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e-Table 1: Percentage of missing values

Interleukin-6 79.5%
Ferritin 39.9%
PCT 31.4%
Height 29.3%
Plateau pressure 29.3%
Lactate 23.0%
D-dimers 22.7%
Weight 16.7%
Tidal volume 9.7%
Respiratory rate 5.7%
PaCO; 3.7%
CRP 3.5%
pH 3.3%
PaO, 3.0%
PEEP 2.4%
Lymphocytes 2.2%
FiO, 0.9%
Leucocytes 0.4%

List of abbreviations: CRP — C-reactive protein; PCT — procalcitonin; PEEP - positive end-expiratory pressure; PaCO; - partial pressure of arterial carbon dioxide; PaO; - partial

pressure of arterial oxygen; FiO, - inspiratory fraction of oxygen



e-Appendix 1: Multiple imputations of missing data and technique break down

The missing at random assumption was postulated after assessing for quasi-missingness at
random through consideration of survival curves, the log-rank test and Cox proportional
hazards models, evaluating the interaction between variables presenting the highest missing
rates and a possible pattern on diverging mortality rates, which was not present [1].
Additionally, delta-adjustment sensitivity analyses were performed, which indicated no
departure from the missing at random assumption [2]. All independent baseline variables
recorded in the data set were included. For each variable, a linear regression model accounting
for all non-collinear and non-intercepting variables was specified. We then used a multiple
imputation missingness pattern approach as covariate in each linear regression model to account
for potential information intrinsically present in missingness patterns [3]. Five parallel

imputation models with 100 iterations each were run.

Whilst it has long been postulated that a cut-off of about 40% should be used to remove
variables from analyses[4], recent research is increasingly showing that missingness percentage
itself shouldn’t govern this choice and that cut-offs are mostly arbitrary [5-7]. In studies with a
large number of patients (>500-1000), containing many variables that can be regarded as at
least partially explanatory for other covariates, multiple imputation, especially by means of
predictive mean matching, might offer estimates very close to “reality” [5, 7]. It has been shown
that the bias of a variables imputation is mainly governed, not by its percentage missingness,
but by the amount of other covariates included to the model, which might predict or correlate
with the missing parameter [5]. Indeed multiple imputation was designed in order for
compensate high percentages of missingness up to 70-80% [2]. Inclusion of missingness

patterns methods to the imputation model, might even improve estimates [8, 9].

Having proposed the multiple imputation equations, in our case including all baseline
characteristics, center clustering factors, temporality as well as missingness patterns, a good
diagnostic tool to assess the plausibility of the imputation is the convergence of imputation plots
(e-Figure 1). As can be observed means and standard deviations of the imputed variables have
little to no variation during consecutive imputation cycles and the five models present similar
values, suggesting imputation model robustness. Additionally, when comparing the
distributions of the imputed missing variables and those of the original distributions,
standardized means are below 0.1 and variance ratios below 2, suggesting an excellent overlap

of original and imputed distributions (e-Figure 2 and e-Table 2).




e-Figure 1: Multiple imputation - convergence plots
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e-Figure 2: Multiple imputation — distribution plots
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Distribution box-plots for imputed variables. The distributions of the variables post imputation (5 models) are plotted in red, as opposed to the original distribution which is plotted in blue. List of
abbreviations: PesKG - weight; Tallacm - height; BMI — body mass index; Leucos - leucocytes; Linfos - lymphocytes; ratio_neutr_lymph — neutrophil/ lymphocyte ratio; Procalcitonina — procalcitonin;
ProteinaCreactiva — C-reactive protein; Lactato — lactate; IL6 — interleukin-6; DimeroD — D-dimers; Ferritina — ferritin; PPLAT — plateau pressure; PEEP - positive end-expiratory pressure; VT — tidal

volume; FR — respiratory rate; FiO, - inspiratory fraction of oxygen; paO; - partial pressure of arterial oxygen; paCO, - partial pressure of arterial carbon dioxide



e-Table 2: Imputation model fit
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Original Model 1
1703 1703

q 82.7 82.8 829 83.1 82.6 83.2
Weight (15.4) (15.4) 0.792 0.009 1.003646 (15.4) 0.679 0.015 0.997363 (15.7) 0.519 0.023 1.093468 (15.5) 0.834 0.008 1.031941 (15.8) 0.417 0.029 1.120704

A 168.9 168.8 169.1 168.8 168.7 168.8

0.738 0.013 0.990133 0.487 0.026 0.992783 L I d b Y X b I J
Height (9.1) (9.1) (9.1) (©.3) 0.801 0.010 1.078529 (8.9) 0.587 0.020 0.926292 ©.3) 0.709 0.014 1.063739
BMI (259'21) 29.1(5.1) 0.955 0.002 0.982469 29.0(5.1) 0.673 0.016 0.961262 29.2(5.2) 0.730 0.013 1.029542 29.0(5.1) 0.730 0.013 0.98666 29.2(5.2) 0.547 0.023 1.067739
10.0

Leucocytes (6.5) 10.0(6.5) 0.966 0.001 0.997402 10.0(6.5) 0.969 0.001 0.993887 10.0 (6.5) 0.965 0.001 0.994975 10.0(6.5) 0.975 0.001 0.995191 10.1(6.5) 0.990 <0.001 1.003075
Lymphocytes 0.9 (1.6) 0.9 (1.5) 0.952 0.002 0.962468 0.9 (1.5) 0.985 0.001 0.965922 0.9(1.6) 0.945 0.002 0.995854 0.9(1.6) 0.956 0.002 0.991536 0.9(1.5) 0.919 0.004 0.961449

Neutrophils/ 17.3 17.3 17.2 17.3 17.3 17.5
0.974 0.001 0.975866 0.945 0.002 0.961428 0.980 0.001 0.96391 0.981 0.001 0.971662 0.893 0.005 0.986905

lymphocytes (36.4) (36.2) (36.1) (36.1) (36.2) (36.3)
PCT 0.7 (1.6) 0.8(1.7) 0.831 0.008 1.060655 0.7 (1.7) 0.894 0.005 1.068059 0.7 (1.6) 0.684 0.015 0.881047 0.8(1.7) 0.829 0.008 1.282374 0.8(1.6) 0.229 0.046 1.048801

