SUPPLEMENTARY INFORMATION

Selenophosphate synthetase 1 deficiency exacerbates osteoarthritis by dysregulating redox homeostasis

Kang et al.

Supplementary Figures 1–12

Supplementary Tables 1–8

Supplementary Note 1

Supplementary Fig. 1 Exemplified gating strategy for flow cytometry analysis in Fig. 2d,e. Mouse chondrocytes were gated by forward scatter (FSC) and side scatter (SSC) area (A) according to cell size and granularity to get rid of any debris or large clumps. Then, singlet cells were gated using FSC-A and FSC-height (H).

Supplementary Fig. 2 Transcriptome analysis reveals that loss of SEPHS1 activates pathways related to DNA damage response, cell cycle regulation, and cellular senescence in chondrocytes. Top 10 annotations of differentially expressed genes following knockdown of *Sephs1* in chondrocytes from Enrichr Pathways analysis, based on WikiPathways 2019 Human, KEGG 2019 Mouse, Biocarta 2016, and Panther 2016 pathway databases; the corresponding $-\log_{10}(P$ values) are presented as graphs. *P* values are from Fisher's exact test.

GO Biological Process 2018

Supplementary Fig. 3 Transcriptome analysis reveals that loss of SEPHS1 activates ontologies related to cell cycle regulation, chromosome segregation, and oxidoreductase activity in chondrocytes. Top 10 annotations of differentially expressed genes following knockdown of *Sephs1* in chondrocytes from Enrichr Ontologies analysis, based on three Gene Ontology (GO) databases; the corresponding $-\log_{10}(P \text{ values})$ are presented as graphs. *P* values are from Fisher's exact test.

Supplementary Fig. 4 Downregulation of SEPHS1 in chondrocytes leads to cellular senescence and upregulation of SASPs expression. **a**, **b** Quantification of **a** immunofluorescence positivity of γ -H2AX (n = 4) or **b** SA- β -Gal positivity (n = 5) in primary cultured chondrocytes transfected with negative control siRNA or siRNA targeting *Sephs1*. **c** Relative mRNA expression of non-MMP families of SASP factors in chondrocytes transfected with negative control siRNA or siRNA targeting *Sephs1* (n = 6). **a**–**c** Data represent means \pm s.e.m. *P* values are from two-tailed *t* test (**a**–**c**).

Supplementary Fig. 5 Loss of SEPHS1 during skeletal development causes growth retardation in mice. Representative photograph and quantification of body weight on postnatal day 5.5 (P5.5) in *Sephs1*^{*fl/fl*} (n = 18) and *Sephs1*^{*fl/fl*}; *Col2a1-Cre* mice (n = 24). Scale bar: 1 cm. Data represent means \pm s.e.m. *P* values are from two-tailed *t* test. The box and whiskers plot shows median values (center line) and the 25th (bottom line) and 75th percentiles (top line) with whiskers indicating the range.

Supplementary Fig. 6 Synovial ectopic calcification is not observed in WT and SEPHS1-deficient mice. **a** Type II collagen was detected by immunohistochemistry in knee joint sections of sham- or DMM-operated WT and *Sephs1*-iCKO mice. **b** ALP activity was examined using NBT/BCIP substrates in knee joint sections of WT and *Sephs1*-iCKO mice. ALP activity was detected in the deep zone of the articular cartilage and in the hypertrophic zone of the epiphyseal plate, but not in the synovium. Scale bars: **a**, **b** 50 µm. Abbreviations: C, cartilage; Sy, synovium; DZ, deep zone; HZ, hypertrophic zone.

Supplementary Fig. 7 Immunohistochemical staining of stress-related selenoproteins in cartilage sections of *Selenop* KO mice. GPX1 and SELENOW were detected by immunohistochemistry in cartilage sections from the knee joints of 12-week-old WT and *Selenop* KO mice. Because SELENOP is the major selenium transporter protein that delivers selenium throughout the body, we used *Selenop* KO mice to mimic a low circulating selenium condition. Interestingly, the expression levels of GPX1 and SELENOW were not significantly changed in the cartilage of *Selenop* KO mice compared to those of WT mice. Scale bar: 25 µm.

