Science Advances

Supplementary Materials for

Screening of ETO2-GLIS2-induced Super Enhancers identifies targetable cooperative dependencies in acute megakaryoblastic leukemia

Salima Benbarche, Cécile K. Lopez, Eralda Salataj, Zakia Aid, Cécile Thirant, Marie-Charlotte Laiguillon, Séverine Lecourt, Yannis Belloucif, Camille Vaganay, Marion Antonini, Jiang Hu, Alexandra da Silva Babinet, Delphine Ndiaye-Lobry, Bryann Pardieu, Arnaud Petit, Alexandre Puissant, Julie Chaumeil, Thomas Mercher*, Camille Lobry*

*Corresponding author. Email: camille.lobry@inserm.fr (C.L.); thomas.mercher@inserm.fr (T.M.)

Published 9 February 2022, *Sci. Adv.* **8**, eabg9455 (2022) DOI: 10.1126/sciadv.abg9455

The PDF file includes:

Figs. S1 to S9 Legend for table S1 Tables S2 to S6

Other Supplementary Material for this manuscript includes the following:

Table S1

Figure S1. CRISPRi screening of Super Enhancer in ETO2-GLIS2⁺ AMKL cell line M07e

A) Scatter plots showing significantly depleted (blue) or enriched (red) sgRNA at day 7, 14 and 21 compared to day 0. Only sgRNA with normalized read coverage over 40x at day 0 and with p-value < 0,05 are highlighted. Dots represent average of normalized read counts across the 3 replicates.

B) Venn Diagram showing overlap of significant (FDR < 0,25) hits between the 3 replicates of the screen as determined by maximum likelihood of enrichment.

C) Dot plot depicting changes in representation of the 6471 sgRNAs covered over 40x during 21 days of culture. sgRNA z-scores were calculated by subtracting to the log2 fold change of average normalized counts at d21 compared to d0 (Log2FC(d21/d0)) the average of all sgRNA Log2FC(d21/d0) and dividing by the standard deviation of all Log2FC(d21/d0) and are plotted in ascending order. Positive control sgRNAs targeting ERG gene are marked in red; negative control sgRNAs are marked in green. sgRNAs against common hits and significantly depleted are colored and sgRNA against SE_47 and ERG are highlighted.

D) Bargraph representing variations of normalized counts of sgRNA targeting ERG, positive control of the screen. Data are represented as ratio of counts at day 0. Data are represented as mean \pm SEM, n=3, statistical significance is determined using Student's *t*-test, * p<0.05, ** p<0.01.

E) Bargraph representing variations of normalized counts of sgRNA targeting Luciferase, Renilla and Lin28, negative controls of the screen. Data are represented as ratio of counts at day 0. Data are represented as mean± SEM, n=3, statistical significance is determined using Student's *t*-test, ns=not significant.

F) Bargraph representing variations of normalized counts of sgRNA targeting SE_47. Data are represented as ratio of counts at day 0. Data are represented as mean \pm SEM, statistical significance is determined using Student's *t*-test, * p<0.05, ** p<0.01, *** p<0.001

G) Network of nearest expressed genes and proximal expressed genes of top hits Super Enhancer identified through CRISPRi screening. Co-Expression, Physical interactions, common pathway interactions and shared protein domains were included in the network.

H) Gene track of SE_47 locus on chromosome 4, including proximal genes *KIT* and *PDGFRA*, showing normalized read density histograms of H3K4me3 ChIP-seq, H3K27ac ChIP-seq and ATAC-seq (bottom panel) in M07e cells. Read densities are shown as unique reads per million.

Figure S2. SEKIT inactivation inhibits KIT and PDGFRA protein expression

A) Quantification in Fragments per kilobase per million mapped reads (FPKM) of *KIT* and *PDGFRA* expressions in M07e cells expressing control sgRNA against GFP (brown bar) or sgRNA7 targeting SEKIT (green bar) as assessed by RNA-seq.

B) Representative flow cytometry analyses showing KIT (higher panel) and PDGFRA (lower panel) protein expression at cell surface in M07e cells following CRISPRi targeting of SEKIT locus with indicated sgRNAs compared to control sgRenilla.

C) Quantification of KIT and PDGFRA protein expression shown as mean fluorescent intensities of PE-Cy7 and PE respectively gated on transduced GFP⁺ cells. Mean \pm SEM, n=3, significance is determined using Student's *t*-test, *** p<0.001.

