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e-Table 1: Percentage of missing values 

Interleukin-6 79.5% 

Ferritin 39.9% 

PCT 31.4% 

Height 29.3% 

Plateau pressure 29.3% 

Lactate 23.0% 

D-dimers 22.7% 

Weight 16.7% 

Tidal volume 9.7% 

Respiratory rate 5.7% 

PaCO2 3.7% 

CRP 3.5% 

pH 3.3% 

PaO2 3.0% 

PEEP 2.4% 

Lymphocytes 2.2% 

FiO2 0.9% 

Leucocytes 0.4% 

 

List of abbreviations: CRP – C-reactive protein; PCT – procalcitonin; PEEP - positive end-expiratory pressure; PaCO2 - partial pressure of arterial carbon dioxide; PaO2 - partial 

pressure of arterial oxygen; FiO2 - inspiratory fraction of oxygen 
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e-Appendix 1: Multiple imputations of missing data and technique break down 

The missing at random assumption was postulated after assessing for quasi-missingness at 

random through consideration of survival curves, the log-rank test and Cox proportional 

hazards models, evaluating the interaction between variables presenting the highest missing 

rates and a possible pattern on diverging mortality rates, which was not present [1]. 

Additionally, delta-adjustment sensitivity analyses were performed, which indicated no 

departure from the missing at random assumption [2]. All independent baseline variables 

recorded in the data set were included. For each variable, a linear regression model accounting 

for all non-collinear and non-intercepting variables was specified. We then used a  multiple 

imputation missingness pattern approach as covariate in each linear regression model to account 

for potential information intrinsically present in missingness patterns [3]. Five parallel 

imputation models with 100 iterations each were run.   

Whilst it has long been postulated that a cut-off of about 40% should be used to remove 

variables from analyses[4], recent research is increasingly showing that missingness percentage 

itself shouldn’t govern this choice and that cut-offs are mostly arbitrary [5-7]. In studies with a 

large number of patients (>500-1000), containing many variables that can be regarded as at 

least partially explanatory for other covariates, multiple imputation, especially by means of 

predictive mean matching, might offer estimates very close to “reality” [5, 7]. It has been shown 

that the bias of a variables imputation is mainly governed, not by its percentage missingness, 

but by the amount of other covariates included to the model, which might predict or correlate 

with the missing parameter [5]. Indeed multiple imputation was designed in order for 

compensate high percentages of missingness up to 70-80% [2]. Inclusion of missingness 

patterns methods to the imputation model, might even improve estimates [8, 9]. 

Having proposed the multiple imputation equations, in our case including all baseline 

characteristics, center clustering factors, temporality as well as missingness patterns, a good 

diagnostic tool to assess the plausibility of the imputation is the convergence of imputation plots 

(e-Figure 1). As can be observed means and standard deviations of the imputed variables have 

little to no variation during consecutive imputation cycles and the five models present similar 

values, suggesting imputation model robustness. Additionally, when comparing the 

distributions of the imputed missing variables and those of the original distributions, 

standardized means are below 0.1 and variance ratios below 2, suggesting an excellent overlap 

of original and imputed distributions (e-Figure 2 and e-Table 2). 
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e-Figure 1: Multiple imputation - convergence plots 
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Change in mean and standard deviation per imputation iteration cycle for all imputed variables and imputation models (5 

models). List of abbreviations: PesKG - weight; Tallacm - height; BMI – body mass index; Leucos - leucocytes; Linfos - 

lymphocytes; ratio_neutr_lymph – neutrophil/ lymphocyte ratio; Procalcitonina – procalcitonin; ProteinaCreactiva – C-

reactive protein;  Lactato – lactate; IL6 – interleukin-6; DimeroD – D-dimers; Ferritina – ferritin; PPLAT – Plateau pressure; 

PEEP - positive end-expiratory pressure; VT – tidal volume; FR – respiratory rate; FiO2 - inspiratory fraction of oxygen; 

PaO2 - partial pressure of arterial oxygen; PaCO2 - partial pressure of arterial carbon dioxide 
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e-Figure 2: Multiple imputation – distribution plots 
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Distribution box-plots for imputed variables. The distributions of the variables post imputation (5 models) are plotted in red, as opposed to the original distribution which is plotted in blue. List of 

abbreviations: PesKG - weight; Tallacm - height; BMI – body mass index; Leucos - leucocytes; Linfos - lymphocytes; ratio_neutr_lymph – neutrophil/ lymphocyte ratio; Procalcitonina – procalcitonin; 

ProteinaCreactiva – C-reactive protein;  Lactato – lactate; IL6 – interleukin-6; DimeroD – D-dimers; Ferritina – ferritin; PPLAT – plateau pressure; PEEP - positive end-expiratory pressure; VT – tidal 

volume; FR – respiratory rate; FiO2 - inspiratory fraction of oxygen; paO2 - partial pressure of arterial oxygen; paCO2 - partial pressure of arterial carbon dioxide 
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e-Table 2: Imputation model fit 

 Original Model 1 p SMD VR Model 2 p SMD VR Model 3 p SMD VR Model 4 p SMD VR Model 5 p SMD VR 

n 1703 1703    1703    1703    1703    1703    

Weight 
82.7 

(15.4) 
82.8 

(15.4) 
0.792 0.009 1.003646 

82.9 
(15.4) 

