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SPATIAL STRUCTURE GOVERNS THE MODE OF TUMOUR EVOLUTION

The maximum possible diversity of linear trees

Here we derive for linear trees the maximum possible value of the inverse Simpson diversity index (D), as a
function of the mean number n of driver mutations per cell.

Consider a linear tree of size N . For all i = 1, 2, .., N , let pi denote the proportion of cells corresponding

to node i, thus with i driver mutations. The mean number of driver mutations per cell is n =
∑N

i=1 ipi. The

inverse Simpson index is D = 1/
∑N

i=1 p
2
i . The maximum possible value of this index for a linear tree of size N

is thus the value of the following maximization problem:

(1) max
p∈K

1

/ N∑
i=1

p2
i

where K =

{
p = (p1, ..., pN ) ∈ RN , pi ≥ 0 for all i = 1, ..., N,

N∑
i=1

pi = 1, and

N∑
i=1

ipi = n

}
.

Proposition 1. Assume N ≥ 3n− 1. Let q denote the integer part of (i.e., the greatest integer no larger than)
3n− 1. Let

µ1 =
4(3n− 1− 2q)

q(q − 1)
, µ2 =

12(q − 2n+ 1)

(q − 1)q(q + 1)
.

The solution of Problem (1) is unique and given by:

p∗i = −1

2
(µ1 + µ2i) if 1 ≤ i ≤ q, and p∗i = 0 otherwise.

If 3n is an integer, then the value of this optimization problem is

D =
(3n− 1)(3n− 2)

4n− 2
=

9(2n− 1)

8
− 1

8(2n− 1)
.

Otherwise, the value of this optimization problem is:

D =
(3n− 2− α)2(3n− 1− α)(3n− α)

(3n− 2− α)(3n− α)(4n− 2− 2α) + α2(4n− 2/3− 4α/3)
,

where α = 3n− 1− q is the fractional part of 3n− 1, hence also of 3n.

The value of Problem 1 is a nondecreasing function of tree size N (indeed, for any smaller linear tree, there
is a linear tree of size N with the same value of D: just add artificial nodes with pi = 0 at the end). Since by
Proposition 1, the value of Problem (1) is the same for all N ≥ 3n− 1, it follows that this is also the maximal
value of the inverse Simpson index over all finite linear trees.

We now prove Proposition 1. For p in RN , let f(p) =
∑N

i=1 p
2
i , h1(p) =

∑N
i=1 pi − 1, h2(p) =

∑N
i=1 ipi − n,

and let gi(p) = −pi for all i = 1, 2, ..., n. Problem (1) is equivalent to the minimization problem:

(2) min
p∈K

f(p), where K = {p ∈ RN , gi(p) ≤ 0, i = 1, ..., N, and hj(p) = 0, j = 1, 2}.

Functions f and gi, i = 1, ..., N , are at least weakly convex, and functions hj , j = 1, 2, are affine. Problem (2)
is thus a convex minimization problem. It follows that if p ∈ K satisfies the well-known Karush-Kuhn-Tucker
(KKT) conditions, then p is a solution of (2). The KKT conditions associated to this problem are: there exists
real numbers µ1, µ2, λ1, ..., λN , such that, for all i = 1, ..., N : 2pi + µ1 + µ2i− λi = 0

λi ≥ 0
λipi = 0.

Assume N ≥ 3n− 1. Let q be the largest integer no larger than 3n− 1 (so 3n− 2 < q ≤ 3n− 1 < q+ 1). Define
µ1, µ2 and p∗ as in Proposition 1. Finally, let λi = 0 if 1 ≤ i ≤ q and λi = µ1 + µ2i if q + 1 ≤ i ≤ N .

We first prove that p∗ ∈ K: using the standard formulas
q∑

i=1

i = q(q + 1)/2, and

q∑
i=1

i2 = q(q + 1)(2q + 1)/6,

1
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it is easily seen that
∑q

i=1 p
∗
i = 1 and

∑q
i=1 ip

∗
i = n. We now check that p∗i ≥ 0 for all i = 1, ..., n. Since p∗i = 0

for all i ≥ q + 1, it is enough to show that p∗i = 0 for i = 1, ..., q. Since q > 3n− 2 ≥ 2n− 1 ≥ 1, it follows that
µ2 > 0. Thus, p∗i is decreasing for i = 1, ..., q, and p∗i ≥ 0 for all i = 1, ..., q if p∗q ≥ 0. Computation shows that
this is equivalent to q ≤ 3n− 1, which holds by definition of q.

We now prove that p∗ satisfies the KKT conditions. The first and third conditions are trivially satisfied by
definition of p∗i and λi. It remains to check that λi ≥ 0 for all i. Since λi = 0 for i ≤ q, it suffices to prove it
for i = q + 1, ..., N . But for i ≥ q + 1, λi = µ1 + µ2i is increasing in i, since µ2 > 0. Thus, it suffices to prove
that λq+1 ≥ 0. Computation shows that this is equivalent to q ≥ 3n− 2, which holds by definition of q.