147.6 146.9 149.0 147.8 147.2 147.2
CRP (128.7) (128.3) 0.875 0.005 0.98874 (129.8) 0.769 0.010 1.034986 (129.3) 0.977 0.001 1.017702 (128.2) 0.917 0.004 0.984755 (129.0) 0.924 0.003 1.009864
Lactate 2.4(7.4) 2.3(6.9) 0.807 0.009 0.783639 2.2(6.5) 0.537 0.023 0.608241 2.3(6.8) 0.704 0.014 0.741842 2.6(8.0) 0.601 0.019 1.420788 2.4(7.3) 0.958 0.002 0.967323

a 459.2 489.1 508.4 499.8 475.3 463.6
Interleukine-6 (1134.4) (1220.7) 0.646 0.025 1.340824 (1252.6) 0.460 0.041 1.486408 (1229.6) 0.536 0.034 1.380232 (1241.6) 0.807 0.014 1.434998 (1091.3) 0.941 0.004 0.856372

4745.2

A 4637.3 4614.4 5309.2 4873.8 4801.1
D-dimers (102)56.7 (10002.0) 0.771 0.011 0.904305 (10077.6) 0.725 0.013 0.931948 (11414.8) 0.160 0.052 1.534056 (10847.8) 0.741 0.012 1.25119 (10517.5) 0.884 0.005 1.105657

o 1736.9 1709.0 1777.5 1718.9 1754.4 1744.5
Ferritin (1448.8) (1407.4) 0.621 0.020 0.890546 (1552.6) 0.498 0.027 1.318977 (1439.1) 0.753 0.012 0.973493 (1483.1) 0.763 0.012 1.0983 (1422.1) 0.892 0.005 0.928268

Plateau
— (23562) 25.1(3.7) 0.508  0.029 1.047581 25.1(3.7) 0.379 0.038 1.085795 25.2(3.7) 0.929 0.004 1.082424 25.0(3.8) 0216  0.054 1.225912 25.1(3.8) 0.558 0.026 1.1633
12.
PEEP @ 43) 12.3 (2.4) 0.877  0.006 1.02459 12.3(2.4) 0.947 0.003 1.012438 12.3 (2.4) 0.999  <0.001 1.013956 12.3 (2.4) 0.960  0.002 0.991194 12.3 (2.4) 0.954 0.002 1.005014
" 423.8 424.4 4245 425.1 424.5 424.1
Tidal volume (63.1) (64.2) 0.837 0.008 1.072991 (62.2) 0.805 0.010 0.945697 (63.0) 0.632 0.019 0.995169 (62.8) 0.810 0.010 0.976941 (63.1) 0.909 0.005 0.997286
Respiratory 224
I~ (3.9) 22.5(3.9) 0.448 0.030 0.984072 22.4(3.9) 0.902 0.005 0.972645 22.4(3.9) 0.871 0.006 0.958686 22.4(3.9) 0.740 0.013 1.013293 22.4(3.9) 0.860 0.007 0.996615
FiO2 0.6 (0.2) 0.6 (0.2) 0.943 0.003 0.99983 0.6 (0.2) 0.990 <0.001 1.000808 0.6 (0.2) 0.935 0.003 0.998076 0.6 (0.2) 0.942 0.003 0.995516 0.6 (0.2) 0.971 0.001 1.000238
pH 7.3(0.1) 7.3(0.1) 0.763  0.012 1.028387 7.3(0.1) 0.963 0.002 1.005223 7.3(0.1) 0.983 0.001 0.989413 7.3(0.1) 0.960  0.002 1.002062 7.3(0.1) 0.917 0.004 1.000921
107.3 107.3 107.7 107.4 107.1 107.1
Pa02 (43.5) (43.3) 0.967 0.002 0.979093 (43.7) 0.822 0.009 1.021343 43.6) 0.962 0.002 1.013212 (43.4) 0.910 0.004 0.992379 @3.3) 0.935 0.003 0.980736
48.8 48.9 48.8 48.9 48.9 48.7
0.803 I d I ! d ! I d ! ! d I J I
PaCO2 (13.7) (13.8) 0.010 1.017694 (13.8) 0.923 0.004 1.030506 (13.8) 0.844 0.008 1.025061 (13.8) 0.854  0.007 1.015161 (13.7) 0.944 0.003 0.992782

Variable distributions, mean (standard deviation), for all imputed variable. P-values, standardized mean differences (SMD) and variance ratios (VR) assess each imputation fit against the original.
List of abbreviations: BMI — body mass index; PCT — procalcitonin; CRP — C reactive protein; PEEP - positive end-expiratory pressure; paCO; - partial pressure of arterial carbon dioxide; paO; -

partial pressure of arterial oxygen; FiO; - inspiratory fraction of oxygen
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e-Appendix 2: Extended Statistical Methodology

We employed the causal inference modelling framework suggested by Rubin and Rosenbaum and included all relevant observed covariates at ICU
admission into our covariate balancing models [10, 11]. Following covariate balancing we performed a post-balancing analysis of all other measured

baseline variables assessing any possible imbalance, as suggested by Rubin and Stuart [12, 13].

Covariate Variable selection

Age, sex, body mass issndex, the time between hospital and ICU admission, comorbidities (cardiovascular, diabetes, cancer, COPD and
immunosuppression), leucocyte counts, the neutrophil-to-lymphocyte ratio, procalcitonin levels, C-reactive protein levels, interleukin-6 levels, D-
dimer levels, ferritin levels and arterial lactate levels at the time-point of ICU admission were selected as covariates. These variables were chosen as
they allowed an equilibrated assessment of relevant demographic characteristics, degree of organ dysfunction, inflammatory dysregulation as well as

microcirculatory impairment [14].



14

Covariate Balancing Algorithm selection

Nine different covariate-balancing algorithms were tested against each other, namely:

1. Classic propensity score weighting [15]: This is the classic method known as inversed probability of treatment weighting (IPTW). Specific
patient weights are calculated from the probability of receiving a specific intervention given a set of baseline covariates, which is defined as
the propensity score. The propensity score for each patient is estimated by means of logistic regression. The model states that the logit function
of the probability of receiving an intervention is given by a linear combination of covariates.

2. Generalized boosted models [16]: Generalized boosted models are a combination of decision tree algorithms and boosting methods. These
models repeatedly fit multiple decision trees to improve model accuracy. Each new model tree regards the miss-modeled data in the preceding
trees, and weights the input data so that it gains more priority in succeeding trees. In this way, a propensity score is sequentially constructed
improving its fit in every successive branching. Normally a standardized mean difference or maximum Kolmogorov-Smirnov statistic
optimization is targeted.

