 10 μ m.

(B - E) WT BMDMs were treated with IFN γ (50 ng/mL) overnight, then with LPS (50 ng/mL) for 16 h (n = 3). (B) qPCR analysis was performed for expression of macrophage phenotypic markers and plotted as the fold-change expression relative to unstimulated BMDMs. *18s* was used as a housekeeping

gene expression control. (C and D) Macrophage receptor expression was assessed by flow cytometry. Gating strategy: Cell debris, doublets, and dead (PI positive cells) were removed. Representative data from one of three independent biological replicates displaying similar observations. (E) TNF secretion was measured by ELISA.

(F) Immunoblot analysis of cell supernatants and cell lysates of WT BMDMs primed with IFN γ (50 ng/mL) overnight and then stimulated with LPS (50 ng/mL) for 8 - 24 h. Ponceau staining is used as a loading control (n = 2).

(G) WT BMDMs were either primed with IFN γ (50 ng/mL) overnight and then stimulated with LPS (50 ng/mL) (IFN $\gamma \rightarrow$ LPS), co-stimulated at the same time with both IFN γ (50 ng/mL) and LPS (50 ng/mL) (IFN $\gamma +$ LPS), or primed with LPS (50 ng/mL) overnight and then stimulated with IFN γ (50 ng/mL) (LPS \rightarrow IFN γ) for 16, 24 or 48 h. Cell death was assessed by PI exclusion as measured by flow cytometry (n = 3 – 4).

Data represent the mean value \pm SD, or a representative immunoblot or FACS plot, from indicated n independent experiments. p > 0.05 (n.s.), p ≤ 0.05 (*), p ≤ 0.01 (**).

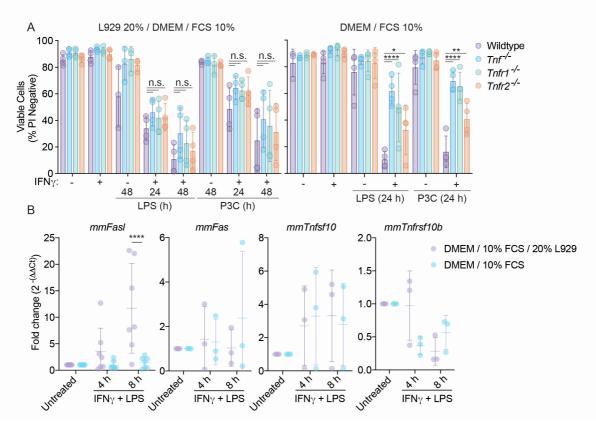


Figure S2. IFN_γ/LPS-induced cell death correlates with L929 medium-dependent increases in *Fasl* expression and can occur independent of TNF signaling. Related to Figure 1.

(A) WT, Tnf^{J_c} , $Tnfrsf1a^{J_c}$ (TNFR1 deleted) or $Tnfrsf1b^{J_c}$ (TNFR2 deleted) BMDMs were treated with IFN γ (50 ng/mL) overnight, then with either LPS (50 ng/mL), or Pam3CSK4 (P3C, 500 ng/mL) for 24 or 48 h in either 20% L929 conditioned medium (vehicle medium: DMEM containing 10% FCS) (left graph) or DMEM containing 10% FCS (right graph). Cell death was assessed by PI exclusion as measured by flow cytometry (n = 4).

(B) WT BMDMs were treated with IFN γ (50 ng/mL) overnight, then with LPS (50 ng/mL) for 4 or 8 h, in either 20% L929 conditioned medium (vehicle medium: DMEM containing 10% FCS) or DMEM containing 10% FCS. qPCR analysis was performed for expression of *Fasl* (n = 7), *Fas* (n = 3), *Tnfsf10* (n = 3) or *Tnfsf10b* (n = 3) and plotted as the fold-change expression relative to unstimulated BMDMs. *Hprt* was used as a housekeeping gene expression control.

Data represent the mean value \pm SD from indicated n independent experiments. p > 0.05 (n.s.), p < 0.05 (*), p < 0.01 (**), p < 0.001 (****).