0.679 0.015 0.997363 
83.1 

(15.7) 
0.519 0.023 1.093468 

82.6 
(15.5) 

0.834 0.008 1.031941 
83.2 

(15.8) 
0.417 0.029 1.120704 

Height 
168.9 
(9.1) 

168.8 
(9.1) 

0.738 0.013 0.990133 
169.1 
(9.1) 

0.487 0.026 0.992783 
168.8 
(9.3) 

0.801 0.010 1.078529 
168.7 
(8.9) 

0.587 0.020 0.926292 
168.8 
(9.3) 

0.709 0.014 1.063739 

BMI  
29.1 
(5.2) 

29.1 (5.1) 0.955 0.002 0.982469 29.0 (5.1) 0.673 0.016 0.961262 29.2 (5.2) 0.730 0.013 1.029542 29.0 (5.1) 0.730 0.013 0.98666 29.2 (5.2) 0.547 0.023 1.067739 

Leucocytes  
10.0 
(6.5) 

10.0 (6.5) 0.966 0.001 0.997402 10.0 (6.5) 0.969 0.001 0.993887 10.0 (6.5) 0.965 0.001 0.994975 10.0 (6.5) 0.975 0.001 0.995191 10.1 (6.5) 0.990 <0.001 1.003075 

Lymphocytes 0.9 (1.6) 0.9 (1.5) 0.952 0.002 0.962468 0.9 (1.5) 0.985 0.001 0.965922 0.9 (1.6) 0.945 0.002 0.995854 0.9 (1.6) 0.956 0.002 0.991536 0.9 (1.5) 0.919 0.004 0.961449 

Neutrophils/ 
lymphocytes  

17.3 
(36.4) 

17.3 
(36.2) 

0.974 0.001 0.975866 
17.2 

(36.1) 
0.945 0.002 0.961428 

17.3 
(36.1) 

0.980 0.001 0.96391 
17.3 

(36.2) 
0.981 0.001 0.971662 

17.5 
(36.3) 

0.893 0.005 0.986905 

PCT 0.7 (1.6) 0.8 (1.7) 0.831 0.008 1.060655 0.7 (1.7) 0.894 0.005 1.068059 0.7 (1.6) 0.684 0.015 0.881047 0.8 (1.7) 0.829 0.008 1.282374 0.8 (1.6) 0.229 0.046 1.048801 

CRP 
147.6 

(128.7) 
146.9 

(128.3) 
0.875 0.005 0.98874 

149.0 
(129.8) 

0.769 0.010 1.034986 
147.8 

(129.3) 
0.977 0.001 1.017702 

147.2 
(128.2) 

0.917 0.004 0.984755 
147.2 

(129.0) 
0.924 0.003 1.009864 

Lactate 2.4 (7.4) 2.3 (6.9) 0.807 0.009 0.783639 2.2 (6.5) 0.537 0.023 0.608241 2.3 (6.8) 0.704 0.014 0.741842 2.6 (8.0) 0.601 0.019 1.420788 2.4 (7.3) 0.958 0.002 0.967323 

Interleukine-6 
459.2 

(1134.4) 
489.1 

(1220.7) 
0.646 0.025 1.340824 

508.4 
(1252.6) 

0.460 0.041 1.486408 
499.8 

(1229.6) 
0.536 0.034 1.380232 

475.3 
(1241.6) 

0.807 0.014 1.434998 
463.6 

(1091.3) 
0.941 0.004 0.856372 

D-dimers  
4745.2 

(10256.7
) 

4637.3 
(10002.0) 

0.771 0.011 0.904305 
4614.4 

(10077.6) 
0.725 0.013 0.931948 

5309.2 
(11414.8) 

0.160 0.052 1.534056 
4873.8 

(10847.8) 
0.741 0.012 1.25119 

4801.1 
(10517.5) 

0.884 0.005 1.105657 

Ferritin  
1736.9 

(1448.8) 
1709.0 

(1407.4) 
0.621 0.020 0.890546 

1777.5 
(1552.6) 

0.498 0.027 1.318977 
1718.9 

(1439.1) 
0.753 0.012 0.973493 

1754.4 
(1483.1) 

0.763 0.012 1.0983 
1744.5 

(1422.1) 
0.892 0.005 0.928268 

n 1387     1387    1387    1387    1387    

Plateau 
pressure 

25.2 
(3.6) 

25.1 (3.7) 0.508 0.029 1.047581 25.1 (3.7) 0.379 0.038 1.085795 25.2 (3.7) 0.929 0.004 1.082424 25.0 (3.8) 0.216 0.054 1.225912 25.1 (3.8) 0.558 0.026 1.1633 

PEEP  
12.3 
(2.4) 

12.3 (2.4) 0.877 0.006 1.02459 12.3 (2.4) 0.947 0.003 1.012438 12.3 (2.4) 0.999 <0.001 1.013956 12.3 (2.4) 0.960 0.002 0.991194 12.3 (2.4) 0.954 0.002 1.005014 

Tidal volume  
423.8 
(63.1) 