3. Covariate balance propensity score [17]: Covariate balance propensity score employs the duality of propensity scores as a covariate
balancing score and the probability of treatment assignment conditioned on the covariates. The moment conditions implied by covariate
balancing are combined with a standard estimation procedure, such as empirical likelihood or generalized method of moments, to estimate the

propensity score. In this way the resulting parametric propensity score is specified so that covariate balance is maximized.
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Nonparametric covariate balancing propensity score weighting [17]: This method maximizes the empirical likelihood of observing an
intervention given the observed covariates, constraining the weights so that covariate balance and the original mean of interventions and
covariates are ensured. Thus inverse generalized propensity weights are estimated without the generation of a fully parametrized model for
each intervention and covariate.

Entropy balancing [18]: This method attempts to solve an optimization problem consisting in exactly balancing all covariates over as many
moments as defined by the modeler and thus directly defining the weights of each patient directly. The optimization problem is constrained
by covariate balance, weight positivity and a total weight sum. This method does not estimate patient weights through a propensity score.
Empirical balancing calibration weighting [19]: This method removes imbalance in all covariates by directly modifying the missspecified
uniform weights without directly employing a propensity score. Calibration weights are constructed from moment balancing conditions
generating an exact three-way balance between the interventions, the controls and the joint population.

Targeted stable balancing weights using optimization [20]: This method finds the weights of minimum variance that balance the empirical
distribution of the initial covariates through specification of a pre-defined convex optimization problem. Thus, the variance of the individual
weights is balanced against the maximal adjustment constraint of each covariate.

Bayesian additive regression trees weighting [21]: This method is a non-parametric Bayesian regression approach, which employs
dimensionally adaptive random basis elements or a sum-of-trees model. By defining a prior and a likelihood a posterior distribution enabling

inference of point and interval estimates of the propensity score function and of the marginal covariate effects.
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9. Energy balancing [22]: This method directly attempts to balance the weighted covariate distributions through a model-free approach, focusing
on the full covariate distributions and not just lower order moments of the same. For this purpose a specific distance metric, the energy distance,
is used, which is based on powers of the classic Euclidean distance. This energy distance between interventions and the full population is

minimized by setting the weights.

Covariate balancing algorithm evaluation

Covariate balancing quality was evaluated based on the difference in mean or prevalence and the higher-order moments and interactions for each
covariate between the intervention and the control group in the matched population. Additionally distribution plots for each covariate were inspected

[23].

|X—xc|

/(s1)2+(sc)2
2

—0.5<VR<2.0

Difference in mean/ prevalence [24, 25]: Standardized Mean Difference (SMD) = — SMD <0.1

(s7)?

(s¢)?

Higher-order moments and interactions [12, 25]: Variance Ratio (VR) =
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e-Figure 3: Covariate balancing models - model fit comparison
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Difference in maximal standardized mean differences (SMD) and variance ratios (VR) between the unbalanced population (in orange) and the nine tested covariance balancing algorithms for each
baseline variable. An SMD value <0.1 represents a negligible difference between group means and a VR <2 a negligible difference between higher-order moments and interactions between groups.
Algorithms: classic inverse probability weighting (PS), generalized boosted models (GBM), covariate balancing propensity score weighting (CBPS), nonparametric covariate balancing propensity
score weighting (NPCBPS), entropy balancing (EBAL), empirical balancing calibration weighting (EBCW), targeted stable balancing weights using optimization (OPTWEIGHT), Bayesian additive
regression trees weighting (BART) and energy balancing (ENERGY).
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e-Figure 4: Covariate balancing models - weights comparison
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Histograms assessing covariance balancing weight distributions for each tested algorithm. A Gaussian distribution around the 1 without extreme weights is regarded as optimal. Algorithms:
classic inverse probability weighting (PS), generalized boosted models (GBM), covariate balancing propensity score weighting (CBPS), nonparametric covariate balancing propensity score
weighting (NPCBPS), entropy balancing (EBAL), empirical balancing calibration weighting (EBCW), targeted stable balancing weights using optimization (OPTWEIGHT), Bayesian additive
regression trees weighting (BART) and energy balancing (ENERGY).



e-Appendix 3: Study information

UCISCAT centres and local investigators

= Hospital Universitari General de la Vall d'Hebron, Barcelona: R.Ferrer, O.Roca, X. Nuvials, J.C Ruiz, E. Papiol

= Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat : R. Mafiez, V.D Gumicio

= Hospital Clinic i Provincial de Barcelona, Barcelona: E.Sandoval, G.Mufioz, D.Toapanta, P.Castro, J. Osorio

= Hospital del Mar, Barcelona: J.R Masclans , R. Mufioz-Bermudez, F. Parrilla, P. Pérez-Teran, J. Marin-Corral

= Hospital de Sant Joan Despi Moisés Broggi, Sant Joan Despi: A. Mas, B. Cancio, S.Hernandez-Marin, M.R. Koborzan , C.A Briones

= Hospital Matua de Terrassa, Terrassa: J. Trenado

= Althaia (Xarxa Assistencial Universitaria de Manresa), Manresa: R.Fernandez

= Hospital Universitari Doctor Josep Trueta de Girona, Girona: J.M Sirvent, P. Sebastian, X. Saiz

= Hospital General De Catalufia, Sant Cugat del Vallés: M. Martinez

= Hospital Universitari Sagrat Cor - Grup Quirénsalut, Barcelona: M. Ibarz

= Hospital General de Granollers, Granollers: P.Garro, C.Pedrés, E.Vendrell

= Hospital General de Vic (Consorci Hospitalari de Vic), Vic: J.L Lopera

= Hospital Universitari de Tarragona Joan XXIIl, Tarragona: M. Bodi, A. Rodriguez, G. Moreno

= Hospital de Mataré, Matar6: J.C Yebenes-Reyes

= Hospital d’lgualada, Igualada: C. Triginer

= Hospital Sant Joan de Reus, Reus: I. Vallverdd

= Hospital de Santa Caterina, Salt: A. Bar6 , M. Morales

= Hospital de Sant Pau i Santa Tecla, Tarragona: F. Bodi

= Hospital HM Delfos, Barcelona: P.Saludes, J-R.Cervellé

= Hospital El Pilar - Grup Quirénsalut, Barcelona: M. Valencia

= Hospital de Tortosa Verge de la Cinta, Tortosa: F.Roche-Campo, D. Franch-Llasat