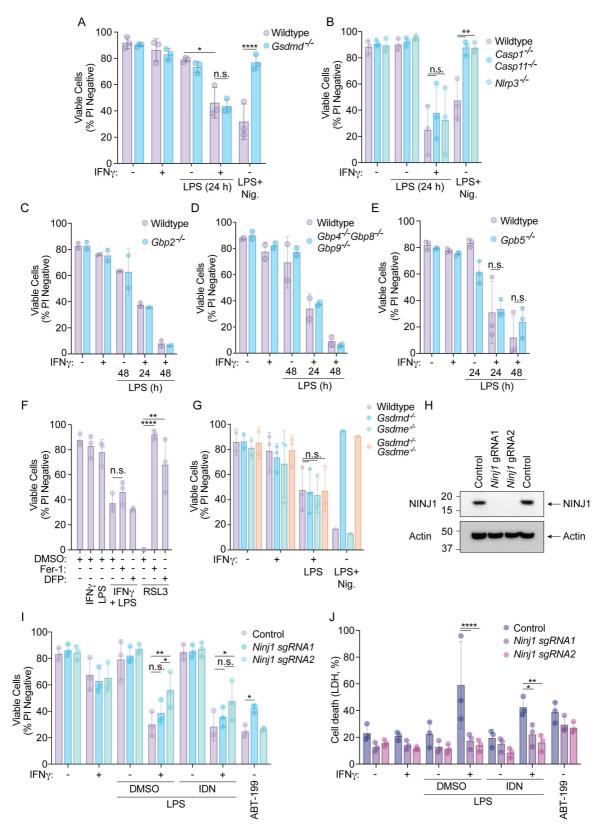


Figure S3. IFN γ /LPS-induced cell death proceeds in the absence of pyroptosis, ferroptosis and the cell lysis protein Ninj1. Related to Figure 2.

(A - E) WT and (A) $Gsdmd^{-/-}$ (n = 3), (B) $Nlrp3^{-/-}$, $Casp1^{-/-}Casp1^{1-/-}$ (n = 3), (C) $Gbp2^{-/-}$ (n = 2), (D) $Gbp4^{-/-}Gbp8^{-/-}Gbp9^{-/-}$ (n = 2), (E) $Gbp5^{-/-}$ (n = 3) BMDMs were treated with IFN γ (50 ng/mL) overnight then with LPS (50 ng/mL) for 24 or 48 h. (A and B) Treatment with LPS (200 ng/mL) for 2 h then with

Nigericin (Nig., 10μ M) for 15 min (pyroptosis) was used as a control. Cell death was assessed by PI exclusion as measured by flow cytometry.

(F) WT BMDMs were treated with IFN γ (50 ng/mL) overnight then with LPS (50 ng/mL), DMSO or inhibitors of ferroptosis: Ferrostatin-1 (Fer-1, 2 μ M) or Deferiprone (DFP, 150 μ M) for 24 h. Pretreatment with DMSO, Ferrostatin-1 (Fer-1, 2 μ M) or Deferiprone (DFP, 150 μ M) for 15 minutes, then treatment with RSL3 (500 nM) for 24 h (ferroptosis) was used as a controls. Cell death was assessed by PI exclusion as measured by flow cytometry (n = 3).

(G) WT, $Gsdmd^{-t}$, $Gsdme^{-t}$, or $Gsdmd^{-t}Gsdme^{-t}$ BMDMs were treated with IFN γ (50 ng/mL) overnight then with LPS (50 ng/mL) for 24 or 48 h. Treatment with LPS (200 ng/mL) for 2 h then with Nigericin (Nig., 10 μ M) for 15 min (pyroptosis) was used as a control. Cell death was assessed by PI exclusion as measured by flow cytometry (n = 1 – 3).

(H) Immunoblot confirming NINJ1 gene deletion in two *Ninj1*^{-/-} cell lines *vs* Control (Cas9) iBMDMs generated on the IFN γ /LPS sensitive *Mlk1*^{-/-} background (n = 2).

(I and J) Control or *Ninj1*^{-/-} iBMDMs validated in (H) were treated with IFN γ (50 ng/mL) overnight then with LPS (50 ng/mL), DMSO, IDN-6556 (IDN, 5 μ M) for 24 h, or as a control ABT-199 (25 μ M for 16 h) (Kayagaki *et al.*, 2021). (I) Cell death was assessed by PI exclusion as measured by flow cytometry and (J) late-stage membrane rupture was assessed by LDH release into cell supernatants (n = 3).

Data represent the mean value \pm SD, or a representative immunoblot, from indicated n independent experiments. p > 0.05 (n.s.), p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.0001 (****)..