Figure S3. CRISPRi targeting of SE is on target

A) Gene track showing normalized read density histograms of ATAC-seq (orange tracks), H3K27ac ChIP-seq (green tracks) and H3K9me3 ChIP-seq (bordeaux tracks) following CRISPRi targeting of SE_47 with indicated sgRNAs compared to control sgRenilla in M07e cells. Lower panel displays a blow up of grey box highlighted SE_47 region. Targeted regions and location of sgRNAs are highlighted by red boxes.

B) Percentage of BFP⁺ HEL 5J20 cells following CRISPRi targeting of SE_47 locus with indicated sgRNAs compared to control sgGFP and normalized to day 4 after infection. Mean ± SEM, n=3, statistical significance is determined using Student's *t*-test, ns=not significant.

C) Quantitative PCR showing *KIT* expression in HEL 5J20 cells following CRISPRi targeting of SE_47 locus with indicated sgRNAs compared to control sgGFP. Mean \pm SEM, n=3, statistical significance is determined using Student's *t*-test, ns=not significant.

Figure S4. SEKIT activity is required for its interaction with *KIT* and *PDGFRA* promoters

A) 4C-seq domainograms with viewpoint on SEKIT (red arrowhead) showing cis-contacts between the SEKIT locus and proximal elements in M07e cells expressing non targeting CRISPRi (sgRen, top panel) or CRISPRi targeting SEKIT (sgRNA7, bottom panel). *PDGFRA* and *KIT* transcription start sites are shown with green arrowheads, and *PDGFRA*, SEKIT and *KIT* locations are shown below.

Figure S5. SEKIT is induced by ETO2-GLIS2

A) Western blot showing ETO2 and ETO2-GLIS2 expression in an individual clone of HEL 5J20 cells upon doxycycline induction of ETO2-GLIS2 expression compared to empty vector (GFP). **B)** qPCR showing *KIT* and *PDGFRA* expression in M07e cells expressing NC128 or control peptides. Mean ± SEM, n=3, statistical significance is determined using Student's *t*-test, *** p<0.001

C-F Gene tracks showing normalized read density histograms of H3K27Ac ChIP-seq analysis at **C)** SE_4, **D)** SE_12, **E)** SE_13 and **F)** SE_131 locci upon ETO2-GLIS2 (EG) expression induction in HEL 5J20 cells compared to non-induced cells (khaki and green tracks respectively) and read densities of GFP ChIP-seq in non-induced versus doxycycline induced HEL 5J20 cells (yellow and orange tracks respectively) showing EG binding in SEKIT locus. Read densities are shown as unique reads per million. Differentially upregulated peaks as determined using MAnorm algorithm are shown at the bottom.

Figure S6

Figure S6. Inducible ETO2-GLIS2 expression in OCI-AML3 cells induces AMKL specific SE activation

A) Western blot showing ETO2-GLIS2 expression in OCI-AML3 cells transduced with empty vector (OCI-AML3_LT3) or doxycycline-inducible ETO2-GLIS2 expressing vector (OCI-AML3_EG) upon doxycycline induction.

B) Profile plot of normalized mean tag density (top panel) and Heatmap of normalized tag density (bottom panel) of H3K27ac ChIP-seq in OCI-AML3 cells stably transduced with empty vector (OCI-AML3_LT3) or doxycycline-inducible ETO2-GLIS2 expressing vector (OCI-AML3_EG) after doxycycline treatment at 448 Super Enhancer regions defined in ETO2-GLIS2 AMKL cells.

C) Volcano plot showing M value against -log10(P-value) of H3K27ac peaks upon differential analysis using MAnorm. Peaks overlapping Super Enhancer regions defined in ETO2-GLIS2 AMKL cells are highlighted in claret and peaks overlapping top hit SE from CRISPRi screen are highlighted in colors.

D) Gene tracks showing normalized read density histograms of H3K27ac ChIP-seq analysis at top hit SE from CRISPRi screen loci upon doxycycline treatment of OCI-AML3 cells stably transduced with empty vector (OCI-AML3_LT3) or doxycycline-inducible ETO2-GLIS2 expressing vector (OCI-AML3_EG) (khaki and green tracks respectively). Read densities are shown as unique reads per million. Differentially upregulated peaks as determined using MAnorm algorithm are shown at the bottom.