= Clinica Sagrada Familia, Barcelona: A.Huerta, P.Santigosa

= Hospital Sant Joan de Déu, Esplugues de Llobregat: F.J Cambra, S. Benito

= Hospital Santa Maria, Lleida: C.Barbera

= Hospital ASEPEYO de Barcelona, Sant Cugat del Vallés: J.Echevarria

= Hospital de la Santa Creu i Sant Pau, Barcelona: J. Mancebo, P.Vera, J-A.Santos, J.Baldira, A-J.Betbesé, M.Izura, |.Moran, J-C.Suarez, L.Zapata,
N.Rodriguez, M.Torrens, A.Corddn, C.Gomila, M.Flores, A.Segarra, M.Morales, L.Mateo, M.Martos, C.Gonzélez Isern (Coordinating centre)

List of colors: Blue = Catalan public health system hospitals; Orange = Catalan private hospitals
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UCIsCAT centres, ICU beds and patients

26

Intensive care units

Catalan public
health system
hospitals

Participating public hospitals

Intensive care units

20/26 I 77%
ICU beds

370/500 | 74%

Number of patients
1516/1703 S 59%

500 120

ICU beds ICU beds

13

Intensive care units

Catalan
private
hospitals

Participating private hospitals

Intensive care units

6/13 I 46%
ICU beds
68/120 N 57%
Number of patients .
18771703 [N 11%
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e-Table 3: Overall un-balanced population

21

Overall
n=1703

Age (years)
Female sex
BMI (kg/m?)

Time from hospital admission to ICU admission [days]

Comorbidities
Cancer
Diabetes
COPD
Cardiovascular
Immunosuppression
Leucocytes (G/I)
Lymphocytes (G/I)
Neutrophils/ lymphocytes
PCT (ug/1)
CRP (mg/l)
Lactate (mmol/I)
Interleukin-6 (ng/l)
D-dimers (ug/l)

Ferritin (pg/l)
Invasive mechanical ventilation before or at ICU
admission

Non-invasive respiratory support in ICU
High-flow oxygen therapy
Non-rebreather oxygen mask
Non-invasive ventilation
Nasal prongs or without respiratory support

Intubation
Ventilator-free days
Length of stay ICU (days)
ICU mortality

63 [54 - 70]
517 (30)
28.0[25.8 - 31.6]
1[0-3]

120 (7)
352 (21)
119 (7)
844 (50)
77 (5)
9[6-12]

0.7 [0.5 - 1.0]
11[7 - 18]
0.3[0.1-0.6]
124 [28 - 231]
1.4[1.1-1.9]
133 [50 - 371]
1160 [553 - 3240]
1387 [787 - 2258]

270 (16)

583 (34)
563 (33)
256 (15)

31(2)

1387 (81)
12 [0 - 25]
13 [7 - 25]
504 (30)

Quantitative data are expressed as median [interquartile range] or counts (percentages). BMI — body mass index;
COPD - chronic obstructive pulmonary disease; CRP — C-reactive protein; ICU — intensive care unit; PCT —

procalcitonin.



e-Table 4: Un-balanced study population

Age (years)
Female sex
BMI (kg/m?)

Time from hospital admission to ICU admission [days]

Comorbidities
Cancer
Diabetes
COPD

Cardiovascular
Immunosuppression
Leucocytes (G/I)
Lymphocytes (G/I)
Neutrophils/ lymphocytes
PCT (pg/1)
CRP (mg/I)

Lactate (mmol/I)
Interleukin-6 (ng/l)
D-dimers (ug/l)
Ferritin (ug/l)

Intubation
Length of stay ICU (days)

Ventilator-free survival [days]

ICU mortality

Oxygen mask

n =553

64 [55 - 71]
179 (32)
27.9[25.6 - 31.2]
1.0 [0.0 - 3.0]

37 (7)
130 (24)
47 (8)
283 (51)

23 (4)
8.9[6.3-12.3]
0.7 [0.5 - 1.0]

10.9 [6.7 - 18.1]
0.3[0.1-0.7]
143 [38 - 236]
1.4[1.0-1.9]
132 [47 - 285]

1301 [630 - 3240]
1350 [815 - 2294]

506 (92)
15.0 [7.0 - 26.0]
7.0[0.0 - 22.0]

176 (32)

High-flow oxygen
therapy
n =439
61 [52 - 69]
151 (34)
27.9[26.0-31.2]
2.0[0.0-3.0]

31(7)
74 (17)
22 (5)
186 (42)
34 (8)
7.6 [5.9-11.1]
0.8[0.5 - 1.0]
9.1[6.3-15.9]
0.2 [0.1-0.5]
79 [12 - 192]
1.4[1.1-1.9]
126[61 - 364]
920 [451 - 2238]
1415 [681 - 2091]

298 (68)
12.0[6.0 - 26.0]
18.0[0.0 - 30.0]

94 (21)

Non-invasive
ventilation
n=101
64 [57 - 70]
24 (24)
28.3[25.8-32.7]
3.0[1.0-5.0]

12 (12)
22 (22)
10 (10)
51 (50)

6 (6)
9.7[7.1-13.1]
0.7 [0.5 - 1.0]
11.5[7.3-21.2]
0.2 [0.1-0.5]
119 [30 - 240]
1.5[1.2-2.0]
112 [43 - 326]

1500 [740 - 5042]
1566 [840 - 2347]

87 (86)
14.0 [7.8 - 24.5]
5.0 [0.0 - 21.0]

41 (41)

0.005

0.120

0.593
<0.001

0.177
0.035
0.060
0.018
0.055
<0.001
0.724
0.007
0.003
<0.001

0.009
0.366
<0.001
0.370

<0.001
0.452

<0.001

<0.001

22

0.151
0.157
0.095
0.360

0.120
0.111
0.125
0.118
0.102
0.240
0.053
0.187
0.065
0.210

0.010
0.085
0.131
0.067

0.410
0.031
0.261
0.281

Quantitative data are expressed as median [interquartile range]. P-values are given for the difference between respiratory strategies. Standardized mean differences (SMD) define the maximal mean

difference between groups. BMI — body mass index; COPD — chronic obstructive pulmonary disease; CRP — C-reactive protein; ICU — intensive care unit; PCT — procalcitonin.
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e-Figure 5: Final covariance balancing model — model fit

Covariate Balance
Max across treatment pairs

Sample - Unmaiched -8 Matched

Time from Hospital to ICU Admission -
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COPD~

Imunusupresswon-

Histograms assessing covariance balancing weight distributions for each tested algorithm. A Gaussian distribution around the 1 without extreme weights is regarded as optimal. Algorithms: classic
inverse probability weighting (PS), generalized boosted models (GBM), covariate balancing propensity score weighting (CBPS), nonparametric covariate balancing propensity score weighting
(NPCBPS), entropy balancing (EBAL), empirical balancing calibration weighting (EBCW), targeted stable balancing weights using optimization (OPTWEIGHT), Bayesian additive regression trees
weighting (BART) and energy balancing (ENERGY).