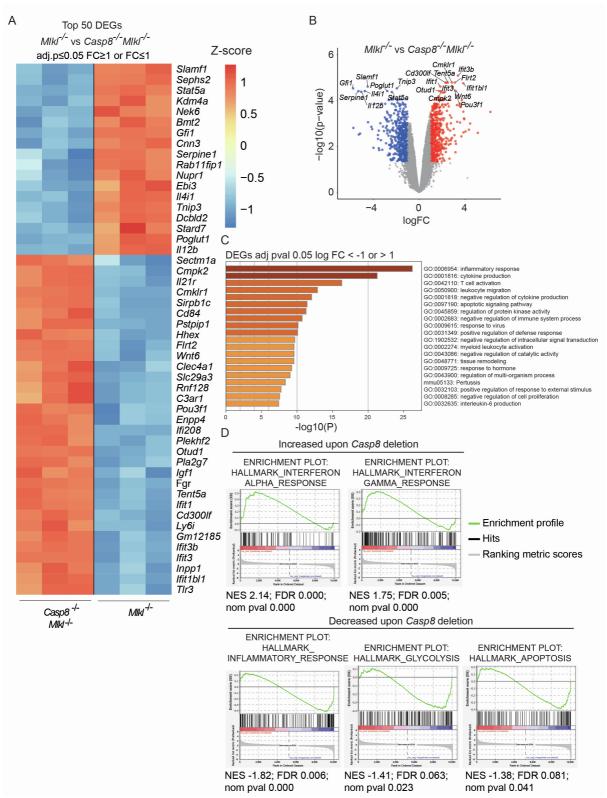


Figure S4. Caspase-8 mediates IFNy/LPS-induced transcriptional programming in macrophages. Related to Figure 4.

 $Mlkl^{-l}$ and $Casp8^{-l}Mlkl^{-l}$ BMDMs were treated with IFN γ (50 ng/mL) overnight then LPS (50 ng/mL) for 7 h followed by RNA isolation and 3'RNA-sequencing, as described in Figure 4 (n = 3). (A) Heatmap for top 50 significant differentially expressed genes (DEGs) for IFN γ /LPS stimulated $Mlkl^{-l}$ vs Casp8^{-l}Mlkl^{-l}</sup> BMDMs. Adjusted p ≤ 0.05 and cut-off values logFC ≥ 1 or logFC ≤ -1. (B) Volcano plot highlighting DEGs that are up- or down-regulated in IFN γ /LPS stimulated *Casp8*^{-/-} *Mlk1*^{-/-} BMDMs in comparison to similarly treated *Mlk1*^{-/-} BMDMs. The top 20 DEGs are labelled. Adjusted p ≤ 0.05 and cut-off values logFC ≥ 1 or logFC ≤ -1 .

(C) Gene Ontology analysis for significant DEGs for IFN γ /LPS stimulated *Mlkl*^{-/-} vs Casp8^{-/-}Mlkl^{-/-} BMDMs. Adjusted p ≤ 0.05 and cut-off values logFC ≥ 1 or logFC ≤ -1 .

(D) GSEA analysis of genes differentially regulated between IFN γ /LPS treated *Mlkl*^{-/-} BMDMs vs Casp8^{-/-}Mlkl^{-/-} BMDMs.

Figure S5. Upon IFNγ/LPS stimulation, caspase-8 regulates diverse transcriptional pathways to promote an inflammatory and metabolically active phenotype in macrophages. Related to Figure 4.

(A - C, F) *Mlkl*^{-/-} and *Casp8*^{-/-}*Mlkl*^{-/-} BMDMs were treated with IFN γ (50 ng/mL) overnight then LPS (50 ng/mL) for 7 h followed by RNA isolation and 3' mRNA-sequencing, as described in Figure 4 (n = 3).

(A) TRRUST analysis of significant DEGs downregulated in *Casp8^{-/-}Mlkl^{-/-}* BMDMs as compared to *Mlkl^{-/-}* BMDMs, displaying predicted transcription factors that regulate DEGs. Adjusted $p \le 0.05$ and cut-off values logFC ≤ -1 .

(B) TRRUST analysis of significant DEGs upregulated in *Casp8-'-Mlk1-'-* BMDMs as compared to *Mlk1-'-* BMDMs, displaying predicted transcription factors that regulate DEGs. Adjusted $p \le 0.05$ and cut-off values logFC ≥ 1 .

(C) Heatmap for Lyz1, Lyz2 and *ll6* expression in IFN γ /LPS-treated *Mlkl^{-/-} vs Casp8^{-/-}Mlkl^{-/-}* BMDMs. Adjusted p ≤ 0.05 and cut-off values logFC ≥ 1 or logFC ≤ -1 .

(D) TNF secretion in wildtype (WT), $Mlkl^{-/-}$ or $Casp8^{-/-}Mlkl^{-/-}$ BMDMs stimulated with LPS (50 ng/mL) for 2, 4, or 6 h (n = 3).

(E) WT or *Rel*^{-/-} BMDMs were treated with IFN γ (50 ng/mL) overnight then stimulated with LPS (50 ng/mL) for 24 h. Cell death was assessed by PI exclusion as measured by flow cytometry (n = 3).

(F) Heatmap for significant DEGs involved in GO-annotated apoptosis related pathways (see **Table S2** and **S3**) that are enriched in IFN γ /LPS-treated *Mlkl*^{-/-} BMDMs or *Casp8*^{-/-}*Mlkl*^{-/-} BMDMs. Adjusted p ≤ 0.05 and cut-off values logFC ≥ 1 or logFC ≤ -1 .