Supplementary Fig. 8 A selenium-deficient diet exacerbates the progression of OA in *Sephs1*-iCKO mice, but has no effect on sham surgery in WT or *Sephs1*-iCKO mice. **a** Cartilage destruction, subchondral bone sclerosis, osteophyte formation, and synovial inflammation determined by safranin O/hematoxylin staining and scored (n = 5 for sham-operated WT mice fed the control diet; n = 4 for sham-operated WT mice fed the selenium-deficient diet; n = 4 for sham-operated Sephs1-iCKO mice fed the control diet; n = 4 for sham-operated Sephs1-iCKO mice fed the control diet; n = 7 for DMM-operated WT mice fed the selenium-deficient diet; n = 6 for DMM-operated WT fed the control diet; n = 7 for DMM-operated WT mice fed the selenium-deficient diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 7 for DMM-operated WT mice fed the selenium-deficient diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the selenium-deficient diet). **b** Percentage of weight placed on the sham-or DMM-operated limb versus the contralateral limb over 15 min analyzed by a dynamic weight bearing test (n = 4, 6, 7, 6, 6 respectively). **a**, **b** Data represent means \pm s.e.m. P values are from S–R–H test followed by Mann–Whitney U test (**a**, **b**).

Supplementary Fig. 9 Immunohistochemical staining of stress-related selenoproteins and SASPs in cartilage sections of WT and SEPHS1-deficient mice fed a normal or selenium-deficient diet. **a** Stress-related selenoproteins (GPX1 and SELENOW) were detected by immunohistochemistry in cartilage sections from the knee joints of sham-operated WT and *Sephs1*-iCKO mice fed the indicated diets. **b** Stress-related selenoproteins (GPX1, SELENOW, and MSRB1) and SASPs (MMP13, IL-6, and GRO α) were detected by immunohistochemistry in cartilage sections from the knee joints of DMM-operated WT and *Sephs1*-iCKO mice fed the indicated diets. Scale bar: **a** 25 µm.

Supplementary Fig. 10 Unprocessed immunoblot images.

Fig. 2b

Supplementary Fig. 11 Mankin scores of *in vivo* data. Data represent means \pm s.e.m. *P* values are from Mann–Whitney *U* test, Kruskal–Wallis test followed by Mann–Whitney *U* test, or S–R–H test followed by Mann–Whitney *U* test.

Fig. 3g

⊖ Sham ● DMM

⊖ Sham ● DMM

:

+

Ţ

SeD

Supplementary Fig. 12 Subchondral bone plate thickness of the medial tibial plateau in the mouse model of posttraumatic OA. Data represent means \pm s.e.m. *P* values are from *t* test or two-way ANOVA followed by Tukey's post-hoc test.

(<i>n</i> = 22)	Sex	Age (years)	Height (cm)	Weight (kg)	BMI (kg/m ²)
Range	22 Female	58–78	142.9–173.7	49.0–77.9	20.6-32.8
Average	-	68.4	152.8	63.7	27.3
SE	-	1.16	1.31	1.77	0.66

Supplementary Table 1 Descriptive characteristics of patients with OA. Abbreviation: BMI, body mass index.

Genes	Strand	Primer sequences
Cha	S	5'-GCGGTCTGGCAGTAAAAACTATC-3'
Cre	AS	5'-GTGAAACAGCATTGCTGTCACTT-3'
Sambal flowed	S	5'-GAGATGCGTTTGTGTCCTCC-3'
Sepns1_Iloxed	AS	5'-AGTGAGTGCCCGCCTTTA-3'
Sankal recombination officiancy	S	5'-CATCCTCCGTGATTCCCCTG-3'
seprisi_recombination efficiency	AS	5'-AACAGCTCCCAGAAACTGCT-3'

Supplementary Table 2 List of primers used for genotyping and validation of inducible knockout in *Sephs1* knockout mice. Abbreviations: S, sense strand; AS, antisense strand.