Difference in maximal standardized mean differences (SMD) and variance ratios (VR) between the unbalanced population (in red) and the targeted stable balancing weights using optimization
covariance balanced population for each baseline variable, are presented. An SMD value <0.1 represents a negligible difference between group means and a VR <2 a negligible difference between
higher-order moments and interactions between groups.
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Covariate Balance

2vs. 1

Age

Sex

Ideal Bodyweight

Weight

Height 4

BMI 4

Time from Hospital to ICU Admission §

Cancer+

Diabetes
COPD Sample
Cardiovascular 4 - Unmatched
. =8= Matched
Imunosupression 4
Leucocytes -
Lymphocytes -

Ratio Neutrophils/ Lymphocytes -
PCTH

CRPH

Lactate q

IL-64

D-Dimers -

Ferritine -

1 T T
0.0 02 0.4 0.0 02 0.4 0.0 02 0.4
Absolute Standardized Mean Differences

Difference in maximal standardized mean differences (SMD) between the unbalanced population (in red) and the targeted stable balancing weights using optimization covariance balanced
population for each baseline variable, are presented. An SMD value <0.1 represents a negligible difference between group means. Group 0: oxygen mask, Group 1: high-flow oxygen therapy,
Group 2: non-invasive ventilation
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Covariate Balance

2vs. 1

Age-

Ideal Bodyweight -

Weight 4

Height |

BMIq

Time from Hospital to ICU Admission 4

Leucocytes

Sample
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Ratio Neutrophils/ Lymphocytes

PCTH

CRP

Lactate 4

IL-G

D-Dimers 4

Ferritine -

10 1’5 20 25 1.0 15 20 2510 15 20 25
Variance Ratios

Difference in Variance Ratios (VR) between the unbalanced population (in red) and the targeted stable balancing weights using optimization covariance balanced population for each
baseline variable, are presented. A VR value <2 represents a negligible difference between higher-order moments and interactions between groups. Group 0: oxygen Mask, Group 1: high
flow oxygen therapy, Group 2: non-invasive ventilation



e-Figure 6: Final covariate balancing model — individual variable distributions
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Distributional Balance for Ferritine
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Distribution plots and histograms assessing the differences between the unadjusted and targeted stable balancing weights using optimization covariance adjusted population. For categorical variables

1 implies presence of the category and 0 absence of the same. SOM - oxygen mask; HFT — high-flow oxygen therapy; NIV - non-invasive ventilation
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e-Figure 7: Final covariate balancing model — model weights
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Histogram assessing the covariance balancing weight distribution for the targeted stable balancing weights using optimization (OPTWEIGHT) algorithm. A Gaussian distribution around the 1
without extreme weights is regarded as optimal.
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e-Figure 8: Static compliance versus time from ICU admission until intubation
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Box-plot assessing the compliance at the moment of intubation dependent on the time between intensive care unit admission and intubation. The plot is stratified by initial respiratory support
strategy.



31

e-Figure 9: Driving pressure versus time from ICU admission until intubation
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Box-plot assessing the driving pressure at the moment of intubation dependent on the time between intensive care unit admission and intubation. The plot is stratified by initial respiratory support
strategy.
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e-Figure 10: PaO,/ fiO, ratio versus time from ICU admission until intubation
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Box-plot assessing the paO-/ fiO; at the moment of intubation dependent on the time between intensive care unit admission and intubation. The plot is stratified by initial respiratory support strategy.
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e-Figure 11: Cox time varying model for influence of time until intubation on ICU mortality

Time-variance of Intubation: p < 0.0001

log(Hazard Ratio) for Intensive Care Mortality

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time from ICU Admission [days]
Schoenfeld residuals of a time-varying Cox proportional hazards model assessing the time-dependent effect of intubation on intensive care mortality. Schoenfeld residuals are plotted as dots,
intensity of the dots correlates with the number of overlapping individual residuals. Schoenfeld residuals were modelled by a natural cubic spline with 4 knots, depicted as red line. The 95%
confidence interval of regression is presented in blue shaded areas. The dotted line represents a hazard ratio of 1.

Schoenfeld residuals can be regarded as the observed mortality hazard for every individual minus the expected hazard, which is defined as the overall estimated mortality hazard by the Cox model.
The model shows that the hazard of mortality associated with intubation is not proportional over time. An early intubation, from the time point of intensive care unit admission, was associated with
a reduction in the mortality hazard, whereas after about 3 days in the intensive care unit, this protective effect completely disappears and becomes associated with a higher mortality hazard from
day 5 on.
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e-Figure 12: Multivariable Cox proportional hazards model for in-ICU mortality (overall study population - covariance balanced)

Hazard Ratio

(95% Confidence Interval) p-value

Respiratory Support at ICU Admission 2@';5'33'} Mask reference I

}-Ihilgzl‘;aFgl)ow Oxygen Therapy (0.6%7—31 0) = 0.064

(Nl\?gibr;\jaswe Ventilation (0.8%3-02.0) - 0.209
Comorbidity: COPD (N=79) . 57, 5 ] 0.012*
Comorbidity: Immunosupression (N=63) (0. 917-6_22'7) L 0.065
Ferritin [pg/l], log (N=1093) (126221 ) —.— <0.001 ***
C-Reactive Protein [mg/ll, log (N=1093) (1_015 = 2 D o—— 0.003 **
D-Dimers [ug/l], log (N=1093) (,_013- 1_4,_3) — 0.009 **
Comorbidity: Cancer (N=80} 0752 7 = 0.658
Procalcitonin [ug/l] (N=1093) 10421 1) —— <0.001 ***
Age [years] (N=1093) 1052 1 ) <0.001 ***
Interleukin-6 [ng/l], log (N=1093) © os% ” + 0.107
Lactate [mmol/l] (N=1093) 0941 2) —a— 0.449
BMI [kg/m?] (N=1093) 1.0r% Y 0.009 **
Time from hospital to ICU admission [days] (N=7093) (0_91‘-,6911'1) —— 0.572
Leucocytes [108/]] (N=1093) (. 9190-11.0) - 0.388
Female Sex (N=354) 0722 3 " 0.766
Comorbidity: Cardiovascular (N=520) 073212 - 0.713
Comorbidity: Diabetes Mellitus (N=226) 065221 2) - 0.567
Lymphocytes [1081] (N=1093) © 7‘32@5,0) —— 0.082
# Events: 310; Global p-value (Log—-Rank): 1.9444e % |
AIC: 4017.15; Concordance Index: 0.75