(G) WT or *Pmaip1*^{-/-} (lack the BH3-only protein NOXA) BMDMs were primed with IFN γ (50 ng/mL) overnight and then stimulated with LPS (50 ng/mL) for 24 h, as indicated. Cell death was assessed by PI exclusion as measured by flow cytometry (n = 3).

Data are presented as the mean \pm SD of indicated n independent experiments. p > 0.05 (n.s.), p < 0.001 (****), p < 0.0001 (****).

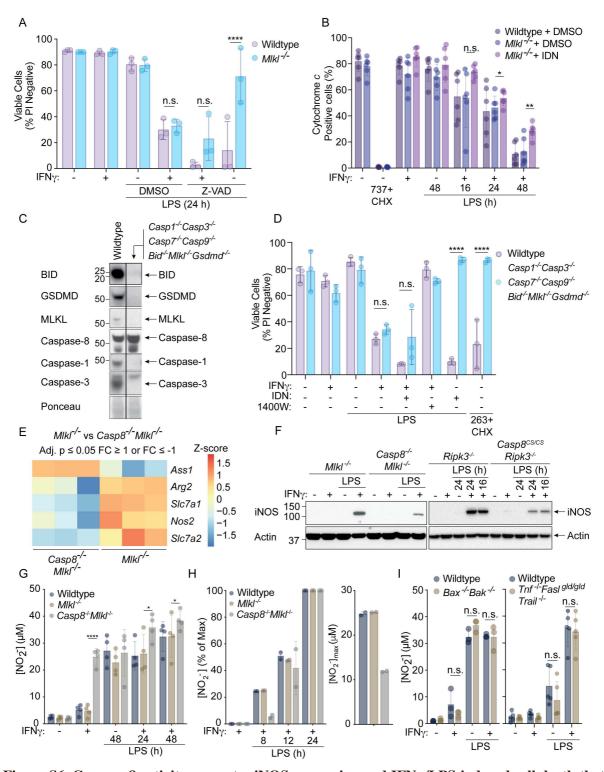


Figure S6. Caspase-8 activity promotes iNOS expression and IFN γ /LPS-induced cell death that is not blocked by pan-caspase inhibitor treatment. Related to Figure 5 and Figure 6. (A) WT or *Mlkl*^{-/-} BMDMs were treated with IFN γ (50 ng/mL) overnight then with LPS (50 ng/mL) for 24 h ± Z-VAD-fmk (Z-VAD, 20 μ M). Treatment with LPS plus Z-VAD for 24 h (necroptosis) was used as a control (n = 3).

(B) WT or $Mlkl^{-c}$ BMDMs were treated with IFN γ (50 ng/mL) overnight then with LPS (50 ng/mL) for 16, 24 or 48 h ± IDN-6556 (IDN, 5 μ M). Treatment with ABT-737 (1 μ M) plus cycloheximide (CHX, 10 μ g/mL) for 6 h was used as a positive control for BAX/BAK activation. Cytochrome *c* retention was measured by intracellular cytochrome *c* staining and flow cytometric analysis (n = 6).

(C) Immunoblot validation of Control WT (Cas-9) or $Casp1^{-t-}Casp3^{-t-}Casp3^{-t-}Casp9^{-t-}Bid^{-t-}Mlkl^{t-}$ *Gsdmd*^{-t-} hepta-gene targeted immortalized BMDMs (iBMDMs) confirming deletion of indicated genes. Unrelated lanes from each probe were removed and is indicated by a line (n = 1).

(D) Control WT (Cas-9) or *Casp1^{-/-}Casp3^{-/-}Casp7^{-/-}Casp9^{-/-}Bid^{-/-}Mlkl^{-/-}Gsdmd^{-/-}* hepta-gene targeted iBMDMs were treated with IFN γ (50 ng/mL) overnight then with LPS (50 ng/mL) for 24 h ± 1400W (10 μ M), IDN (10 μ M), or vehicle (DMSO) as a control. Treatment with LPS plus IDN (10 μ M) for 24 h (necroptosis) or ABT-263 (1 μ M) plus cycloheximide (CHX, 10 μ g/mL) for 6 h (apoptosis) were used as controls. Cell death was assessed by PI exclusion as measured by flow cytometry (n = 3).

(E) Heatmap for significant DEGs involved in arginine metabolism, as detailed (Young *et al.*, 2018), in *Casp8^{-/-}Mlk1^{-/-}* BMDMs *vs Mlk1^{-/-}* BMDMs treated with IFN γ /LPS. Adjusted p \leq 0.05 and cut-off values logFC \geq 1 or logFC \leq -1.

