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Supplementary Figure 1. Formaldehyde is cytotoxic for ∆ADH5 cells. a Quantification of p-p53 western blots 
shown in Fig. 1b using ImageJ (n=2 biological independent samples, mean comparing against the same cell line 
untreated). WT: Wild type, FA: Formaldehyde, CPt: Cisplatin. µM refers to µmol L-1. b Western blot analysis of 
ADH5 expression in clones edited by CRISPR/Cas9 in HCT116 (Top: ADH5; Bottom: same membrane stripped 
and blotted against a-Tubulin). Bottom: ADH5 gene showing the exon targeted by CRISPR/Cas9 and the 
genetic modifications of the HCT116 ∆ADH5 clone used in this work. c Quantification of apoptosis determined 
by Annexin V detection in WT and ∆ADH5 HCT116 cells exposed to FA over 24 h at the concentrations indicated 
in the figure (n=5 biological independent samples, mean ± SEM, two-tailed unpaired t-test, ****P<0.0001). 
Right: Representative flow cytometry plot for phosphatidylserine determination by Annexin V in ∆ADH5 
HCT116 cells untreated or exposed to 150 μmol L-1 FA (7-AAD: 7-amino-actinomycin D) and gating strategy 
(Top). d Cell cycle analysis of WT and ∆ADH5 HCT116 cells exposed to 60 and 150 µmol L-1 FA over 24 h (n=4, 
mean ± SEM).  
  



 
 
Supplementary Figure 2. ∆ADH5 ∆TP53 HCT116 cell line generation and DNA damage. a Quantification of γ-
H2AX western blots shown in fig. 1f (Formaldehyde (FA) 0, 60, 150, Cisplatin (CPt), and Hydroxyurea (HU) n=4; 
Mitomycin C (MMC) n=3; mean ± SEM, two-tailed unpaired t-test comparing against same cell line untreated, 
**P=0.0025 (∆ADH5, HU), *P=0.021(∆ADH5, MMC)). WT: Wild type. b Quantification of p-p53 western blots 
shown in fig. 1f (FA 0, 60, 150 and CPt n=5; HU n=4, MMC n=3, two-tailed unpaired t-test comparing against 
same cell line untreated, **P=0.0014 (∆ADH5 vs ∆ADH5 150 µmol L-1  FA), *P=0.045 (WT, Cpt), **P=0.0038 
(∆ADH5, HU), ***P=0.0001 (∆ADH5, MMC), *P=0.0496 (WT, MMC), ****P<0.0001)). c Western blots against 



p21, p53, p-CHK1 and p-CHK2 with the corresponding loading controls in WT and ∆ADH5 HCT116 cells. p-CHK1 
and the corresponding vinculin control were run on different gels. Uncropped images in Source Data File. 
Right: Quantification of western blots against p21 (n=3, mean ± SEM, two-tailed unpaired t-test comparing 
against same cell line untreated) and p53 (n=4 all but MMC with n=3, mean ± SEM, two-tailed unpaired t-test 
comparing against same cell line untreated, *P=0.0298 **P=0.0024); and p-CHK1 and p-CHK2 (mean, n=2). d 
Western blot analysis of ADH5 expression in HCT116 ∆TP53 clones edited by CRISPR/Cas9. e ADH5 gene 
showing the exon targeted and the genetic modifications of the HCT116 ∆TP53 ∆ADH5 clone used in this work. 
f Representative images of metaphases generated with WT and ∆ADH5 HCT116 cells exposed to 150 μmol L-1 

FA or 1.5 μmol L-1 MMC (scale bar 1 µm). g Survival of adult C. elegans expressing the transgene adh-5::GFP 
exposed to the indicated concentrations of FA for 4 h (n=3, mean ± SEM, two-way ANOVA Bonferroni's 
multiple comparisons test, *P=0.0232, ****P<0.0001 (adh-5 vs N2, same FA concentration)). 
 