Genes	Strand	siRNA, miRNA, antimiR sequences	Species
Sanhal #1	S	5'-GAGUGAUCCUGUUAUCCAAdTdT-3'	Mouso
Sepns1 #1	AS	5'-UUGGAUAACAGGAUCACUCdTdT-3'	wouse
Soula 1 #2	S	5'-CGUAGUCAGAGGGUUGCAUdTdT-3'	Mouro
Sepns1 #3	AS	5'-AUGCAACCCUCUGACUACGdTdT-3'	Mouse

Supplementary Table 3 List of siRNAs. Abbreviations: S, sense strand; AS, antisense strand.

Genes	Strand	Primer sequences	Species	
Unut	S	5'-AGTCCCAGCGTCGTGATTAG-3'	Mouso	
npn	AS	5'-GTATCCAACACTTCGAGAGGTC-3'	with	
Lafba7	S	5'-CTCGCATCCAGCCACCTTAT-3'	Mouso	
Igjup/	AS	5'-ATGGAAGGACCTTGCTCGC-3'	Wiouse	
Mmn2	S	5'-TTGATGGGCCTGGAACAGTC-3'	Mouso	
мтрз	AS	5'-AGTCCTGAGAGATTTGCGCC-3'	Wiouse	
Mmp10	S	5'-GTTCCTGTGTTGTCTGTCTCTC-3'	Mouse	
Mmp10	AS	5'-TGTTGCTCTTCAGTATGTGTGT-3'	Wiouse	
Mmm 12	S	5'-TTCTTTGGCTTAGAGGTGACTG-3'	Mouso	
mmp15	AS	5'-ACTGCTTGTCCAGGTTTCATC-3'	Mouse	
Mmn 14	S	5'-GACATCTTCTTGGTGGCTGTG-3'	Mouso	
Mmp14	AS	5'-CCCAGTGCTTATCTCCTTTGA-3'	Wiouse	
Saphsl	S	5'-GAGAGTCCTTTAACCCGGAG-3'	Mouse	
Sephsi	AS	5'-GCAAGTATCCATCCCAATGC-3'	WIGuse	
Vaafa	S	5'-ACTTTCTGCTCTCTTGGGTG-3'	Mouse	
Vegfa	AS	5'-CTGGCTTTGTTCTGTCTTTCTT-3'	Mouse	

Supplementary Table 4 List of primers used in PCR. Abbreviations: S, sense strand; AS, antisense strand.

	GO_Cellular senescence						
ABL1	CDKN2A	ING2	MIR146A	NEK6	PRMT6	TERF2	
AKT3	CDKN2B	KAT6A	MIR17	NSMCE2	RBL1	TERT	
ARG2	CGAS	KIR2DL4	MIR188	NUAK1	RSL1D1	TP53	
ARNTL	EEF1E1	KRAS	MIR20B	OPA1	SIRT1	TWIST1	
BCL2L12	FBXO5	MAGEA2	MIR217	PAWR	SLC30A10	ULK3	
BCL6	H2AFX	MAGEA2B	MIR22	PLA2R1	SMC5	VASH1	
BMPR1A	HLA-G	MAP2K1	MIR34A	PLK2	SMC6	WNT16	
C2orf40	HMGA1	MAP3K3	MIR543	PML	SRF	YPEL3	
CALR	HMGA2	MAPK14	MIR590	PNPT1	TBX2	ZKSCAN3	
CDK6	HRAS	MAPKAPK5	NAMPT	PRKCD	TBX3	ZMPSTE24	
CDKNIA	ID2	MIR10A	NEK4	PRKDC	TERC	ZNF277	

 $\label{eq:supplementary Table 5} Sene \ \mbox{list of the `GO_Cellular senescence' gene set.}$