(F) Immunoblot analysis of $Mlkl^{-1-}$ or $Casp8^{-1-}Mlkl^{-1-}$ BMDMs (left) or $Ripk3^{-1-}$ or $Casp8^{-1-}Ripk3^{-1-}$ BMDMs (right) treated with IFN γ (50 ng/mL) overnight then with LPS (50 ng/mL) for 24 h (left) or 16 or 26 h (right) (n = 3).

(G) Nitrite (NO_2) concentrations in cell supernatants from WT and *Mlkl^{-/-} and Casp8^{-/-}Mlkl^{-/-}* BMDMs treated with IFN γ (50 ng/mL) overnight then with LPS (50 ng/mL) for 24 or 48 h as measured by the Griess assay (n = 4).

(H) WT, *Mlkl*^{-/-} and *Casp8*^{-/-}*Mlkl*^{-/-} BMDMs were treated with IFN γ (50 ng/mL) overnight then with LPS (50 ng/mL) for 8, 12, 24 h. Nitrite (NO₂⁻) production was measured by the Griess assay. Maximal, LPS-induced NO₂⁻ production [NO₂⁻]_{max} was determined by subtracting the concentration of NO₂⁻ post-IFN γ priming (i.e. LPS at time 0) (right). NO₂⁻ concentrations at 8 and 12 hours were similarly normalized to the IFN γ -priming amounts and displayed as a percentage of the [NO₂⁻]_{max} (left) (n = 2).

(I) Nitrite (NO_2^{-}) concentrations at 48h in cell supernatants from WT and $Bax^{-/-}Bak^{-/-}$ BMDMs analyzed in Figure 2C (left), or WT and $Tnf^{-/-}Fasl^{gld/gld}Trail^{-/-}$ BMDMs analyzed in Figure 1C (right), was measured by the Griess assay (n = 3). Data represent the mean value \pm SD, or a representative immunoblot, from indicated n independent experiments. p > 0.05 (n.s.), p < 0.05 (*), p < 0.001 (***), p < 0.0001 (****).

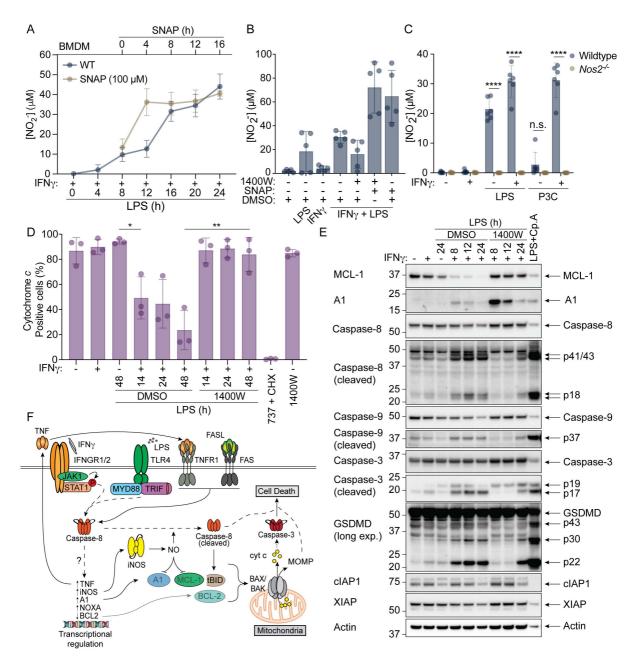


Figure S7. iNOS activity promotes caspase processing and destabilization of A1 and MCL-1 to orchestrate IFNY/LPS-induced cell death. Related to Figure 6.

(A) WT BMDMs were treated with IFN γ (50 ng/mL) overnight then with LPS (50 ng/mL) (n = 4), or treated with SNAP (100 μ M) only (n = 2). Time 0 is denoted as the addition of LPS (Bottom x-axis), or SNAP (Top x-axis). Nitrite (NO₂⁻) production was measured by the Griess assay.

(B) Nitrite (NO_2) production of supernatants from cells analyzed in Figure 6D was measured by the Griess assay (n = 5).

(C) Nitrite (NO_2) production of supernatants from cells analyzed in Figure 6F was measured by the Griess assay (n = 6)

(D) WT BMDMs primed with IFN γ (50 ng/mL) overnight and then stimulated with LPS (50 ng/mL) ± 1400W (10 μ M) or DMSO as a control. BMDMs treated with ABT-737 (1 μ M) plus cycloheximide (CHX, 10 μ g/mL) for 4 h are shown as a positive control for BAX/BAK-mediated cytochrome *c* release. Cytochrome *c* retention was measured by intracellular cytochrome *c* staining and flow cytometric analysis (n = 3).

(E) Immunoblot of WT BMDMs treated with IFN γ (50 ng/mL) overnight then with LPS (50 ng/mL) for 8, 12 or 24 h ± 1400W (10 μ M) or vehicle. As controls for cell death pathway activation, BMDMs were also treated with LPS and Cp.A (1 μ M) for 12 h (n = 3).