424.4 
(64.2) 

0.837 0.008 1.072991 
424.5 
(62.2) 

0.805 0.010 0.945697 
425.1 
(63.0) 

0.632 0.019 0.995169 
424.5 
(62.8) 

0.810 0.010 0.976941 
424.1 
(63.1) 

0.909 0.005 0.997286 

Respiratory 
rate  

22.4 
(3.9) 

22.5 (3.9) 0.448 0.030 0.984072 22.4 (3.9) 0.902 0.005 0.972645 22.4 (3.9) 0.871 0.006 0.958686 22.4 (3.9) 0.740 0.013 1.013293 22.4 (3.9) 0.860 0.007 0.996615 

FiO2 0.6 (0.2) 0.6 (0.2) 0.943 0.003 0.99983 0.6 (0.2) 0.990 <0.001 1.000808 0.6 (0.2) 0.935 0.003 0.998076 0.6 (0.2) 0.942 0.003 0.995516 0.6 (0.2) 0.971 0.001 1.000238 

pH  7.3 (0.1) 7.3 (0.1) 0.763 0.012 1.028387 7.3 (0.1) 0.963 0.002 1.005223 7.3 (0.1) 0.983 0.001 0.989413 7.3 (0.1) 0.960 0.002 1.002062 7.3 (0.1) 0.917 0.004 1.000921 

PaO2  
107.3 
(43.5) 

107.3 
(43.3) 

0.967 0.002 0.979093 
107.7 
(43.7) 

0.822 0.009 1.021343 
107.4 
(43.6) 

0.962 0.002 1.013212 
107.1 
(43.4) 

0.910 0.004 0.992379 
107.1 
(43.3) 

0.935 0.003 0.980736 

PaCO2  
48.8 

(13.7) 
48.9 

(13.8) 
0.803 0.010 1.017694 

48.8 
(13.8) 

0.923 0.004 1.030506 
48.9 

(13.8) 
0.844 0.008 1.025061 

48.9 
(13.8) 

0.854 0.007 1.015161 
48.7 

(13.7) 
0.944 0.003 0.992782 

 
Variable distributions, mean (standard deviation), for all imputed variable. P-values, standardized mean differences (SMD) and variance ratios (VR) assess each imputation fit against the original. 

List of abbreviations: BMI – body mass index; PCT – procalcitonin; CRP – C reactive protein; PEEP - positive end-expiratory pressure; paCO2 - partial pressure of arterial carbon dioxide; paO2 - 

partial pressure of arterial oxygen; FiO2 - inspiratory fraction of oxygen 
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e-Appendix 2: Extended Statistical Methodology 

 

We employed the causal inference modelling framework suggested by Rubin and Rosenbaum and included all relevant observed covariates at ICU 

admission into our covariate balancing models [10, 11]. Following covariate balancing we performed a post-balancing analysis of all other measured 

baseline variables assessing any possible imbalance, as suggested by Rubin and Stuart [12, 13]. 

 

Covariate Variable selection 

Age, sex, body mass issndex, the time between hospital and ICU admission, comorbidities (cardiovascular, diabetes, cancer, COPD and 

immunosuppression), leucocyte counts, the neutrophil-to-lymphocyte ratio, procalcitonin levels, C-reactive protein levels, interleukin-6 levels, D-

dimer levels, ferritin levels and arterial lactate levels at the time-point of ICU admission were selected as covariates. These variables were chosen as 

they allowed an equilibrated assessment of relevant demographic characteristics, degree of organ dysfunction, inflammatory dysregulation as well as 

microcirculatory impairment [14]. 
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Covariate Balancing Algorithm selection 

Nine different covariate-balancing algorithms were tested against each other, namely: 

1. Classic propensity score weighting [15]: This is the classic method known as inversed probability of treatment weighting (IPTW). Specific 

patient weights are calculated from the probability of receiving a specific intervention given a set of baseline covariates, which is defined as 

the propensity score. The propensity score for each patient is estimated by means of logistic regression. The model states that the logit function 

of the probability of receiving an intervention is given by a linear combination of covariates.  

2. Generalized boosted models [16]: Generalized boosted models are a combination of decision tree algorithms and boosting methods. These 

models repeatedly fit multiple decision trees to improve model accuracy. Each new model tree regards the miss-modeled data in the preceding 

trees, and weights the input data so that it gains more priority in succeeding trees. In this way, a propensity score is sequentially constructed 

improving its fit in every successive branching. Normally a standardized mean difference or maximum Kolmogorov-Smirnov statistic 

optimization is targeted.     

3. Covariate balance propensity score [17]: Covariate balance propensity score employs the duality of propensity scores as a covariate 

balancing score and the probability of treatment assignment conditioned on the covariates. The moment conditions implied by covariate 

balancing are combined with a standard estimation procedure, such as empirical likelihood or generalized method of moments, to estimate the 

propensity score. In this way the resulting parametric propensity score is specified so that covariate balance is maximized. 
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4. Nonparametric covariate balancing propensity score weighting [17]: This method maximizes the empirical likelihood of observing an 

intervention given the observed covariates, constraining the weights so that covariate balance and the original mean of interventions and 

covariates are ensured. Thus inverse generalized propensity weights are estimated without the generation of a fully parametrized model for 

each intervention and covariate.  