	Oxidative stress induced senescence (Reactome)						
AGO1	EZH2	HIST1H2BD	HIST1H3I	HIST2H3C	MAPK14	RING1	
AGO3	FOS	HIST1H2BE	HIST1H3J	HIST2H3D	МАРКЗ	RNF2	
AGO4	H2AFB1	HIST1H2BF	HIST1H4A	HIST2H4A	MAPK8	RPS27A	
BMI1	H2AFJ	HIST1H2BG	HIST1H4B	HIST2H4B	MAPK9	SCMH1	
CBX2	H2AFV	HIST1H2BH	HIST1H4C	HIST3H2BB	MAPKAPK2	SUZ12	
CBX4	H2AFX	HIST1H2BI	HIST1H4D	HIST4H4	MAPKAPK3	TFDP1	
CBX6	H2AFZ	HIST1H2BJ	HIST1H4E	IFNB1	MAPKAPK5	TFDP2	
CBX8	H2BFS	HIST1H2BK	HIST1H4F	JUN	MDM2	TNIK	
CDK4	H3F3A	HIST1H2BL	HIST1H4H	KDM6B	MDM4	TNRC6A	
CDK6	H3F3B	HIST1H2BM	HIST1H4I	MAP2K3	MINK1	TNRC6B	
CDKN2A	HIST1H2AB	HIST1H2BN	HIST1H4J	MAP2K4	MIR24-1	TNRC6C	
CDKN2B	HIST1H2AC	HIST1H2BO	HIST1H4K	MAP2K6	MIR24-2	TP53	
CDKN2C	HIST1H2AD	HIST1H3A	HIST1H4L	MAP2K7	MOV10	TXN	
CDKN2D	HIST1H2AE	HIST1H3D	HIST2H2AA3	MAP3K5	PHC1	UBA52	
E2F1	HIST1H2AJ	HIST1H3E	HIST2H2AA4	MAP4K4	РНС2	UBB	
E2F2	HIST1H2BA	HIST1H3F	HIST2H2AC	MAPK1	РНС3	UBC	
E2F3	HIST1H2BB	HIST1H3G	HIST2H2BE	MAPK10	RBBP4		
EED	HIST1H2BC	HIST1H3H	HIST2H3A	MAPK11	RBBP7		

Supplementary Table 6 Gene list of the 'Reactome_Oxidative stress induced senescence' gene set.