1 15 2 25 3

Multivariable Cox proportional hazard model assessing prognostic variables for intensive care mortality and represented in the form of a forest plot. All patients in the covariate balanced
population are reflected.
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e-Figure 13: Multivariable Cox proportional hazards model for in-ICU mortality (only intubated - covariance balanced)

Hazard Ratio

{95% Confidence Interval) p-value

Respiratory Support at ICU Admission 2\}‘:5?09{)' LzeLs reference -

I(-}\i‘ggolé!f\w Oxygen Therapy © 63'911,20) = 0.465

m):ébl}vasive Ventilation (0.8.':"271.97) = 0.284
FiO2 [%], log (N=891) 1.452% 20y = <0.001 =
Comorbidity: Inmunosupression (N=46} (1.0; _7% 14) L 0045
Comorbidity: COPD (N=67) 1187 564 = 0.005 **
Ferritin [ug/l], log (N=891) . S 56) — . <0.001 ***
Comorbidity: Cancer (N=61) (0,8(;';??.04) . 0.208
Procalcitonin [ugf] (N=891) . ) 1) s 0.002 **
D-Dimers [ug], log (N=891) 098 % 209 —— 0.097
Tidal Volume [mifkg] (N=891) 096 % 22 —— 0.208
C-Reactive Protein [mg/l], log (N=891) (0_9;-93,_ 18) — 0.091
Age [years] (N=891) .06 %% 00} - <0.001 =
Interleukin-6 [ngil], log (N=891) (0'9§-9§._,4} —— 0.141
BMI [kg/m?] (N=891) 100 %% 06 - 0.055
Plateau Pressure [cmH,0] (N=891) 0995 o7 - 0.118
PEEP [cmH,0] (N=891) 0965 og) — 0.461
PaCQ, [mmHg] (N=891) (1_03'9 11_02) ] 0027+
Respiratory Rate [1/min] {N=891) (0_9;-91,_ 05) - 0.619
Time from hospital to ICU admission [days] ~ (N=691) w096y os) - 0.747
Lactate [mmolfl] {N=691) 0902 Y 13 —— 0.842
Leucocytes [10°]] (N=891) o 0l 03) il 0.733
Pa0, [mmHg] (N=591) 1.00°%% 00y ] 0.945
Comorhidity: Cardiovascular (N=435) (0'73'_9%_25) i 0.762
Female Sex (N=293) (0.6?{3‘?. 16} i 0.347
Comorbidity: Diabetes (N=197) 06085 14 » 0.244
Lymphocytes [10°/] (N=891) 063%h 95 —.— 0.025°
# Events: 297; Global p—value (Log-Rank): 1.2228e™%
AlC: 3717.62; Concordance Index: 0.76

1 1.5 2 25 3 35

Multivariable Cox proportional hazard model assessing prognostic variables for intensive care mortality and represented in the form of a forest plot. Only intubated patients in the covariate
balanced population are reflected.
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e-Figure 14: Kaplan-Meier curve for ICU mortality — compliance vs. D-dimers

100% o

50% 4

Cumulative Intensive Care Survival

p < 0.0001 — Low Compliance - Low D-dimers
LCLD vs. HCLD: HR = 1.44 (CI 1.01 - 2.06) — High Compliance - Low D-dimers
LCHD vs. HCLD: HR = 2.07 (CI 1.48 - 2.89) — Low Compliance - High D-dimers
HCHD vs. HCLD: HR = 1.84 (CI 1.31 - 2.60) — High Compliance - High D-dimers
0% 4
0 10 20 30 40 50 60 70 80 a0

Time from ICU Admission [days]

LCLD 210 190 170 157 147 143 143 143 143 143
HCLD 231 213 198 189 183 181 179 178 177 177
LCHD 231 195 164 147 139 136 135 134 134 134
HCHD 212 184 153 141 134 131 131 131 131 131

Kaplan-Meier curve of the cumulative intensive care survival stratified by the interaction between compliance and D-dimers. Low and High definitions are chosen based on a median cut-off. p-
values are calculated by means of the log-rank test. Hazard ratios (HR) are computed by means of a Cox proportional hazard model and employ the high compliance, high D-dimer group as reference,
95% confidence intervals (CI) are given in parentheses. The underlying table presents the patients at risk per time point. LCLD: Low compliance — Low D-dimers, HCLD: High compliance — Low
D-dimers, LCHD: Low compliance — High D-dimers, HCHD: High compliance — High D-dimers.
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e-Figure 15: Kaplan-Meier curve for ICU mortality in unbalanced population

A Respiratory Support at ICU Admission: == Oxygen Mask == High Flow Oxygen Therapy == Non-Invasive Ventilation
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High Flow Oxygen Therapy vs. Oxygen Mask: HR = 0.62 (Cl 0.48 — 0.8}
Non-Invasive Ventilation vs. Oxygen Mask: HR = 1.32 (Cl 0.94 - 1.86)
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High Flow Oxygen Therapy vs. Oxygen Mask: HR = 0.8 (Cl 0.62 - 1.04)
Nen-lInvasive Ventilation vs. Oxygen Mask: HR = 1.47 (Cl 1.05 - 2.07)
0% A

0 10 20 30 40 50 50 70 80 90
Time since ICU Admission (days)
- 506 444 384 355 339 334 334 334 333 333
i 298 273 243 228 219 215 212 21 211 21
— 87 72 84 56 50 47 47 48 46 48

Kaplan-Meier curve of the cumulative intensive care survival stratified by initial respiratory support strategy at intensive care unit
admission. Subplot (A) refers to all patients included in the analysis, whereas in (B) only patients progressing towards intubation and
invasive mechanical ventilation are considered. p-values are calculated by means of the log-rank test. Hazard ratios (HR) are computed
by means of a Cox proportional hazard model and assesses the risk of intensive care unit mortality in the high flow oxygen therapy and
non-invasive ventilation groups using the oxygen mask group as reference, 95% confidence intervals (Cl) are given in parentheses. The
underlying table presents the patients at risk per time point. Patients are assessed without covariance balancing.
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e-Table 5: Cox mixed-effects model with between-center random effects term (unbalanced)

In order to avoid excessive unbalancing of the mixed-effects model due to centers not having treated
patients with all three non-invasive respiratory support strategies, only centers having treated patients
with oxygen mask, high-flow oxygen therapy and non-invasive ventilation were regarded in this
sensitivity analysis.