 
 
Supplementary Fig. 3. Formaldehyde induces oxidative stress. a Comparison of the reaction of iodoacetamide 
(IAA) with thiol groups (top) with the reaction of formaldehyde (FA) with thiol groups (bottom). b Viability 
assay in Wild type (WT) and ∆ADH5 HCT116 cells in presence of different concentrations of IAA. Viability was 
determined after five days relative to the corresponding untreated samples (n=3, mean ± SEM). µM refers to 
µmol L-1. c Plot depicting the percentage of WT and ∆ADH5 HCT116 cells harbouring the cytoplasmic-roGFP 
reporter that show oxidation after exposure to 0.04 and 0.16 µM IAA for 48 h. L-buthionine sulfoximine (L-
BSO) is shown as positive control (n=3, mean ± SEM, two-way ANOVA corrected for Tukey’s multiple 



comparison **P=0.0046 (WT), **P=0.0086 (∆ADH5)). d Representative plots obtained from Electron Spin 
Resonance (ESR) spectroscopy in WT and ∆ADH5 HCT116 cells exposed to 60 µmol L-1 FA or to 100 µmol L-1 L-
BSO for 48 h. e Cellular Peroxides determination by pentafluorobenzenesulfonyl fluorescein (PBSF) in Wild 
type (WT), ∆ADH5, and complemented ∆ADH5 (∆ADH5/pA5) HCT116 cells upon 48 h exposure to 0, 60 and 
150 μmol L-1 FA. Data is represented as the % of untreated from the same cell line (n=3, mean ± SEM, two-way 
ANOVA, Tukey´s multiple comparison test, **P=0.008). mM refers to mmol L-1. f Left, representative images 
of adult C. elegans expressing the H2O2 sensor HyPer exposed to 0 or 25 mmol L-1 FA for 5 h. Right, 
quantification of Hyper ratiometric response after excitation at 488 nm and 405 nm, denoting the induction 
of HyPer by 25 mmol L-1 FA (n=10, box (line at median) and whiskers (min and max), ****P<0.0001, unpaired 
non-parametric two-tailed Mann-Whitney test). g FACS gating approaches for H2DCFDA (Fig. 3b), PBSF (Sup. 
Fig 3e), DHE (Fig. 3c), roGFP (Fig. 3e) and Grx1-roGFP2 (Fig. 6i).  
 

 
Supplementary Figure 4. Formaldehyde cytotoxicity is prevented by thiol-containing antioxidants. a Viability 
assays in presence of 60 or 150 µmol L-1 formaldehyde (FA) and Trolox (1 mmol L-1) or glutathione monoethyl 
ester (GSH-MEE, 1 mmol L-1). L-BSO was used at 100 μmol L-1 in Wild type (WT) and ∆ADH5 HCT116 cells (n=4, 
mean ± SEM; two-way ANOVA, Tukey multiple comparison test, ***P=0.0002,****P<0.0001, *P=0.03, n.s. not 



significative against same cell line untreated. µM refers to µmol L-1 and mM refers to mmol L-1.   b Extended 
data for the experiment shown in Fig. 4b. Representative images of sphere-formation assay carried out in 
presence of 150 µmol L-1 FA and Trolox (1 mmol L-1) or GSH-MEE (1 mmol L-1). As reference, the pictures 
labelled as mock in this panel are the same as the ones included in the main Fig. 4b. c Survival of L1-staged 
Wild type (N2) and adh-5 C. elegans mutant upon exposure to the indicated FA concentrations and 10 mmol 
L-1 N-acetyl-cysteine (NAC) measured 0, 24, 48 and 72 h after treatment (n=3, mean ± SD). d Developmental 
stages of surviving animals 48 h after FA exposure (n=3, mean ± SD). e Survival of adult N2 and adh-5 C. elegans 
mutant pre-exposed for 2 h to 10 mmol L-1 NAC, washed off and then exposed to the indicated FA 
concentrations for 4 h (n=3, mean ± SD, two-way ANOVA with Tukey comparison test against N2 same FA 
concentration ****P<0.0001 ). Survival was scored right after the FA treatment. 
 

 
Supplementary Figure 5. GSH biosynthesis inactivation. a Viability assay for Wild type (WT) and ∆ADH5 
HCT116 and Nalm6 cells in response to increasing concentrations of L-buthionine-sulfoximine (L-BSO) 
determined after three (HCT116, n=6 (WT), n=3 (∆ADH5), mean ± SEM) or five (Nalm6, n=6, mean ± SEM) days. 
µM refers to µmol L-1. Right: Viability assay for HCT116 and Nalm6 WT and ∆ADH5 cells at 100 and 50 μmol L-

1 L-BSO, respectively (n=5, mean ± SEM); HepG2 (n=5, mean ± SEM) and HAP1 (n=4, mean ± SEM) cell lines at 
100 μmol L-1 L-BSO. b Formaldehyde (FA) dose-response viability assay for HCT116 cells in presence of 100 
μmol L-1 L-BSO (n=5, mean, two-way ANOVA corrected for Bonferroni's multiple comparisons test 