Upregulated genes in OA						
ABHD2	CCND1	ENOX1	ID2	MYBL1	RAP2B	STXBP6
ABI3BP	CCNE2	EPDR1	IER3	MYC	RARB	SYN1
ABRACL	CCNYL1	EPHA3	IGF2BP2	MYO1B	RARRES1	SYNDIG1
AC005082.12	CD163L1	ESPL1	IGFBP3	NAV3	RASGEF1B	SYT11
AC007362.1	CD300C	ESRRA	IGFBP4	NBL1	RCAN1	SYTL2
AC009299.3	CD55	ETV4	IGFBP7	NCAPG	RGCC	TACSTD2
AC074093.1	CD58	EVAIA	IGSF3	NCF2	RHBDL2	TAGLN2
AC093850.2	CD68	EVI2A	IL11	NEDD4L	RHPN2	TAGLN2P1
AC144831.1	CDC20	EVI2B	IL13RA2	NEDD9	RIPK3	TBC1D7
ADAM12	CDC6	EVL	IL8	NETO2	RIPK4	TBC1D9
ADAM9	CDH10	EYA4	INHBA	NFIL3	RND1	TBX3
ADAMTS1	CDH19	EZR	INHBB	NFKBIZ	RND3	TBX5
ADAMTS12	CDH2	F11R	IQGAP3	NGF	RNF128	TBX5-AS1
ADAMTS14	CDK1	F13A1	IRX2	NKX2-5	RNF152	TCAIM
ADAMTS5	CDK6	F2R	IRX5	NOS2	RNF180	TCEAL7
ADAMTS6	CDKN1A	F3	ISG15	NOVA1	RNPEPL1	TCIRG1
ADTRP	CDKN2B	FAM111B	ISM2	NPR3	ROR1	TENM2
AFAP1L1	CDKN3	FAM126A	ITGA3	NPTX2	RP11-143E21.7	TENM3
AGXT2L1	CELF2	FAM132B	ITGA4	NRIP3	RP11-150012.1	TES
AHR	CENPE	FAM134B	ITGA9	NRP2	RP11-160A10.2	TFPI
AKR1C1	CENPF	FAM167A	ITGAX	NT5E	RP11-18F14.2	TFPI2
AKR1C2	CENPH	FAM173B	ITGB4	NTF3	RP11-215A21.2	TGFBI
AKR1C3	CENPK	FAM180A	ITGB5	NTRK2	RP11-267A15.1	TGFBR1
AL139147.1	CENPP	FAM60A	ITPR1	NUDT11	RP11-282K24.1	THY1
ALDH3B1	CEP55	FAM89B	KAZN	NUSAP1	RP11-316P21.1	TIMP3
ALS2CL	CGRRF1	FANCI	KCNA1	NXPE2	RP11-350G8.3	TLR6
ALS2CR11	CHML	FAP	KCNE4	OCIAD2	RP11-363J20.2	TM4SF1
AMPH	CHRD	FAT3	KCNG2	ODF3B	RP11-383H13.1	TMEM100
ANGPTL1	CHST13	FBLN2	KCNN4	OGN	RP11-456H18.2	TMEM119
ANK3	CHST15	FBXO16	KCNS3	OLFML2B	RP11-53616.2	TMEM126A
ANKRD44	CITED4	FGF9	KIAA1217	OMD	RP11-556K13.1	TMEM150C
ANKRD9	CKAP2	FHL2	KIAA1244	OPN3	RP11-73E17.2	TMEM154
ANLN	CKAP2L	FNI	KIF11	ORMDL2	RP11-841C19.6	TMEM200A
ANO5	СКВ	FNDC1	KIF18A	OSBPL3	RP2	TMEM59L
ANPEP	CKS2	FNIP2	KIF20A	OSTC	RPL22L1	TMOD1
ANXA1	CLCF1	FOSL1	KIF23	OTUD1	RPL29P33	TMOD3
ANXA8	CLDN1	FOXF1	KIF5C	P4HA3	RPSAP4	TMSB4X
ANXA8L1	CLDN7	FOXM1	KIFC1	PAMR1	RPSAP58	TMSB4XP1
ANXA8L2	CLIC3	FRMD6	KL	PAPPA	RRM2	TMSB4XP2
AOC2	CLIC6	FRRS1	KLF6	PARP8	RTN2	TMSB4XP6
AOC3	CNIH	FSTL1	KLF7	PAWR	S100A2	TMSB4XP8
AP000330.8	CNKSR2	FSTL3	KLF9	PAXI	S100A3	TNFAIP6
APCDD1L	CNTN1	FTCD	KLHL35	PBK	S100A4	TNFRSF11A
APOBEC3C	COL13A1	FZD1	KLHL5	PCDH1	S100A6	TNFRSF11B