Centers included in sensitivity analysis: 19/ 26

Patients included in sensitivity analysis: 970/ 1093

90-day Hazard of Intubation

Variance Standard Deviation

Random Effect - Center

Intercept 0.4079 0.1664

‘ Estimate 95% Confidence Interval p
Fixed Effects
Oxygen Mask 1.0 1.0-1.0 Ref.
High-Flow Oxygen Therapy 0.3668 0.2965 - 0.4537 <0.001
Non-Invasive Ventilation 0.6514 0.4966 - 0.8545 0.002

90-day Hazard of ICU Mortality

\ Variance Standard Deviation
Random Effect - Center
Intercept 0.3405 0.1159

‘ Estimate 95% Confidence Interval p
Fixed Effects
Oxygen Mask 1.0 1.0-1.0 Ref.
High-Flow Oxygen Therapy 0.7111 0.5113 - 0.9888 0.043
Non-Invasive Ventilation 1.5854 1.071 - 2.3475 0.021

90-day Hazard of ICU Mortality (only intubated patients)

| Variance Standard Deviation

Random Effect - Center
Intercept 0.3754 0.1409

Estimate 95% Confidence Interval

Fixed Effects
Oxygen Mask 1.0 1.0-1.0 Ref.
High-Flow Oxygen Therapy 1.0309 0.7314 - 1.4528 0.860

Non-Invasive Ventilation 1.8214 1.2186 - 2.7224 0.004
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e-Figure 16: Multivariable Cox proportional hazards model for in-ICU mortality (overall study population - unbalanced)

Hazard Ratio

(95% Confidence Interval) p-value

Respiratory Support at ICU Admission ?I)\T!.?.‘ie.?r)' Mask reference .

I(-}I\i}ggalgfw Oxygen Therapy (0-5%7‘50-99) = 0.039 *

”&ll;(l}r!r\jasive Ventilation o 811' 1_ 91. 7 = 0.333
Comorbidity: Inmunosupression (N=63) (1_0?3 5_925) L 0.036*
Comorbidity: COPD (N=79) (1_110-5_52_ 2) = 0013
Ferritin [ug/l], log (N=1093) (”17 3_5,'6) — . <0.001 **
D-Dimers [pg/], log (N=1093) 1.08 21.2) e 6.004 **
Comorbidity: Cancer (N=80) (©. 717‘ 1—31.6) i 0.527
C-Reactive Protein [mg/l], log (N=1093) (1_012- i 2 —.— 0.011 *
Procalcitonin [ug/] (N=1093) r,.ago_a,_ 1 —— 6.007 **
Age [years] (N=1093) 1052 1.1) . <0.001 ***
Interleukin-6 [ng/l], log (N=1093) {0_91‘—,-0_41'7) + 0.29
BMI [kg/m?] (N=1093) 10121 £ 3 0.002 **
Lactate [mmol/i] (N=1093) 09521 1) —— 0.468
Leucocytes [106/1] (N=1093) 1.05%1.0) o 0.131
Time from hospital to ICU admission [days] (N=1093) (0. 917‘ 0_11_0 ) —— 0.79
Female Sex (N=354) 075213 ] 0.926
Comorbidity: Cardiovascular (N=520) (. 7% 9_31'2) L 0.573
Comorbidity: Diabetes Mellitus (N=226) 065212 . 0.479
Lymphocytes [10°1] (N=1093) . a8 ) — 0.094
# Events: 311; Global p-value (Log—Rank): 1.6919¢™%
AIC: 4050.53; Concordance Index: 0.75

1 1.5 2 25

Multivariable Cox proportional hazard model assessing prognostic variables for intensive care mortality and represented in the form of a forest plot. All patients in the unbalanced population are
reflected.



e-Figure 17: Multivariable Cox proportional hazards model for in-ICU mortality (only intubated - unbalanced)

Hazard Ratio

40

(95% Confidence Interval) p-value

Respiratory Support at ICU Admission a’,‘; 93 Mask reference

A gapw Oxygen Therapy 082 209 i 0.539

rN,"u?=n8-lyr)nrasiws\ Ventilation 07 g L 991_57) ] 0.66
FiO2 [%), log (N=891) . sa 51 5 <0.001 ***
Comorbidity: Immunosupression (N=46} (1_23'_912_97) 0.004 **
Comorbidity: COPD (N=67) (1_2}—_722 1) : 0.003
Comorbidity: Cancer (N=61) 05007 0.158
Ferritin [ug/], log (N=891) . A% 54 — <0.001 ***
Procalcitonin [pgll] (N=891) 1.032% 17 i 0.002 *
D-Dimers [ug/l], log (N=891) . ] 19) —.— 0.059
Tidal Volume [ml/kg] (N=891) 098 19) —-—— 0.223
Age [years] (N=891) 1.05%% og) - <0.001 ***
C-Reactive Protein [mg/l], log (N=891) (0‘9}-951 14) —— 0.239
Interleukin-6 [ng/l], log (N=891) wee® 11 —— 0.338
Plateau Pressure [cmH,0] (N=891) (,70,}-94105) -l- 0.032*
BMI [kg/m?] (N=891) 1 o 05) = 003+
PEEP [cmH,0] (N=891) (079}-'_32,70& ) + 0.43
PaCO, [mmHg] (N=891) . oo 02) ] 0.068
Respiratory Rate [1/min] (N=891) (0_94-911 05) - 0.454
Time from hospital to ICU admission [days] (N=897) (0_9;‘911‘ 04) = 0.785
Leucocytes [10%1] (N=891) 0.99°Y 03 - 0.487
Pa0, [mmHg] (N=891) 1.08%% 06y [ 0418
Lactate [mmolf] (N=891) 091% 09) —— 0916
Comorbidity: Cardiovascular (N=435) (. 78_931 20) L 0.592
Female Sex (N=293) 06725 23 = 0504
Comorbidity: Diabetes (N=197) (0.6.’?1361‘ 14) : 0.301
Lymphocytes [10°1] (N=891) 0798% 07 — 0015*

# Events. 301; Global p-value (Log-Rank). 1.131e”7

AIC: 3779 97; Concordance index: 0.75

Multivariable Cox proportional hazard model assessing prognostic variables for intensive care mortality and represented in the form of a forest plot. Only intubated patients in the unbalanced
population are reflected.
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e-Figure 18: Multivariable Cox mixed-effects model with between-center random effects term for in-ICU mortality (overall study population —

unbalanced)

