

 1

SUPPLEMENTARY MATERIALS

InterARTIC: an interactive web application for whole-genome nanopore

sequencing analysis of SARS-CoV-2 and other viruses

James M. Ferguson, Hasindu Gamaarachchi, Thanh Nguyen, Alyne Gollon, Stephanie Tong,

Chiara Aquilina-Reid, Rachel Bowen-James & Ira W. Deveson

 2

 Laptop GridION

Model Dell XPS GridION Mk1

Processor Intel i7-8750H Intel i7-7700

RAM 16 GB 64 GB

Disk 1TB NVMe SSD 4TB NVMe SSD (RAID

configuration)

O/S Ubuntu 16.04.7 LTS

on WSL for Windows

10

Ubuntu 16.04.7 LTS

Threads used 4 4

Supplementary Table 1. Specifications of computers used to run example workflows.

 3

 Laptop run-time (min:sec) GridION run-time (min:sec)

Set Virus Amplicons Samples Pipeline Total Gather Demux Analysis Total Gather Demux Analysis

1 SARS-CoV-2
Eden V1

2.5kb
10

Nanopolish
32:19 00:07 17:56 14:05 25:09 00:05 13:42 11:33

Medaka-Longshot
30:24 0:11 17:53 12:09 21:41 00:05 13:43 07:45

3

Ebola

Artic V1

400bp
2

Nanopolish
03:57 00:02 02:23 01:30 02:55 00:01 01:42 01:10

Medaka-Longshot
04:09 00:03 02:24 01:42 02:54 00:01 01:40 01:12

Supplementary Table 2. Indicative run-times for InterARTIC workflow on example viral WGS datasets.

 4

Supplementary Note 1. The art of snake charming

InterARTIC development involved the use of the Python programming language and depends on

several third-party Python modules and software written predominantly in Python (e.g., Flask, Celery,

ARTIC tools, etc). The Python ecosystem (including the language itself, in addition to Python

libraries) has limited backward compatibility. As a result, Python software is often compatible only

with the exact version of the Python interpreter and library versions it was developed with (sometimes

specific even to the minor version level). Python virtual environments and Anaconda are designed

to resolve issues related to version compatibility but - at least in our experience - software installation

via these methods can be complicated, especially for novice users.

Fortunately, the Python interpreter is predominantly written in C. Generally speaking, both the C

language and system libraries have good backward compatibility. For instance, GLIBC is fully

backward compatible. Thus, if you compile a C program on an older Linux system (e.g., Ubuntu 14)

with an older compiler (e.g., gcc 4.8) and statically link third party libraries with limited backward

compatibility, while dynamically linking the basic backward compatible libraries, the compiled binary

would be portable on most (if not all) modern Linux systems. Of course, x86_64 binaries will not work

on ARM processors, but if you compile for an older x86_64 instruction-set, it will work on all modern

x86_64 processors, thanks to the backward compatibility in processor instruction sets. ARM also

benefits from a similar level of backward compatibility.

In summary, if the relevant Python interpreter, all the modules, and third party software are compiled

and packaged with your Python code, it will be “portable”. We call this process “snake charming",

since it prevents Python modules from biting one another. For interested developers, we provide

detailed instructions in the InterARTIC GitHub on how snake charming was used in the development

of InterARTIC, and how to use this technique to improve their own tools.

https://psy-fer.github.io/interARTIC/snakeballing/

Supplementary Figure 1. Example job configuration for InterARTIC analysis of SARS-CoV-2 whole-genome sequencing.

Supplementary Figure 2. Example job configuration for InterARTIC analysis of Ebola whole-genome sequencing.