AQP1	COL15A1	FZD10	KLRD1	PCDH10	S1PR3	TNFRSF12A
ARG2	COL18A1	FZD3	KPNA2	PCDH18	SAMD9	TNFSF10
ARHGAP11A	COLIAI	GADD45B	LACCI	PCSK5	SCD5	TNFSF11
ARHGAP24	COL22A1	GALNT12	LAMA5	PDE10A	SCO2	TNNI2
ARHGAP28	COL24A1	GALNT13	LAMB3	PDGFA	SCXA	TOM1L1
ARHGAP44	COL25A1	GALNT16	LAMC2	PDGFC	SCXB	TOP2A
ARHGAP9	COL5A3	GALNT7	LANCL3	PDLIM7	SDK1	TPX2
ARID5B	COL6A3	GAS1	LEFTY2	PERP	SEMA3C	TRAK1
ARL4A	COL7A1	GAS2L3	LEPREL1	PGM2L1	SEMA4D	TREM1
ARL4C	COL8A1	GDF6	LHX9	PGR	SEMA5A	TRIM36
ARNTL2	COL8A2	GFRA2	LIF	PHLDA2	SERINC2	TRPM8
ARSI	CORO1C	GGH	LINC00152	PI4K2B	SERPINB8	TSC22D3
ASAP2	CPEB2	GINS2	LINC00467	PIM1	SERPINE1	TSPAN12
ASPM	CRLF1	GINS4	LINC00517	PITPNM3	SERPINE2	TSPAN2
ASPN	CRNDE	GIPR	LINC00545	PLAT	SERPINF1	TSTD1
ATAD5	CRTAC1	GJA1	LINC00607	PLAUR	SERTAD1	TTC9
ATP6AP2	CSDC2	GJB2	LMNB1	PLD1	SGK1	TTK
ATRNL1	CSRNP1	GJC1	LMO2	PLEKHF2	SGMS2	TUBA1A
B3GNT2	CTC-298B17.1	GLIS1	LMX1B	PLEKHG1	SGOL2	TYMP
B3GNT5	CTD-2319112.1	GLIS3	LOXL1	PLK4	SH3KBP1	TYMS
BAALC	CXCR7	GLP2R	LRRC8B	PLS3	SHC4	TYRO3
BACH1	CXorf57	GLRB	LRRC8C	PLXNA2	SHCBP1	UAP1
BAG2	CYB5R4	GLRX	LRRC8E	PLXNA4	SIK1	UBAC2
BARX2	CYFIP2	GLRX3	LRRFIP1	PMAIP1	SIPA1L2	UBE2D1
BCAS4	CYP27B1	GLYATL2	LTBP4	PNMA2	SIX1	UBE2T
BDNF	DBNDD1	GMNN	LUM	PNP	SKAP2	UGP2
BIRC5	DDHD1	GNAI1	LY6D	PODXL	SLC16A10	UHRF1
BIRC7	DENND3	GNG11	LY96	PODXL2	SLC24A3	ULBP1
BMP2K	DEPDC1	GNPNAT1	LYPLA1	POPDC3	SLC2A12	ULBP2
BMPR1B	DGKI	GPC4	MAD2L1	POSTN	SLC2A5	UPK1B
BPGM	DIAPH3	GPM6B	MAGED4B	PPP1R14C	SLC30A1	UROC1
BRCA2	DIRASI	GPR176	MAMDC2	PPP1R36	SLC31A2	VANGLI
BTBD16	DIXDC1	GPR183	MAPIA	PPTC7	SLC35E4	VCAN
BUB1	DKK3	GPR56	MAP1B	PQLC3	SLC38A5	VEGFC
BUB1B	DLGAP5	GPR64	MAP7	PRC1	SLC39A14	VEPH1
BVES	DLX4	GRIA2	MAPKAPK3	PRDM1	SLC41A2	VPS13A
BZW2	DNAJC12	GRIP1	MARC2	PREX2	SLC44A5	VSIG2
C10orf105	DNAJC22	GSKIP	MARCKS	PRKAR2B	SLC4A7	VSNL1
C11orf82	DNER	GTDC1	MARS2	PROCR	SLC6A6	VWC2
C12orf5	DOK6	H2AFZ	MBP	PRSS23	SLC7A2	WDR69
CIGALTI	DOPEY2	HBA2	MELK	PSAT1	SLC7A5	WISP1
CIGALTICI	DPP4	HBB	MEOX2	PTGER1	SLFN11	WNT16
Clorf114	DSG2	HEBP2	MET	PTGER2	SLITRK6	WNT5A
CIQTNF1	DTL	HEG1	MEX3D	PTGER4	SLMO2	WNT5B
CIQTNF2	DUSP4	HES6	MFSD6	PTGES	SMIM5	WNT7B