****P<0.0001, *P=0.0033). c Formaldehyde (FA) dose-response viability assay for HAP1 cells in presence of 
100 μmol L-1 L-BSO (n=2, mean). d FA dose-response MTS viability assay for HepG2 cells in presence of 100 
μmol L-1 L-BSO (n=3, mean ± SEM, two-way ANOVA corrected for Bonferroni's multiple comparisons test 
*P=0.0182 (15 µM FA), *P=0.011 (30 µM FA), ****P<0.0001,). e Western blot analysis of GCLM expression in 
HCT116 clones edited by CRISPR/Cas9. Right: ADH5 and GCLM genes showing the exon targeted by 
CRISPR/Cas9 and the genetic modifications detected. Bottom: GCLM gene showing the exon targeted by 
CRISPR/Cas9 and the genetic modifications of the HCT116 ∆GCLM clones used in this work. f Bar plot for GSH 
content in WT (n=8), ∆ADH5 (n=8), ∆ADH5/pADH5 (n=8), ∆GCLM (n=4) and ∆ADH5 ∆GCLM (n=4) cells, and in 
WT (n=7) and ∆ADH5 (n=7) HCT116 cells exposed to 100 μmol L-1 L-BSO for 48 h. Every dot is the percentage 
of fluorescence intensity in a single well relative to the average fluorescence of WT samples run the same day 
and corrected for viability determined using resazurin (mean ± SEM, one-way ANOVA with Tukey test for 
multiple comparisons,***P=0.0001). g 3D-spheroid formation in presence of 100 μmol L-1 L-BSO and the 
indicated concentrations of FA in HCT116 cells. Pictures were taken 5 days after seeding cells on agarose-
coated plates (scale bar 0.5 mm).  
 

 
 
Supplementary Figure 6. S-hydroxymethylglutathione synthesis. a Extracted ion chromatograms for 
[glutathione (GSH) + H]+ ion at m/z 308.0916 generated from a 10.4 μmol L-1 GSH standard solution before 
reaction (t0: green dash line) and after 48 h of reaction (t48: green solid line); and for [S-
hydroxymethylglutathione (HSMGSH) + H]+ ion at m/z 338.1022 generated from a 10.4 μmol L-1 GSH standard 
solution before reaction (t0: blue dash line) and after 48 h reaction (t48: blue solid line). b Mass spectrum for 
the solvent at t0, with no signals detected at m/z 308.0916 or m/z 338.1022.  c Mass spectrum for a GSH 
standard solution at t0, with no signal detected at m/z 338.1022. d Mass spectrum for the reaction mixture at 
t48.  



 

 
 
Supplementary Fig. 7: detection of S-hydroxymethylglutathione in cells. 
a. Mass spectrum for [S-hydroxymethylglutathione (HSMGSH) + H]+ ion at m/z 338.1022 in a Wild type (WT) 
sample (green), and its simulated isotopic pattern (blue). b. Extracted ion chromatograms for [HSMGSH + H]+ 
ion at m/z 338.1022 ± 0.0500. Non-spiked WT sample (green, left axis), 20 μmol L-1 spiked WT (black dotted 
line, right axis), and 20 μmol L-1 HSMGSH standard solution (blue, left axis). c. Product ion mass spectra of 
[HSMGSH + H]+ precursor ion. WT (green) and a 20 μmol L-1 HSMGSH standard solution (blue), using a collision 
cell voltage of 10 V. d. Extracted ion chromatograms for [GSH + H]+ ion at m/z 308.0916 ± 0.0500. Non-spiked 
QC sample (green), 43 μmol L-1 spiked QC sample (brown), and 14.3 μmol L-1 GSH standard solution (blue). e. 
Mass spectrum for [GSH + H]+ ion at m/z 308.0916. QC sample (green), and its simulated isotopic pattern 
(blue). f. Product ion mass spectrum for [GSH + H]+ precursor ion. QC sample (green) and 14.3 μmol L-1 GSH 
standard solution (blue), using a collision cell voltage of 10 V.  g. Extracted ion chromatograms for [GSH 
disulfide (GSSG) + H]+ ion at m/z 613.1598 ± 0.0500. Non-spiked QC sample (green), 15.5 μmol L-1 spiked QC 
sample (brown), and 15.5 μmol L-1 GSSG standard (blue). h. Mass spectrum for [GSSG + H]+ ion at m/z 



613.1598. QC sample (green), and its simulated isotopic pattern (blue). i. Product ion mass spectrum for [GSSG 
+ H]+ precursor ion. QC sample (green), and a 15.5 μmol L-1 GSSG standard solution (blue) using a collision cell 
voltage of 20 V.  
 