Hazard Ratio

(95% Confidence Interval) p-value

Respiratory Support at ICU Admission m‘!‘?g} Mask reference I

mg:ggFE:;)w Oxygen Therapy (0-5‘?.221 00) » 0.056

(NA?=rgI8|}vasive Ventilation (0,811 .217 81) B 0.360
Comorbidity: Inmunosupression (N=58) (0,921"1192,41) i 0.1
Comorbidity: COPD (N=74) 1055 15 = 0.038*
Ferritin [ug/l], log {N=970) 11825 65) —.—— <0.001 =
Comorbidity: Cancer (N=76) 0812178 = 0.354
D-Dimers [ug/ll, log (N=970) 10825 27) —— 0.003 **
Female Sex (N=312) 083 1.48) = 0.500
C-Reactive Protein [mg/l], log (N=970) 098 %5 21y — 0.07
Age [years] (N=070) .06 09) - <0.001 =
Procalcitonin [g/l] (N=970) .01 12 —— 0.018"
Interleukin-6 [ngfl], log (N=970) o o 1) -—-—- 0.316
BMI [kg/m?] (N=970) . o -9‘;06) -I- 0.006 **
Lactate [mmolil] (N=970) o a9 13 n—I—u 0.450
Leucocytes [10%1] (N=970) 099" 04 '-l| 0290
Time from hospital to ICU admission [days] (N=070) 09525 03 -—I—c 0670
Comorbidity: Gardiovascular (N=462) 07655 2) = 0.940
Lymphocytes [10°1] (N=070) 07858 02 '—I—c 0.089
Comorbidity: Diabetes Mellitus (N=196) 06955 15 - = - 0.320

05 ; 15 2 25

# Events: 272, Global p—value (Log-Rank). 4.2222e-36
AIC. 194.17; Center Random Effect: Std. Dev. 0.27, Variance 0.07

Multivariable Cox mixed-effects model with between-center random effects term assessing prognostic variables for intensive care mortality presented in the form of a forest plot. In order to avoid
excessive unbalancing of the mixed-effects only centers having treated patients with all three non-invasive respiratory support strategies were regarded in this sensitivity analysis. Centers included
in sensitivity analysis: 19/ 26. Patients included in sensitivity analysis: 970/ 1093
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e-Figure 19: Multivariable Cox mixed-effects model with between-center random effects term for in-ICU mortality (only intubated - unbalanced)

Hazard Ratio

{95% Confidence Interval) p-value

Respiratory Support at ICU Admission 2\7{!4%‘97'} = reference .

I(-Il\l’ggsF”I)ow-Oxygen.Th.erapy © 690?71 37) = 0.870

(NA?=n7-I8r)waswe Ventilation @ 72 _131.74) ™ 0.560
FiO, [%], log (N=786) (1.65°%09) = <0.001 **
Comorbidity: Inmunosupression (N=42) (10;'152 87) L 0026 *
Comorbidity: COPD (N=63) 1.08°% 25 § = 0.028*
Comorbidity: Cancer (N=57) 09125207 = 0.130
Ferritin [pgil], log (N=786) {1 &% 62) — . <0.001 ***
D-Bimers [pg/l], log (N=786) 0.99°% 21) —.— 0093
Procalcitonin [pg/l] (N=786) . of & 15) —— 0.019
Age [years] (N=786) 1.08%% 0g) ] <0.007 =
Tidal Volume [mlfkg] (N=786) o oo 20) — 0.280
C-Reactive Protein [mg/l], log (N=786) 093% 15 ——— 0.510
Interleukin-6 [ng/l], log (N=786) 0985 1) —— 0430
Plateau Pressure [cmH,0] (N=786) 099 07) 3 0.130
BMI [kg/m?] (N=786) (1,03 o2 06) 5 3 0.041
Pato, [mmHg] (N=786) 1.002Y 02 [ 0.061
Leucocytes [10%1] (N=786) 098 03) e 0.900
PEEP [cmH,0] (N=786) o oI 06) —— 0.980
Respiratory Rate [1/min] (N=786) 096 00 - 1.000
P20, [mmHg] (N=786) 1005 00) ] 0710
Time from hospital to ICU admission [days] (N=7386) ( 92?91 04) —i- 0.740
Lactate [mmol/l] (N=786) o o) 10) — . 0.850
Comorbidity: Cardiovascular (N=385) 0792 28 = 0.840
Female Sex (N=257) (0_58?71‘35) ] 0.840
Lymphocytes [10°/1] (N=786) 0752505 — 0.029*
Comorbidity: Diabetes (N=173) 05825 09) = 0.150

# Events: 262; Global p—value (Log-Rank): 7.5938e-31 :
AlIC: 176.86,; Center Random Effect: Std. Dev. 0.34, Variance 0.12 i 15 2 25 3 35

Multivariable Cox mixed-effects model with between-center random effects term assessing prognostic variables for intensive care mortality presented in the form of a forest plot. In order to avoid
excessive unbalancing of the mixed-effects only centers having treated patients with all three non-invasive respiratory support strategies were regarded in this sensitivity analysis. Centers included
in sensitivity analysis: 19/ 26. Patients included in sensitivity analysis: 786/ 891



e-Appendix 4: Formulas

e Ventilatory Ratio [26]

mlL

Minute Ventilation,,.qsured [m X PaCO0; measured [MMHg]|

Ventilatory Ratio = ml
Minute Ventilationy,cgictea [W] X PaCO03 igeq [mmHg]

mL
Minute Ventilation,,egicteq = Predicted Body Weight x 100 [min]

PaC0; igeq; = 37.5mmHg

o Estimated Physiological Dead-Space Fraction — Unadjusted Harris-Benedict formula [27]

0.863 x VCO,
Respiratory Rate [bpm] X Tidal Volume [L] X PaCO03 peqsurea [IMMH(]

Estimated Physiological Dead Space =1 —

) Resting Energy Expenditure
Veco, = g 5.%}1/6 p + 1.584

0.8
Resting Enery Expenditureynaajusted Harris-Benedict Estimate—Mate = 06.473 + 13.752 X Weight [kg] + 5.003 x Height [cm] — 6.755 X Age [years]

Resting Enery Expenditurey,aqjusted Harris—Benedict Estimate—Female = 06.473 + 13.752 x Weight [kg] + 5.003 X Height [cm] — 6.755 X Age [years]

43
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