5. Entropy balancing [18]: This method attempts to solve an optimization problem consisting in exactly balancing all covariates over as many 

moments as defined by the modeler and thus directly defining the weights of each patient directly. The optimization problem is constrained 

by covariate balance, weight positivity and a total weight sum. This method does not estimate patient weights through a propensity score. 

6. Empirical balancing calibration weighting [19]: This method removes imbalance in all covariates by directly modifying the missspecified 

uniform weights without directly employing a propensity score. Calibration weights are constructed from moment balancing conditions 

generating an exact three-way balance between the interventions, the controls and the joint population. 

7. Targeted stable balancing weights using optimization [20]: This method finds the weights of minimum variance that balance the empirical 

distribution of the initial covariates through specification of a pre-defined convex optimization problem. Thus, the variance of the individual 

weights is balanced against the maximal adjustment constraint of each covariate. 

8. Bayesian additive regression trees weighting [21]: This method is a non-parametric Bayesian regression approach, which employs 

dimensionally adaptive random basis elements or a sum-of-trees model. By defining a prior and a likelihood a posterior distribution enabling 

inference of point and interval estimates of the propensity score function and of the marginal covariate effects.   
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9. Energy balancing [22]: This method directly attempts to balance the weighted covariate distributions through a model-free approach, focusing 

on the full covariate distributions and not just lower order moments of the same. For this purpose a specific distance metric, the energy distance, 

is used, which is based on powers of the classic Euclidean distance. This energy distance between interventions and the full population is 

minimized by setting the weights.  

 

Covariate balancing algorithm evaluation 

Covariate balancing quality was evaluated based on the difference in mean or prevalence and the higher-order moments and interactions for each 

covariate between the intervention and the control group in the matched population. Additionally distribution plots for each covariate were inspected 

[23]. 

Difference in mean/ prevalence [24, 25]: Standardized Mean Difference (SMD) =
|�̅�𝐼−�̅�𝐶|

√(𝑠𝐼)
2

+(𝑠𝐶)
2

2

 → SMD ≤0.1 

Higher-order moments and interactions [12, 25]: Variance Ratio (VR) =
(𝑠𝑇)2

(𝑠𝐶)2  → 0.5 ≤ VR ≤ 2.0 
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e-Figure 3: Covariate balancing models - model fit comparison 

  

Difference in maximal standardized mean differences (SMD) and variance ratios (VR) between the unbalanced population (in orange) and the nine tested covariance balancing algorithms for each 

baseline variable. An SMD value <0.1 represents a negligible difference between group means and a VR <2 a negligible difference between higher-order moments and interactions between groups. 

Algorithms: classic inverse probability weighting (PS), generalized boosted models (GBM), covariate balancing propensity score weighting (CBPS), nonparametric covariate balancing propensity 

score weighting (NPCBPS), entropy balancing (EBAL), empirical balancing calibration weighting (EBCW), targeted stable balancing weights using optimization (OPTWEIGHT), Bayesian additive 

regression trees weighting (BART) and energy balancing (ENERGY). 
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e-Figure 4: Covariate balancing models - weights comparison 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Histograms assessing covariance balancing weight distributions for each tested algorithm. A Gaussian distribution around the 1 without extreme weights is regarded as optimal. Algorithms: 

classic inverse probability weighting (PS), generalized boosted models (GBM), covariate balancing propensity score weighting (CBPS), nonparametric covariate balancing propensity score 

weighting (NPCBPS), entropy balancing (EBAL), empirical balancing calibration weighting (EBCW), targeted stable balancing weights using optimization (OPTWEIGHT), Bayesian additive 

regression trees weighting (BART) and energy balancing (ENERGY). 
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e-Appendix 3: Study information 

UCIsCAT centres and local investigators  

▪ Hospital Universitari General de la Vall d'Hebron, Barcelona: R.Ferrer, O.Roca, X. Nuvials, J.C Ruiz, E. Papiol 

▪ Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat : R. Mañez, V.D Gumicio 

▪ Hospital Clínic i Provincial de Barcelona, Barcelona: E.Sandoval, G.Muñoz, D.Toapanta, P.Castro, J. Osorio 

▪ Hospital del Mar, Barcelona: J.R Masclans , R. Muñoz-Bermúdez, F. Parrilla, P. Pérez-Teran, J. Marin-Corral 

▪ Hospital de Sant Joan Despí Moisès Broggi, Sant Joan Despí: A. Mas, B. Cancio, S.Hernández-Marín, M.R. Koborzan , C.A Briones 

▪ Hospital Mútua de Terrassa, Terrassa: J. Trenado 

▪ Althaia (Xarxa Assistencial Universitària de Manresa), Manresa: R.Fernández 

▪ Hospital Universitari Doctor Josep Trueta de Girona, Girona:   J.M Sirvent, P. Sebastian, X. Saiz 