1						
C1QTNF3	DUSP5	HEY2	MICAL2	PTGFR	SNHG5	WNT9A
C1QTNF7	DUSP6	HHIPL1	MINOS1	PTGS2	SNTB1	YRDC
C3orf14	DUSP8	HJURP	MIR31HG	PTPRD	SNX10	YY2
C3orf52	DYNLT3	HMCN1	MKI67	PTPRK	SNX7	ZBTB21
C4orf48	DYSF	HMGA1	MLF11P	PTTG1	SOD2	ZDHHC2
C5orf38	E2F1	HMGA2	MMP28	PTX3	SORBS2	ZIC1
C6orf132	EAF2	HMGB3P10	MOB3B	PXDN	SORT1	ZIC4
CA12	EBF3	HMMR	MOXD1	QPCT	SOWAHC	ZNF277
CACHD1	ECT2	HOMER2	MPP7	R3HDML	SOX11	ZNF365
CACNAIA	EDEM2	HOXB2	MSC	RAB23	SPAG1	ZNF367
CAPS	EDNRA	HOXB-AS1	MSX2	RAB31	SPECC1	ZNF503-AS1
CASC5	EEF1A1P12	HPSE2	MTIA	RAB32	SPINT1	ZNF544
CASP4	EEF1A1P33	HS3ST2	MT1F	RAB38	SPRY1	ZNF883
CBR3	EEF1E1	HSD17B11	MT1G	RABIF	SPSB4	ZWILCH
CCDC109B	EFHD2	HSD3B7	MT1L	RAC2	SQRDL	ZWINT
CCDC112	EGR2	HSPB8	MT1M	RACGAP1	ST3GAL1	
CCL20	EHD4	HTRA1	MTHFD1L	RAD51	ST6GAL2	
CCNB1	ELMO1	HUNK	MTSS1	RAD51AP2	ST6GALNAC5	
CCNB2	EMP1	ICA1	MUC12	RAI14	STX1A	

Supplementary Table 7 Gene list of the 'Upregulated genes in OA' gene set³⁰.

Fig.	Measure	Groups compared	Mean	Pooled	Cohen's d	95% CI of
		(control vs. experimental)	difference	SD	(magnitude)	difference
		· · ·				between means
1b	OARSI grade	Undamaged vs. Damaged	2.318	0.798	2.904	2.526 to 3.281
					(huge)	
1e	OARSI grade	2-month-old vs. 24-month-old	2.250	0.53	4.243	1.206 to 7.279
					(huge)	
1f	OARSI grade	Sham vs. DMM	3.389	0.894	3.791	2.156 to 5.426
					(huge)	
3g	OARSI grade	WT vs. iCKO	1.030	1.667	0.618	0.283 to 0.952
-					(medium)	
	Medial tibial bone score	WT vs. iCKO	1.595	1.252	1.275	0.891 to 1.658
					(very large)	
	Osteophyte maturity	WT vs. iCKO	0.798	0.744	1.073	0.707 to 1.438
					(large)	
	Synovial inflammation	WT vs. iCKO	0.452	0.613	0.738	0.397 to 1.079
					(medium)	
4b	OARSI grade	DMM WT vs. DMM iCKO	1.708	1.197	1.427	0.882 to 1.972
	-				(very large)	
	Medial tibial bone score	DMM WT vs. DMM iCKO	1.250	1.007	1.241	0.722 to 1.760
					(very large)	
	Osteophyte maturity	DMM WT vs. DMM iCKO	0.792	0.728	1.087	0.588 to 1.587
					(large)	
	Synovial inflammation	DMM WT vs. DMM iCKO	0.792	0.728	1.087	0.588 to 1.587
					(large)	
5d	OARSI grade	WT vs. iCKO	1.533	0.799	1.920	1.101 to 2.739
	C C				(very large)	
	Medial tibial bone score	WT vs. iCKO	1.767	0.935	1.890	1.079 to 2.701
					(very large)	
	Osteophyte maturity	WT vs. iCKO	1.267	0.834	1.519	0.792 to 2.246
					(very large)	
	Synovial inflammation	WT vs. iCKO	0.800	0.507	1.578	0.839 to 2.316
					(very large)	
	OARSI grade	iCKO vs. iCKO+NAC	-1.333	0.882	-1.512	-2.325 to -0.698
	_				(very large)	
	Medial tibial bone score	iCKO vs. iCKO+NAC	-1.292	1.049	-1.231	-1.985 to -0.478
					(very large)	
	Osteophyte maturity	iCKO vs. iCKO+NAC	-1.417	0.833	-1.700	-2.560 to -0.840
					(very large)	
	Synovial inflammation	iCKO vs. iCKO+NAC	-1.000	0.540	-1.852	-2.754 to 0.949
					(very large)	
6g	OARSI grade	DMM iCKO C vs. DMM iCKO	1.500	1.103	1.360	0.446 to 2.274
-	_	SeD			(very large)	
	Medial tibial bone score	DMM iCKO C vs. DMM iCKO	1.000	0.516	1.936	0.846 to 3.027
		SeD			(very large)	
	Osteophyte maturity	DMM iCKO C vs. DMM iCKO	0.667	0.483	1.380	0.461 to 2.300
	·	SeD			(very large)	
	Synovial inflammation	DMM iCKO C vs. DMM iCKO	0.667	0.408	1.633	0.643 to 2.623
		SeD			(very large)	