It follows that p∗ is solution of Problem (2), hence of Problem (1). The fact that this is the unique solution
follows from the strict convexity of f and the convexity of K. The formula for the value D of Problem (1) then
results from simple but tedious computation that we omit.
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Model
Selective
sweeps

Progressive
diversification

Branching
Effectively
almost neutral

Above intermediate
branching curve

Non-spatial 99% (83%) 0% (0%) 1% (2%) 0% (15%) 1% (13%)

Gland fission 0% (4%) 98% (39%) 2% (23%) 0% (34%) 97% (83%)

Invasive glandular 4% (12%) 2% (25%) 94% (62%) 0% (1%) 56% (56%)

Boundary growth 1% (2%) 0% (0%) 0% (13%) 99% (85%) 78% (64%)

Supplementary table 1. Distribution of modes of tumour evolution observed in tumours
simulated using different models. Four modes of tumour evolution are defined here in terms
of n and D values, as in Table 1. The intermediate branching curve (final column) describes
the maximum possible diversity of linear trees. The first percentage corresponds to the four
non-neutral cohorts of simulations shown in Figure 3c (one set of parameter values per model).
The second percentage (in parentheses) corresponds to the average of multiple cohorts with
varied parameter values, as shown in Extended Data Figure 5 and Figures 1, 2 and 3.

Study Model type
Cells

per deme
Within-deme
selection?

Between-deme
selection?

Maximum
acquired
drivers

Exterior

Bozic
et al. 20101

Branching
process

Not
applicable

Not
applicable

Not
applicable

Unlimited Void

Waclaw
et al. 20152

Eden model,
voter model,

or similar
1 No Yes Unlimited Void

Sottoriva
et al. 20153 Deme fission 10,000 No Yes 1 Void

Sun & Hu
et al. 20174

Deme fission
(edge only)

1,000
or 10,000

Yes No 1 Void

Current study
Any of

the above
Any

number
Yes Yes Unlimited

Tissue
or void

Supplementary table 2. Comparison of selected models of tumour population genetics.

Model Gland size Manner of cell dispersal

Non-spatial
Effectively
infinite

Not applicable

Gland fission 8,192
Glands bifurcate, such that each daughter gland inherits
half of the original gland’s population of cells

Invasive glandular 512
Individual cells disperse between neighbouring glands
and invade normal tissue

Boundary growth 1 New cells are added to the edge of the tumour

Supplementary table 3. Characteristics of four example models.
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Parameter Value(s)

Deme carrying capacity, K 1, 512, 2048, 8192,∞
Driver mutation rate per cell division 10−6, 10−5, 10−4

Passenger mutation rate per cell division 0.1
Normal cell relative division rate 0.9
Cell death rate, relative to division rate, in non-spatial model 0.98
Mean value of driver effect on cell division rate 0, 0.05, 0.1, 0.2
Upper bound on cell division rate 10
Upper bound on dispersal rate 10
Dispersal rate Conditional

Supplementary table 4. Parameter values used in this study. Mutation rate is measured
per cell division; division and dispersal rates are relative to the rates of the initial tumour cell.
The effect of a driver mutation with effect size s is to multiply the trait value r by a factor
of 1 + s(1 − r/m), where m is the upper bound. Dispersal rates are set such that tumours
typically take between 500 and 1,000 cell generations to grow from one to one million cells,
corresponding to several years of human tumour growth.