▪ Hospital General De Cataluña, Sant Cugat del Vallès: M. Martínez  

▪ Hospital Universitari Sagrat Cor - Grup Quirónsalut, Barcelona: M. Ibarz 

▪ Hospital General de Granollers, Granollers: P.Garro, C.Pedrós, E.Vendrell 

▪ Hospital General de Vic (Consorci Hospitalari de Vic), Vic:  J.L Lopera 

▪ Hospital Universitari de Tarragona Joan XXIII, Tarragona: M. Bodí, A. Rodríguez, G. Moreno 

▪ Hospital de Mataró, Mataró: J.C Yebenes-Reyes 

▪ Hospital d’Igualada, Igualada: C. Triginer 

▪ Hospital Sant Joan de Reus, Reus: I. Vallverdú 

▪ Hospital de Santa Caterina, Salt: A. Baró , M. Morales 

▪ Hospital de Sant Pau i Santa Tecla, Tarragona: F. Bodí 

▪ Hospital HM Delfos, Barcelona: P.Saludes, J-R.Cervelló 

▪ Hospital El Pilar - Grup Quirónsalut, Barcelona: M. Valencia 

▪ Hospital de Tortosa Verge de la Cinta, Tortosa: F.Roche-Campo, D. Franch-Llasat 

▪ Clínica Sagrada Família, Barcelona:  A.Huerta, P.Santigosa 

▪ Hospital Sant Joan de Déu, Esplugues de Llobregat: F.J Cambra, S. Benito 

▪ Hospital Santa María, Lleida:  C.Barberà 

▪ Hospital ASEPEYO de Barcelona, Sant Cugat del Vallés: J.Echevarría 

▪ Hospital de la Santa Creu i Sant Pau, Barcelona: J. Mancebo, P.Vera, J-A.Santos, J.Baldirà, A-J.Betbesé, M.Izura, I.Morán, J-C.Suárez, L.Zapata, 

N.Rodríguez, M.Torrens, A.Cordón, C.Gomila, M.Flores, A.Segarra, M.Morales, L.Mateo, M.Martos, C.González Isern (Coordinating centre) 

List of colors: Blue = Catalan public health system hospitals; Orange = Catalan private hospitals  
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e-Table 3: Overall un-balanced population 

 Overall 

n = 1703 

Age (years) 63 [54 - 70] 

Female sex 517 (30) 

BMI (kg/m2) 28.0 [25.8 - 31.6] 

Time from hospital admission to ICU admission [days] 1 [0 - 3] 

Comorbidities  

     Cancer 120 (7) 

     Diabetes 352 (21) 

     COPD 119 (7) 

     Cardiovascular  844 (50) 

     Immunosuppression 77 (5) 

Leucocytes (G/l) 9 [6 - 12] 

Lymphocytes (G/l) 0.7 [0.5 - 1.0] 

Neutrophils/ lymphocytes 11 [7 - 18] 

PCT (μg/l) 0.3 [0.1 - 0.6] 

CRP (mg/l) 124 [28 - 231] 

Lactate (mmol/l) 1.4 [1.1 - 1.9] 

Interleukin-6 (ng/l) 133 [50 - 371] 

D-dimers (μg/l)         1160 [553 - 3240] 

Ferritin (μg/l) 1387 [787 - 2258] 

Invasive mechanical ventilation before or at ICU 
admission  

270 (16) 

Non-invasive respiratory support in ICU  

     High-flow oxygen therapy 583 (34) 

     Non-rebreather oxygen mask 563 (33) 

     Non-invasive ventilation 256 (15) 

     Nasal prongs or without respiratory support 31 (2) 

Intubation 1387 (81) 

Ventilator-free days 12 [0 - 25] 

Length of stay ICU (days) 13 [7 - 25] 

ICU mortality 504 (30) 
Quantitative data are expressed as median [interquartile range] or counts (percentages). BMI – body mass index; 

COPD – chronic obstructive pulmonary disease; CRP – C-reactive protein; ICU – intensive care unit; PCT – 

procalcitonin.
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e-Table 4: Un-balanced study population 

 Oxygen mask 
High-flow oxygen 

therapy 
Non-invasive 
ventilation p SMD 

 n = 553 n = 439 n = 101 

Age (years) 64 [55 - 71] 61 [52 - 69] 64 [57 - 70] 0.005 0.151 
Female sex 179 (32) 151 (34) 24 (24) 0.120 0.157 
BMI (kg/m2) 27.9 [25.6 - 31.2] 27.9 [26.0 - 31.2] 28.3 [25.8 - 32.7] 0.593 0.095 

Time from hospital admission to ICU admission [days] 1.0 [0.0 - 3.0] 2.0 [0.0 - 3.0] 3.0 [1.0 - 5.0] <0.001 0.360 

Comorbidities      

     Cancer 37 (7) 31 (7) 12 (12) 0.177 0.120 

     Diabetes 130 (24) 74 (17) 22 (22) 0.035 0.111 

     COPD 47 (8) 22 (5) 10 (10) 0.060 0.125 

     Cardiovascular  283 (51) 186 (42) 51 (50) 0.018 0.118 

     Immunosuppression 23 (4) 34 (8) 6 (6) 0.055 0.102 

Leucocytes (G/l) 8.9 [6.3 - 12.3] 7.6 [5.9 - 11.1] 9.7 [7.1 - 13.1] <0.001 0.240 
Lymphocytes (G/l) 0.7 [0.5 - 1.0] 0.8 [0.5 - 1.0] 0.7 [0.5 - 1.0] 0.724 0.053 
Neutrophils/ lymphocytes 10.9 [6.7 - 18.1] 9.1 [6.3 - 15.9] 11.5 [7.3 - 21.2] 0.007 0.187 
PCT (μg/l) 0.3 [0.1 - 0.7] 0.2 [0.1 - 0.5] 0.2 [0.1 - 0.5] 0.003 0.065 