(F) Model depicting IFN γ priming and TLR activation induced macrophage cell death. IFN γ priming followed by LPS stimulation triggers caspase-8-regulated transcription of TNF, iNOS, A1 and NOXA. Caspase-8 also limits LPS-induced expression of *Bcl2*. Autocrine TNF and FASL production contribute to the caspase-8-mediated cell death response. iNOS expression licences caspase-8 processing via the activity of nitric oxide (NO), which in-turn promotes cleavage of BID. iNOS also limits expression of A1 and promotes MCL-1 degradation, which likely combines with reduced amounts of BCL-2 and activated BID to activate BAX and BAK-mediated mitochondrial outer membrane permeabilization (MOMP) and cytochrome *c* release into the cytosol. Cytochrome *c* release and apoptosome formation allows for caspase-3 and caspase-7 triggering and consequent rapid apoptosis. In the absence of BAX and BAK, caspase-8 activity drives MOMP-independent cell death.

Data represent the mean value \pm SD, or a representative immunoblot, from indicated n independent experiments. $p \le 0.05$ (*), $p \le 0.01$ (**), $p \le 0.0001$ (****).

Extrinsic apoptosis		Intrinsic apoptosis		Pyroptosis		Necroptosis	
Gene	Alias	Gene	Alias	Gene	Alias	Gene	Alias
Tnf	TNF	Casp9	caspase-9	Casp11	caspase-11	Ripk3	RIPK3
Tnfrsf1a	TNFR1	Apaf1	APAF1	Gsdme	GSDME	Mlkl	MLKL
Tnfrsf1b	TNFR2	Cycs	cytochrome c	Gsdmd	GSDMD	Zbp1	ZBP1
Tnfrsf10a	DR4	Bax	BAX	Casp1	caspase-1		
Tnfrsf10b	DR5	Bak	BAK	Nlrp3	NLRP3		
Tnfsf10	TRAIL	Bok	BOK	Aim2	AIM2		
Fasl	FASL	Bcl2	BCL-2	Mefv	Pyrin		
Fas	FAS	Bcl2l1	BCL-XL	Pycard	ASC		
	TWEAK	Bcl2a1a	A1	Nlrp1b	NLRP1		
Tnfrsf12a	TWEAK Receptor	Bcl2a1b	A1	Nek7	NEK7		
Ripk1	RIPK1	Bcl2a1c	A1	Birc1	NAIP		
Tradd	TRADD	Bcl2a1d	A1	Nlrc4	NLRC4		
Traf2	TRAF2	Bcl2l2	BCL-W	Il1b	Π1β		
Birc2	cIAP1	Bcl2l11	BIM	1118	I118		
Birc3	cIAP2	Bid	BID				
Hoip	HOIP	Bad	BAD				
Hoil-1	HOIL	Bbc3	PUMA				
Sharpin	SHARPIN	Pmaip1	NOXA				
Tnfaip3	A20	Bik	BIK				
Mib1	MIB1	Bmf	BMF				
Mib2	MIB2	Hrk	HRK				
Birc4	XIAP						
Cyld	CYLD						
Spata2	SPATA2						
Map3k7	TAK1						
Mapk14	p38						
Mapkapk2	MK2						
Cflar	cFLIP			1			
Fadd	FADD						
Casp8	caspase-8						
Casp3	caspase-3						
Casp6	caspase-6						
Casp7	caspase-7		T			1	

Table S1. Boutique list of genes associated with the major cell death pathways; Intrinsic and Extrinsic apoptosis, Pyroptosis and Necroptosis. Related to Figure 4C and 4D.

GO Term	Description
GO:0008625	Extrinsic apoptotic signaling pathway via death domain receptors
GO:0008630	Intrinsic apoptotic signaling pathway in response to DNA damage
GO:0043154	Negative regulation of cysteine-type endopeptidase activity involved in apoptotic
GO:0043281	process Regulation of cysteine-type endopeptidase activity involved in apoptotic process
GO:0043281 GO:0097190	Apoptotic signaling pathway
GO:0097191	Extrinsic apoptotic signaling pathway
GO:0097192	Extrinsic apoptotic signaling pathway in absence of ligand
GO:0097193	Intrinsic apoptotic signaling pathway
GO:1902041	Regulation of extrinsic apoptotic signaling pathway via death domain receptors
GO:1902042	Negative regulation of extrinsic apoptotic signaling pathway via death domain receptors
GO:2001233	Regulation of apoptotic signaling pathway
GO:2001234	Negative regulation of apoptotic signaling pathway
GO:2001236	Regulation of extrinsic apoptotic signaling pathway
GO:2001237	Negative regulation of extrinsic apoptotic signaling pathway
GO:0034392	Negative regulation of smooth muscle cell apoptotic process
GO:0008637	Apoptotic mitochondrial changes
GO:0090199	Regulation of release of cytochrome c from mitochondria
GO:0034390	Smooth muscle cell apoptotic process
GO:0034391	Regulation of smooth muscle cell apoptotic process
GO:0010660	Regulation of muscle cell apoptotic process
GO:0090201	Negative regulation of release of cytochrome <i>c</i> from mitochondria
GO:0043154	Negative regulation of cysteine-type endopeptidase activity involved in apoptotic process
GO:0010657	Muscle cell apoptotic process
GO:0010656	Negative regulation of muscle cell apoptotic process
mmu04210	Apoptosis