Figure S7. shRNA targeting of KIT and PDGFRA is on target

A-C, Two independent shRNAs targeting either *KIT* (shK) or *PDGFRA* (shP) were expressed in M07e cells separately or in combination. shK are expressed with mCherry (mCh) in cells while shP are expressed with GFP. Corresponding shRNAs targeting Renilla (shR) were used as control. 7 days after transduction, cells were washed and maintained in the presence of PDGF-AA or SCF as indicated.

A) Schematic depicting experimental design.

B) Representative flow cytometry analyses of shRNA expressing cells at day 7 and day 17 after infection.

C) Percentage of M07e cells expressing indicated shRNAs normalized to day 7 after infection. Mean \pm SEM, n=3, significance is determined using Student's *t*-test, statistical significance is determined using Student's *t*-test, * p<0.05, ** p<0.01, *** p<0.001, ns=not significant.

D) Quantitative PCR showing *CSF2RA* and *CSF2RB* expression at day 4 after infection. Mean \pm SEM, n=3, significance is determined using Student's *t*-test, statistical significance is determined using Student's *t*-test, ns=not significant.

E) Quantitative PCR comparing *CSF2RA* and *CSF2RB* expression in M07e cells. Mean \pm SEM, n=3, significance is determined using Student's *t*-test, ***p < 0.001

F) Quantification in Fragments per kilobase per million mapped reads (FPKM) of *CSFR2A* and *CSFR2B* expressions in M07e cells as assessed by RNA-seq.

G) Gene tracks showing normalized read density histograms at *CSF2RA* and *CSF2RB* genes in two replicates of M07e cells RNA-seq.

Figure S8. Inhibition of SEKIT impairs AMKL progression in vivo

A) Gene track showing normalized read density histograms of H3K27ac ChIP-seq and ATAC-seq (bottom panel) in AMKL7 patient cells (kaki and orange respectively) and H3K27ac ChIP-seq in M07e cells (green) at SEKIT locus. Read densities are shown as unique reads per million. Location of sgRNA2 is shown in red.

B) Scatter plot showing genes whose expression is significantly altered following CRISPRi targeting of SEKIT with sgRNA2 compared to control sgRenilla in AMKL7 patient cells. Dots represent average of log_{10} FPKM across the 2 replicates. Green dots p<0.05, red dots p<0.05 and >2-fold change. Statistical significance is determined using Student's *t*-test. *KIT* and *PDGFRA* genes are highlighted.

C) qPCR showing *KIT* and *PDGFRA* expression following CRISPRi targeting of SE_KIT with sgRNA2 compared to control sgRenilla in AMKL7 patient cells. Mean \pm SEM, n=6, Student's *t*-test, ***p < 0.001.

D) Representative flow cytometry analyses of sgRNA2- or sgRenilla-transduced AMKL7^{luc}mCherry⁺ cells in the bone marrow, spleen and liver of xenografted mice.

E) Quantification of mCherry⁺ cells as analyzed in panel **a**. Mean ± SEM, n=5.

Figure S9. Tyrosine kinase inhibitors affect AMKL cell growth

A-C, Viability of M07e cells **(A)**, AMKL7 **(B)** and AMKL26 **(C)** patient cells after 96h treatment with indicated kinase inhibitors or vehicle (DMSO). Negative control of culture without cytokines (No cytokine) is shown. Mean \pm SEM, n=3, ***p<0.001, *p<0.05, **p<0.01, and ***p<0.001.

D) Histogram of flow cytometry analysis showing KIT expression in depicted AML cell lines.

E) Viability of AML cell lines after 96h treatment with indicated concentrations of Axitinib or vehicle (DMSO). Mean ± SEM, n=7.

F) Flow cytometry analysis for KIT and CD45 expression on AML blasts isolated from PDX mice. **G)** Viability of AMKL7 and three AML patient cells derived from PDX mice after 96h treatment with indicated concentrations of Axitinib or vehicle (DMSO). Mean ± SEM, n=3 for AMKL7 and n=7 for AML1-3.