CRP (mg/l) 143 [38 - 236] 79 [12 - 192] 119 [30 - 240] <0.001 0.210 

Lactate (mmol/l) 1.4 [1.0 - 1.9] 1.4 [1.1 - 1.9] 1.5 [1.2 - 2.0] 0.009 0.010 

Interleukin-6 (ng/l) 132 [47 - 285] 126[61 - 364] 112 [43 - 326] 0.366 0.085 

D-dimers (μg/l) 1301 [630 - 3240] 920 [451 - 2238] 1500 [740 - 5042] <0.001 0.131 

Ferritin (μg/l) 1350 [815 - 2294] 1415 [681 - 2091] 1566 [840 - 2347] 0.370 0.067 

Intubation 506 (92) 298 (68) 87 (86) <0.001 0.410 

Length of stay ICU (days) 15.0 [7.0 - 26.0] 12.0 [6.0 - 26.0] 14.0 [7.8 - 24.5] 0.452 0.031 

Ventilator-free survival [days] 7.0 [0.0 - 22.0] 18.0 [0.0 - 30.0] 5.0 [0.0 - 21.0] <0.001 0.261 

ICU mortality 176 (32) 94 (21) 41 (41) <0.001 0.281 

Quantitative data are expressed as median [interquartile range]. P-values are given for the difference between respiratory strategies. Standardized mean differences (SMD) define the maximal mean 

difference between groups. BMI – body mass index; COPD – chronic obstructive pulmonary disease; CRP – C-reactive protein; ICU – intensive care unit; PCT – procalcitonin.  
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e-Figure 5: Final covariance balancing model – model fit 

 

  

Histograms assessing covariance balancing weight distributions for each tested algorithm. A Gaussian distribution around the 1 without extreme weights is regarded as optimal. Algorithms: classic 

inverse probability weighting (PS), generalized boosted models (GBM), covariate balancing propensity score weighting (CBPS), nonparametric covariate balancing propensity score weighting 

(NPCBPS), entropy balancing (EBAL), empirical balancing calibration weighting (EBCW), targeted stable balancing weights using optimization (OPTWEIGHT), Bayesian additive regression trees 

weighting (BART) and energy balancing (ENERGY). 

Difference in maximal standardized mean differences (SMD) and variance ratios (VR) between the unbalanced population (in red) and the targeted stable balancing weights using optimization 

covariance balanced population for each baseline variable, are presented. An SMD value <0.1 represents a negligible difference between group means and a VR <2 a negligible difference between 

higher-order moments and interactions between groups. 
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Difference in maximal standardized mean differences (SMD) between the unbalanced population (in red) and the targeted stable balancing weights using optimization covariance balanced 

population for each baseline variable, are presented. An SMD value <0.1 represents a negligible difference between group means. Group 0: oxygen mask, Group 1: high-flow oxygen therapy, 

Group 2: non-invasive ventilation 
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Difference in Variance Ratios (VR) between the unbalanced population (in red) and the targeted stable balancing weights using optimization covariance balanced population for each baseline 

Difference in Variance Ratios (VR) between the unbalanced population (in red) and the targeted stable balancing weights using optimization covariance balanced population for each 

baseline variable, are presented. A VR value <2 represents a negligible difference between higher-order moments and interactions between groups. Group 0: oxygen Mask, Group 1: high 

flow oxygen therapy, Group 2: non-invasive ventilation 
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e-Figure 6: Final covariate balancing model – individual variable distributions 
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Distribution plots and histograms assessing the differences between the unadjusted and targeted stable balancing weights using optimization covariance adjusted population. For categorical variables 

1 implies presence of the category and 0 absence of the same. SOM - oxygen mask; HFT – high-flow oxygen therapy; NIV - non-invasive ventilation 
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e-Figure 7: Final covariate balancing model – model weights 

Histogram assessing the covariance balancing weight distribution for the targeted stable balancing weights using optimization (OPTWEIGHT) algorithm. A Gaussian distribution around the 1 

without extreme weights is regarded as optimal. 
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e-Figure 8: Static compliance versus time from ICU admission until intubation 

 

 

  

Box-plot assessing the compliance at the moment of intubation dependent on the time between intensive care unit admission and intubation. The plot is stratified by initial respiratory support 

strategy. 
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e-Figure 9: Driving pressure versus time from ICU admission until intubation 

  

Box-plot assessing the driving pressure at the moment of intubation dependent on the time between intensive care unit admission and intubation. The plot is stratified by initial respiratory support 

strategy. 
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e-Figure 10: PaO2/ fiO2 ratio versus time from ICU admission until intubation 

  

Box-plot assessing the paO2/ fiO2 at the moment of intubation dependent on the time between intensive care unit admission and intubation. The plot is stratified by initial respiratory support strategy. 
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e-Figure 11: Cox time varying model for influence of time until intubation on ICU mortality 

  

Schoenfeld residuals of a time-varying Cox proportional hazards model assessing the time-dependent effect of intubation on intensive care mortality. Schoenfeld residuals are plotted as dots, 

intensity of the dots correlates with the number of overlapping individual residuals. Schoenfeld residuals were modelled by a natural cubic spline with 4 knots, depicted as red line. The  95% 

confidence interval of regression is presented in blue shaded areas. The dotted line represents a hazard ratio of 1.   