Table S2. Apoptosis related Gene Ontology pathways enriched in IFNγ/LPSstimulated *Mlkt*^{/-} BMDMs or *Casp8^{/-}Mlkt*^{/-} BMDMs^a. Related to Figure 4 and Supplementary Figure S4.

^a Listed gene ontology pathways were significantly enriched (adjusted p < 0.05, logFC < - 1 or logFC > 1) in either $Casp8^{-t}Mlkl^{-t}$ or $Mlkl^{-t}$ BMDMs in our RNA-seq dataset.

Table S3. Apoptosis related Gene Ontology (GO) gene list^a of significant differentially expressed genes in IFN_γ/LPS stimulated *Mlkf*⁻ BMDMs or *Casp8*^{-/-}*Mlkf*^{-/-} BMDMs. Related to Figure 4 and Supplemental Figure S5F.

Gene	Alias	Gene	Alias	
Adora2a	Adenosine receptor A2a	Il6	Interleukin-6	
Arrb2	β -arrestin-2	Inhba	Inhibin beta A chain	
Bcl2	BCL-2	Itgav	Integrin alpha-V	
Bcl2a1a	Bcl-2-related protein A1	Ivns1abp	Influenza virus NS1A-binding protein	
Bcl2a1b	B-cell leukemia/lymphoma 2 related protein A1b	Jun	Transcription factor AP-1	
Bcl2a1c	B-cell leukemia/lymphoma 2 related protein A1c	Klf4	Krueppel-like factor 4	
Bcl2a1d	A1-d protein	Lck	Tyrosine-protein kinase Lck	
Bcl2l14	Apoptosis facilitator Bcl-2-like protein 14	Lcn2	Neutrophil gelatinase-associated lipocalin	
Casp12	caspase-12	Malt1	Mucosa-associated lymphoid tissue lymphoma translocation protein 1	
Casp2	caspase-2	Mapk9	Mitogen-activated protein kinase 9	
Casp3	caspase-3	Mical1	[F-actin]-monooxygenase MICAL1	
Casp8	caspase-8	Mmp9	Matrix metalloproteinase-9	
Chac1	Glutathione-specific gamma- glutamylcyclotransferase 1	Mnt	Max-binding protein MNT	
Ctsk	Cathepsin K	Nck1	Cytoplasmic protein NCK1	
Ctsl	Pro-cathepsin L	Nlrp3	NACHT, LRR and PYD domains- containing protein 3	
Ctss	Cathepsin S	Nupr1	Nuclear protein 1	
Daxx	Death domain associated protein 6	Pmaip1	Phorbol-12-myristate-13-acetate-induced protein 1 (NOXA)	
Ddit4	DNA-damage inducible transcript 4	Ppard	Peroxisome proliferator-activated receptor delta	
Ddx3x	ATP-dependent RNA helicase DDX3X	Ptgs2	Prostaglandin G/H synthase 2	
Dipk2a	Divergent protein kinase domain 2A	Ptpn1	Tyrosine-protein phosphatase non-receptor type 1	
Edn1	Endothelin-1	Raf1	RAF proto-oncogene serine/threonine- protein kinase	
Eng	Endoglin	Rffl	E3 ubiquitin-protein ligase rififylin	
Gadd45g	Growth arrest and DNA damage-inducible protein GADD45 gamma	Runx3	Runt-related transcription factor 3	
Gas6	Growth arrest-specific protein 6	Serpine1	Plasminogen activator inhibitor 1	
Gpx1	Glutathione peroxidase 1	Sfn	14-3-3 protein sigma	
Herpud1	Homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 1 protein	Sgms1	Phosphatidylcholine:ceramide cholinephosphotransferase 1	
Hmox1	Heme oxygenase 1	Sgpp1	Sphingosine-1-phosphate phosphatase 1	
Hspa1b	Heat shock 70 kDa protein 1B	Tnfaip3	Tumor necrosis factor alpha-induced protein 3 (A20)	
Ier3	Radiation-inducible immediate-early gene IEX-1	Tnfsf10	Tumor necrosis factor ligand superfamily member 10 (TRAIL)	
Igfl	Insulin-like growth factor I	Trib3	Tribbles homolog 3	
Illa	Interleukin-1-alpha	Vdr	Vitamin D3 receptor	
Il1b	Interleukin-1-beta			

^a This composite genes list was derived from all GO pathways identified in Table S2.