Supplementary Tables

Table S1: sgRNA composition and normalized counts of CRISPRi screen replicates

Related to Figure 1

See excel file "Table_S1.xlsx"

Table S2: Cell counts of FISH experiments

Related to Figure 2 *KIT*-SEKIT < KIT-SEKIT > KIT-SEKIT = Sample size *KIT*-control *KIT*-control *KIT*-control (chromosomes) Cell type: number number % % number % 200 M07e 139 69.5 27 13.5 34 17 26 HEL 65 43.3 46 30.7 39 150

Chi2 test

M07e vs expected:						Chi2 value:	p-value:
Observed	139	83.7	27	16.3	166	75 57	<0.00001***
Expected	83	50	83	50	166	75.57	<0.00001
HEL vs expected:							
Observed	65	58.6	46	41.4	111	2.25	0.71 pc
Expected	55.5	50	55.5	50	111	5.25	0.71115
M07e vs HEL:							
M07e	139	83.7	27	16.3	166	21 72	<0.00001***
HEL	65	58.6	46	41.4	111	21.72	<0.00001

Table S3: Genesets negatively correlated with CRISPRi inhibition of SEKIT Related to Figure 5

GENESET_NAME	SIZE	ES	NES	NOM_p-val	FDR_q-val
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION	80	-0.5101066	-1.858465	0.006024096	0.15128882
GO_CYTOKINE_BINDING	45	-0.5284298	-1.7387868	0.019543974	0.18277322
AP1_Q4	156	-0.4322358	-1.7331688	0.002853067	0.18397884
GO_PLATELET_DERIVED_GROWTH_FACTOR_RECEPTOR_BINDING	9	-0.7660931	-1.6965766	0.02097902	0.18942948
REACTOME_SIGNALING_BY_PDGF	81	-0.46986297	-1.6964734	0.016897082	0.18859418
AP1_Q6	139	-0.43164703	-1.6909294	0.007587254	0.18844871
GO_CYTOKINE_ACTIVITY	51	-0.48939356	-1.6587768	0.02724359	0.18603332
TGANTCA_AP1_C	554	-0.35058564	-1.5819211	0.0001	0.20607616
REACTOME_SIGNALING_BY_SCF_KIT	68	-0.4470207	-1.5715805	0.042944785	0.20909369
PDGF_UP.V1_DN	44	-0.47405526	-1.5650235	0.04715447	0.21040736
AP1_01	138	-0.4016879	-1.5597069	0.017595308	0.21429409
GO_CYTOKINE_RECEPTOR_BINDING	114	-0.4026892	-1.5483524	0.016467066	0.21501972
REACTOME_PIP3_ACTIVATES_AKT_SIGNALING	25	-0.53417414	-1.5436361	0.042016808	0.21708472
REACTOME_PI3K_AKT_ACTIVATION	32	-0.502016	-1.5235479	0.0461285	0.22794746
AP1_Q2	143	-0.3835286	-1.5055175	0.023988007	0.2345746
AP1_Q2_01	143	-0.3823649	-1.502686	0.021770682	0.23683275
AP1_Q6_01	141	-0.3752396	-1.4760147	0.023809524	0.25127
GO_CYTOKINE_RECEPTOR_ACTIVITY	36	-0.45751223	-1.4679023	0.044701986	0.25599676
AP1_C	138	-0.3734915	-1.4593756	0.038402457	0.26026753
REACTOME_REGULATION_OF_KIT_SIGNALING	13	-0.56535697	-1.4172556	0.10175438	0.2858632
PID_KIT_PATHWAY	45	-0.41782665	-1.3744195	0.080314964	0.31436348