Schoenfeld residuals can be regarded as the observed mortality hazard for every individual minus the expected hazard, which is defined as the overall estimated mortality hazard by the Cox model. 

The model shows that the hazard of mortality associated with intubation is not proportional over time. An early intubation, from the time point of intensive care unit admission, was associated with 

a reduction in the mortality hazard, whereas after about 3 days in the intensive care unit, this protective effect completely disappears and becomes associated with a higher mortality hazard from 

day 5 on. 
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e-Figure 12: Multivariable Cox proportional hazards model for in-ICU mortality (overall study population - covariance balanced) 

  

Multivariable Cox proportional hazard model assessing prognostic variables for intensive care mortality and represented in the form of a forest plot. All patients in the covariate balanced 

population are reflected. 



35 
 

e-Figure 13: Multivariable Cox proportional hazards model for in-ICU mortality (only intubated - covariance balanced) 

  

Multivariable Cox proportional hazard model assessing prognostic variables for intensive care mortality and represented in the form of a forest plot. Only intubated patients in the covariate 

balanced population are reflected. 
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e-Figure 14: Kaplan-Meier curve for ICU mortality – compliance vs. D-dimers 

  

Kaplan-Meier curve of the cumulative intensive care survival stratified by the interaction between compliance and D-dimers. Low and High definitions are chosen based on a median cut-off. p-

values are calculated by means of the log-rank test. Hazard ratios (HR) are computed by means of a Cox proportional hazard model and employ the high compliance, high D-dimer group as reference, 

95% confidence intervals (CI) are given in parentheses. The underlying table presents the patients at risk per time point. LCLD: Low compliance – Low D-dimers, HCLD: High compliance – Low 

D-dimers, LCHD: Low compliance – High D-dimers, HCHD: High compliance – High D-dimers. 
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e-Figure 15: Kaplan-Meier curve for ICU mortality in unbalanced population  

 

  

A 

B 

Kaplan-Meier curve of the cumulative intensive care survival stratified by initial respiratory support strategy at intensive care unit 

admission. Subplot (A) refers to all patients included in the analysis, whereas in (B) only patients progressing towards intubation and 

invasive mechanical ventilation are considered. p-values are calculated by means of the log-rank test. Hazard ratios (HR) are computed 

by means of a Cox proportional hazard model and assesses the risk of intensive care unit mortality in the high flow oxygen therapy and 

non-invasive ventilation groups using the oxygen mask group as reference, 95% confidence intervals (CI) are given in parentheses. The 

underlying table presents the patients at risk per time point. Patients are assessed without covariance balancing. 
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e-Table 5: Cox mixed-effects model with between-center random effects term (unbalanced) 

In order to avoid excessive unbalancing of the mixed-effects model due to centers not having treated 

patients with all three non-invasive respiratory support strategies, only centers having treated patients 

with oxygen mask, high-flow oxygen therapy and non-invasive ventilation were regarded in this 

sensitivity analysis. 

Centers included in sensitivity analysis: 19/ 26 

Patients included in sensitivity analysis: 970/ 1093 

90-day Hazard of Intubation 

 Variance Standard Deviation 

Random Effect - Center 

Intercept 0.4079 0.1664 

 Estimate 95% Confidence Interval p 

Fixed Effects 

Oxygen Mask 1.0 1.0 – 1.0 Ref. 

High-Flow Oxygen Therapy 0.3668 0.2965 - 0.4537 <0.001 

Non-Invasive Ventilation 0.6514 0.4966 - 0.8545 0.002 

90-day Hazard of ICU Mortality 

 Variance Standard Deviation 

Random Effect - Center 

Intercept 0.3405 0.1159 

 Estimate 95% Confidence Interval p 

Fixed Effects 

Oxygen Mask 1.0 1.0 – 1.0 Ref. 

High-Flow Oxygen Therapy 0.7111 0.5113 - 0.9888 0.043 

Non-Invasive Ventilation 1.5854 1.071 - 2.3475 0.021 

90-day Hazard of ICU Mortality (only intubated patients) 

 Variance Standard Deviation 

Random Effect - Center 

Intercept 0.3754 0.1409 

 Estimate 95% Confidence Interval p 

Fixed Effects 

Oxygen Mask 1.0 1.0 – 1.0 Ref. 