Supplementary figure 1. Variation in evolutionary indices D and n for a non-spatial model.
Results are shown for varied driver mutation rate (columns) and average driver fitness effect
(rows), with 100 stochastic simulations per model. Large black squares show values derived
from single-cell sequencing of acute myeloid leukaemia. Small black circles show values derived
from multi-region sequencing of kidney cancers, lung cancers and breast cancers. Non-varied
parameter values are the same as in Figure 2.
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Supplementary figure 2. Variation in evolutionary indices D and n for a gland fission
model. Results are shown for varied gland size (colours), driver mutation rate (columns) and
average driver fitness effect (rows), with 100 stochastic simulations per model. Black points
show values derived from multi-region sequencing of kidney cancers, lung cancers and breast
cancers. Non-varied parameter values are the same as in Figure 2.
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Supplementary figure 3. Variation in evolutionary indices D and n for a boundary-growth
model. Results are shown for varied driver mutation rate (columns) and average driver fitness
effect (rows), with 100 stochastic simulations per model. Black points show values derived
from multi-region sequencing of kidney cancers, lung cancers and breast cancers. Non-varied
parameter values are the same as in Figure 2.
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Supplementary figure 4. Variation in evolutionary indices D and n for a glandular model
without normal tissue. In this model, the space surrounding the tumour is assumed to be empty.
Tumour cells disperse throughout the tumour as well as at the tumour boundary. Results are
shown for varied gland size (colours), driver mutation rate (columns) and average driver fitness
effect (rows), with 100 stochastic simulations per model. Black points show values derived
from multi-region sequencing of kidney cancers, lung cancers and breast cancers. Non-varied
parameter values are the same as in Figure 2.
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Supplementary figure 5. Variation in evolutionary indicesD and n for an invasive glandular
model with cell dispersal restricted to the tumour boundary. Results are shown for varied
gland size (colours), driver mutation rate (columns) and average driver fitness effect (rows),
with 100 stochastic simulations per model. Black points show values derived from multi-region
sequencing of kidney cancers, lung cancers and breast cancers. Non-varied parameter values
are the same as in Figure 2.
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Supplementary figure 6. Variation in Colless’s tree balance index versus clonal diversity D
for an invasive glandular model with cell dispersal throughout the tumour and at the tumour
boundary. Results are shown for varied gland size (colours), driver mutation rate (columns)
and sensitivity threshold (rows), with 100 stochastic simulations per model. Driver mutations
with frequency below the sensitivity threshold (0.005, 0.02, 0.05 or 0.1) are removed from the
model output before calculating J1 and D. Non-varied parameter values are the same as in
Figure 2. Black points show values derived from multi-region sequencing of kidney cancers,
lung cancers and breast cancers.
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Supplementary figure 7. Variation in the total cophenetic tree balance index versus clonal
diversity D for an invasive glandular model with cell dispersal throughout the tumour and at
the tumour boundary. Results are shown for varied gland size (colours), driver mutation rate
(columns) and sensitivity threshold (rows), with 100 stochastic simulations per model. Driver
mutations with frequency below the sensitivity threshold (0.005, 0.02, 0.05 or 0.1) are removed
from the model output before calculating J1 and D. Non-varied parameter values are the
same as in Figure 2. Black points show values derived from multi-region sequencing of kidney
cancers, lung cancers and breast cancers.
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Supplementary figure 8. Variation in Sackin’s tree balance index versus clonal diversity D
for an invasive glandular model with cell dispersal throughout the tumour and at the tumour
boundary. Results are shown for varied gland size (colours), driver mutation rate (columns)
and sensitivity threshold (rows), with 100 stochastic simulations per model. Driver mutations
with frequency below the sensitivity threshold (0.005, 0.02, 0.05 or 0.1) are removed from the
model output before calculating J1 and D. Non-varied parameter values are the same as in
Figure 2. Black points show values derived from multi-region sequencing of kidney cancers,
lung cancers and breast cancers.
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Supplementary figure 9. Phylogenetic trees obtained from real tumours, without clustering
driver mutations. Here we assume that all putative driver mutations were true drivers that
occurred independently. a, Driver phylogenetic trees for five clear cell renal cell carcinomas,
labelled with patient codes. Data was obtained from data set S2 of ref 5. Clone frequencies
are estimated as the proportion of regions in which the corresponding combination of driver
mutations was detected. b, Phylogenetic trees for five non-small-cell lung cancers, labelled
with patient codes (from Figure S12 of ref 6). c, Phylogenetic trees for three breast cancers,
labelled with patient codes (from Supplementary table S5 of ref 7). Node size corresponds to
clone population size at the final time point and the founding clone is coloured red.
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Supplementary figure 10. Phylogenetic trees obtained from real tumours, after clustering
driver mutations. Here we assume that each mutational cluster (a distinct peak in the vari-
ant allele frequency distribution) corresponds to exactly one driver mutation, while all other
mutations are hitchhikers. a, Driver phylogenetic trees for five clear cell renal cell carcinomas,
labelled with patient codes. Data was obtained from data set S2 of ref 5. Clone frequencies
are estimated as the proportion of regions in which the corresponding combination of driver
mutations was detected. b, Phylogenetic trees for five non-small-cell lung cancers, labelled
with patient codes (from Figure S12 of ref 6). c, Phylogenetic trees for three breast cancers,
labelled with patient codes (from Supplementary table S5 of ref 7). Node size corresponds to
clone population size at the final time point and the founding clone is coloured red.
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Supplementary figure 11. Summary indices for example tumour phylogenetic trees. Nodes
are labelled with their relative sizes. The root is red. Index n is the mean number of driver
mutations per cell; D is the inverse Simpson index; ITH is the ratio of subclonal to clonal driver
mutations; J1 is a general tree balance index; IS,norm is a normalised version of Sackin’s tree
balance index; IΦ,norm is a normalised Colless-like tree balance index; CMDM,ln(n+e),norm is a
normalised version of the total cophenetic index. The ITH index and all tree balance indices
except J1 are identical for trees a, b and c because these indices ignore node sizes. Index D is
lower for tree b than tree a, and lower for tree c than tree b, because D accounts for the degree
of inequality among node sizes. Similarly, J1 is lower for tree b than tree a because J1 accounts
for the degree of inequality among branch sizes (the third term in the product, in blue). J1 is
lower for tree c than tree a because the root node of tree c is more dominant (the second term
in the product, in red). J1 is lower for tree d than tree a because J1 is a weighted average
across all subtrees and tree d contains linear subtrees, which are considered unbalanced.
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