Table S4: sequences of sgRNA used in single CRISPRi experiments

Related to Figures 1, 2 and 7

sgRNA ID 20nt-sgRNA		73mer sgRNA PCR oligos for cloning in	24mer annealing oligos for cloning in pLV-hU6-		
-	guide	pU6-sgRNA-EF1Alpha-puro-T2A-BFP using XhoI and BstXI	sgRNA-hUbC-dCas9-KRAB-T2a-GFP using BsmB		
sgRNA2	CAGATAATAGAC	GGAGAACCACCTTGTTGGCAGATAATAGACTGGTCATGGTTTTAGAG	Forward	CACCCAGATAATAGACTG	
	TGGTCATG	CTAGAAATAGCAAGTTAAAATAAGGC		GTCATG	
			Reverse	AAACCATGACCAGTCTATT	
				ATCTG	
sgRNA5	TCCGTATAGCAA	GGAGAACCACCTTGTTGGTCCGTATAGCAAGTGTACCCGTTTTAGAG	Forward	CACCTCCGTATAGCAAGTG	
	GTGTACCC	CTAGAAATAGCAAGTTAAAATAAGGC		TACCC	
			Reverse	AAACGGGTACACTTGCTAT	
				ACGGA	
sgRNA7	AAGGGTCTTATC	GGAGAACCACCTTGTTGGAAGGGTCTTATCTAACTACTGTTTTAGAG	Forward	CACCAAGGGTCTTATCTAA	
	TAACTACT	CTAGAAATAGCAAGTTAAAATAAGGC		CTACT	
			Reverse	AAACAGTAGTTAGATAAG	
				ACCCTT	
sgRNA8	AGGGCCTTCCGC	GGAGAACCACCTTGTTGGAGGGCCTTCCGCTAAAGGCAGTTTTAGA	Forward	CACCAGGGCCTTCCGCTAA	
	TAAAGGCA	GCTAGAAATAGCAAGTTAAAATAAGGC		AGGCA	
			Reverse	AAACTGCCTTTAGCGGAA	
				GGCCCT	
sgRenilla	GGAACACGGCC	GGAGAACCACCTTGTTGGGGAACACGGCCGTATTAGGGGTTTTAGA	Forward	CACCGGAACACGGCCGTA	
	GTATTAGGG	GCTAGAAATAGCAAGTTAAAATAAGGC		TTAGGG	
			Reverse	AAACCCCTAATACGGCCGT	
				GTTCC	
sgRNA3	AGACCCTTGCCT	GGAGAACCACCTTGTTGGAGACCCTTGCCTTTAGCGGAGTTTTAGAG			
	TTAGCGGA	CTAGAAATAGCAAGTTAAAATAAGGC			
sgGFP	GACCAGGATGG	GGAGAACCACCTTGTTGGGACCAGGATGGGCACCACCCGTTTTAGA			
	GCACCACCC	GCTAGAAATAGCAAGTTAAAATAAGGC			

Table S5: sequences of shRNA used in gene knock-down experiments

R	Related to Figures 6 and S5						
Gene Symbol	shRNA ID	22nt-shRNA guide	mRNA target site	97mer oligo			
ΚΙΤ	shKIT1	TTCTGCTCAGAC ATCGTCGTGC	GCACGACGATGTCTGAGC AGAA	TGCTGTTGACAGTGAGCGACACGACGATGTCTGAGCAGAATAGTGAAGCCACAGATG TATTCTGCTCAGACATCGTCGTGCTGCCTACTGCCTCGGA			
KIT	shKIT3	TTATCTACTACT TCCAAGGTTG	CAACCTTGGAAGTAGTAG ATAA	TGCTGTTGACAGTGAGCGAAACCTTGGAAGTAGTAGATAATAGTGAAGCCACAGATG TATTATCTACTACTTCCAAGGTTGTGCCTACTGCCTCGGA			
PDGFRA	shPDGFRA1	TTAAACATCAAC CAAGTCCTCC	GGAGGACTTGGTTGATGT TTAA	TGCTGTTGACAGTGAGCGAGAGGACTTGGTTGATGTTTAATAGTGAAGCCACAGATGT ATTAAACATCAACCAAGTCCTCCTGCCTACTGCCTCGGA			
PDGFRA	shPDGFRA3	ATACTGTGTAGT ATCAGCCTGC	GCAGGCTGATACTACACA GTAT	TGCTGTTGACAGTGAGCGACAGGCTGATACTACACAGTATTAGTGAAGCCACAGATGT AATACTGTGTAGTATCAGCCTGCTGCCTACTGCCTCGGA			

Table S6: sequences of primers used in quantitative PCR experiments

Related to Figures 2, 3, 6, S3, S4, S5 and S6

Gene Symbol	Primer ID	Primer sequence	
<i>VIT</i>	hKIT fwd	CAATTCTGACGTCAATGCTGCCA	
KII	hKIT rev	GAGCATGCCATTCACGAGCC	
	hPDGFRA fwd	CCTGTCCCTGAGGAGGAGGAC	
PDGFRA	hPDGFRA rev	GAAGGTGGAACTGCTGGAACCC	
CEDRA	hCSF2RA fwd	TCCCGCCAGTTCCACAGATC	
CJFZNA	hCSF2RA rev	GACCTCTTCGCGGTAGCCTT	
CSE2DD	hCSF2RB fwd	AACGGGATCTGGAGCGAGTG	
CSFZIND	hCSF2RB rev	AGATCACGATGAGGGCCAGC	
CA00/4	hGAPDH fwd	CTTTTGCGTCGCCAGCCGAG	
GAPDH	hGAPDH rev	CCAGGCGCCCAATACGACCA	