High-Flow Oxygen Therapy 1.0309 0.7314 - 1.4528 0.860 

Non-Invasive Ventilation 1.8214 1.2186 - 2.7224 0.004 
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e-Figure 16: Multivariable Cox proportional hazards model for in-ICU mortality (overall study population - unbalanced) 

  

Multivariable Cox proportional hazard model assessing prognostic variables for intensive care mortality and represented in the form of a forest plot. All patients in the unbalanced population are 

reflected. 
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e-Figure 17: Multivariable Cox proportional hazards model for in-ICU mortality (only intubated - unbalanced)  

Multivariable Cox proportional hazard model assessing prognostic variables for intensive care mortality and represented in the form of a forest plot. Only intubated patients in the unbalanced 

population are reflected. 
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e-Figure 18: Multivariable Cox mixed-effects model with between-center random effects term for in-ICU mortality (overall study population – 

unbalanced)  

Multivariable Cox mixed-effects model with between-center random effects term assessing prognostic variables for intensive care mortality presented in the form of a forest plot. In order to avoid 

excessive unbalancing of the mixed-effects only centers having treated patients with all three non-invasive respiratory support strategies were regarded in this sensitivity analysis. Centers included 

in sensitivity analysis: 19/ 26. Patients included in sensitivity analysis: 970/ 1093 
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e-Figure 19: Multivariable Cox mixed-effects model with between-center random effects term for in-ICU mortality (only intubated - unbalanced) 

  
Multivariable Cox mixed-effects model with between-center random effects term assessing prognostic variables for intensive care mortality presented in the form of a forest plot. In order to avoid 

excessive unbalancing of the mixed-effects only centers having treated patients with all three non-invasive respiratory support strategies were regarded in this sensitivity analysis. Centers included 

in sensitivity analysis: 19/ 26. Patients included in sensitivity analysis: 786/ 891 
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e-Appendix 4: Formulas 

• Ventilatory Ratio [26] 

 

𝑽𝒆𝒏𝒕𝒊𝒍𝒂𝒕𝒐𝒓𝒚 𝑹𝒂𝒕𝒊𝒐 =
𝑴𝒊𝒏𝒖𝒕𝒆 𝑽𝒆𝒏𝒕𝒊𝒍𝒂𝒕𝒊𝒐𝒏𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 [

𝒎𝑳
𝒎𝒊𝒏] × 𝑷𝒂𝑪𝑶𝟐 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 [𝒎𝒎𝑯𝒈]

𝑴𝒊𝒏𝒖𝒕𝒆 𝑽𝒆𝒏𝒕𝒊𝒍𝒂𝒕𝒊𝒐𝒏𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 [
𝒎𝑳

𝒎𝒊𝒏] ×  𝑷𝒂𝑪𝑶𝟐 𝒊𝒅𝒆𝒂𝒍 [𝒎𝒎𝑯𝒈]
 

𝑀𝑖𝑛𝑢𝑡𝑒 𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝑜𝑑𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 × 100 [
𝑚𝐿

𝑚𝑖𝑛
] 

𝑃𝑎𝐶𝑂2 𝑖𝑑𝑒𝑎𝑙 = 37.5 𝑚𝑚𝐻𝑔 

 

 

• Estimated Physiological Dead-Space Fraction – Unadjusted Harris-Benedict formula [27] 

 

𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑷𝒉𝒚𝒔𝒊𝒐𝒍𝒐𝒈𝒊𝒄𝒂𝒍 𝑫𝒆𝒂𝒅 𝑺𝒑𝒂𝒄𝒆 = 𝟏 −
𝟎. 𝟖𝟔𝟑 × �̇�𝑪𝑶𝟐

𝑹𝒆𝒔𝒑𝒊𝒓𝒂𝒕𝒐𝒓𝒚 𝑹𝒂𝒕𝒆 [𝒃𝒑𝒎] × 𝑻𝒊𝒅𝒂𝒍 𝑽𝒐𝒍𝒖𝒎𝒆 [𝑳] × 𝑷𝒂𝑪𝑶𝟐 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 [𝒎𝒎𝑯𝒈]
 

�̇�𝐶𝑂2 =
𝑅𝑒𝑠𝑡𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒

5.616
0.8

+ 1.584 

𝑅𝑒𝑠𝑡𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑦 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑈𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐻𝑎𝑟𝑟𝑖𝑠−𝐵𝑒𝑛𝑒𝑑𝑖𝑐𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒−𝑀𝑎𝑙𝑒 = 66.473 +  13.752 × 𝑊𝑒𝑖𝑔ℎ𝑡 [𝑘𝑔] + 5.003 ×  𝐻𝑒𝑖𝑔ℎ𝑡 [𝑐𝑚] −   6.755 ×  𝐴𝑔𝑒 [𝑦𝑒𝑎𝑟𝑠] 

𝑅𝑒𝑠𝑡𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑦 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑈𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐻𝑎𝑟𝑟𝑖𝑠−𝐵𝑒𝑛𝑒𝑑𝑖𝑐𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒−𝐹𝑒𝑚𝑎𝑙𝑒 = 66.473 +  13.752 × 𝑊𝑒𝑖𝑔ℎ𝑡 [𝑘𝑔] + 5.003 ×  𝐻𝑒𝑖𝑔ℎ𝑡 [𝑐𝑚] −   6.755 ×  𝐴𝑔𝑒 [𝑦𝑒𝑎𝑟𝑠] 
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