Table S4. Table of oligonucleotide primers used to assess gene expression by qPCR. Related to
Figure 4F, S1B and S2B.

Oligonucleotide	Source	Identifier	
qPCR primer for mm18S (For: 5'	Integrated DNA	N/A	
GTAACCCGTTGAACCCCATT)	Technologies		
qPCR primer for mm18S (Rev: 5'	Integrated DNA	N/A	
CCATCCAATCGGTAGTAGCG)	Technologies		
qPCR primer for mm <i>Bcl2</i> (For: 5'	Integrated DNA	OriGene Technologies Inc.	
CCTGTGGATGACTGAGTACCTG)	Technologies	Cat#: MP201255	
qPCR primer for mm <i>Bcl2</i> (Rev: 5'	Integrated DNA	OriGene Technologies Inc.	
AGCCAGGAGAAATCAAACAGAGG)	Technologies	Cat#: MP201255	
qPCR primer for mm <i>CD86</i> (For: 5'	Integrated DNA	N/A	
TCAGTGATCGCCAACTTCAG)	Technologies		
qPCR primer for mm <i>CD86</i> (Rev: 5'	Integrated DNA	N/A	
TTAGGTTTCGGGTGACCTTG)	Technologies		
qPCR primer for mmFasl (For: 5'	Integrated DNA	OriGene Technologies Inc.	
GAAGGAACTGGCAGAACTCCGT)	Technologies	Cat#: MP204632	
qPCR primer for mm <i>Fasl</i> (Rev: 5'	Integrated DNA	OriGene Technologies Inc.	
GCCACACTCCTCGGCTCTTTTT)	Technologies	Cat#: MP204632	
qPCR primer for mmFas (For: 5'	Integrated DNA	OriGene Technologies Inc.	
CTGCGATTCTCCTGGCTGTGAA)	Technologies	Cat#: MP204625	
qPCR primer for mmFas (Rev: 5'	Integrated DNA	OriGene Technologies Inc.	
CAACAACCATAGGCGATTTCTGG)	Technologies	Cat#: MP204625	
qPCR primer for mm <i>Hprt</i> (For: 5'	Integrated DNA	N/A	
TGAAGTACTCATTATAGTCAAGGGCA)	Technologies		
qPCR primer for mm <i>Hprt</i> (Rev: 5'	Integrated DNA	N/A	
CTGGTGAAAAGGACCTCTCG)	Technologies		
qPCR primer for mm <i>ll10</i> (For: 5'	Integrated DNA	N/A	
GGTTGCCCAGCCTTATCGGA)	Technologies		
qPCR primer for mmIl10 (Rev: 5'	Integrated DNA	N/A	
ACCTGCTCCACTGCCTTGCT)	Technologies		
qPCR primer for mmIl1b (For: 5'	Integrated DNA	N/A	
AGTTGACGGACCCCAAAAG)	Technologies		

gPCR primer for mm <i>ll1b</i> (Rev: 5'	Integrated DNA	N/A
AGCTGGATGCTCTCATCAGG)	Technologies	
qPCR primer for mmNos2 (For: 5'	Integrated DNA	N/A
GCCACCAACAATGGCAACA)	Technologies	
qPCR primer for mmNos2 (Rev: 5'	Integrated DNA	N/A
CGTACCGGATGAGCTGTGAATT)	Technologies	
qPCR primer for mm <i>Tnfrsf10b</i> (For: 5'	Integrated DNA	OriGene Technologies Inc.
TGTGTCGATGCAAACCAGGCAC)	Technologies	Cat#: MP217750
qPCR primer for mm <i>Tnfrsf10b</i> (Rev: 5'	Integrated DNA	OriGene Technologies Inc.
GCCGTTTTGGAGACACACTTCC)	Technologies	Cat#: MP217750
qPCR primer for mm <i>Tnfsf10</i> (For: 5'	Integrated DNA	OriGene Technologies Inc.
GGAAGACCTCAGAAAGTGGCAG)	Technologies	Cat#: MP217736
qPCR primer for mm <i>Tnfsf10</i> (Rev: 5'	Integrated DNA	OriGene Technologies Inc.
TTTCCGAGAGGACTCCCAGGAT)	Technologies	Cat#: MP217736
qPCR primer for mm <i>Ym1</i> (For: 5'	Integrated DNA	N/A
GGGCATACCTTTATCCTGAG)	Technologies	
qPCR primer for mm <i>Ym1</i> (Rev: 5'	Integrated DNA	N/A
CCACTGAAGTCATCCATGTC)	Technologies	