Supplementary Table 8 Cohen's *d* effect size measurements of statistically significant changes observed from *in vivo* data scored based on ordinal scoring systems. Abbreviation: CI, confidence interval.

Supplementary Note 1 The detailed results of statistical analyses using *t* test and two-way ANOVA, referring to Fig. 2a, k, l, m, Fig. 5b, and Supplementary Fig. 4c.

The details of statistical analyses for Fig. 2a, k, l, m, Fig. 5b, and Supplementary Fig. 4c are summarized in this file.

Fig. 2a Relative mRNA expression level of *Sephs1* in primary cultured chondrocytes isolated from *Sephs1*^{*fl/fl*} or *Sephs1*^{*fl/fl*}; *Col2a1-Cre* mice (n = 4).

Two independent sample t test (equal variance)							
Shapiro-Wilk test		Lavana'a taat	R value	OF() Of at diff of moone			
	Sephs1 ^{1/1}	Col2a1-cre; Sephs1 ^{1/f}	Levenestest	r-value	95% CI OI UIII OI Means		
Sephs1 ^{#/#} vs.	W = 0.8836	W = 0.9396	F-value = 5.5856	B value < 0.0001	0 9205 to 1 1492		
Col2a1-Cre; Sephs1 ^{fl/fl}	<i>P</i> -value = 0.3541	<i>P</i> -value = 0.6521	<i>P</i> -value = 0.0560	F -value < 0.0001	0.8305 10 1.1482		

Fig. 2k Quantification of immunofluorescence positivity of γ -H2AX in primary cultured chondrocytes transfected with negative control siRNA or siRNA targeting *Sephs1* followed by NAC treatment at the indicated doses (n = 4).

Two-way ANOVA with siRNA and treatment siRNA : treatment interaction as factors F(1,18) = 58.1002 for siRNA, *P*-value < 0.0001, df = 1 F(2,18) = 34.0279 for treatment, *P*-value < 0.0001, df = 2 F(2,18) = 26.7860 for siRNA : treatment, *P*-value < 0.0001, df = 2

Dunnett's post-hoc test						
Groups	P-value	Estimates 95% CI of diff				
NAC 0 : siSephs1 vs NAC 0 : siNC	<0.0001	16.07 to 27.77				
NAC 0 : siSephs1 vs NAC 0.5 : siSephs1	<0.0001	12.63 to 24.33				
NAC 0 : siSephs1 vs NAC 0.5 : siNC	<0.0001	16.74 to 28.44				
NAC 0 : siSephs1 vs NAC 1 : siSephs1	<0.0001	15.69 to 27.39				
NAC 0 : siSephs1 vs NAC 1 : siNC	<0.0001	17.63 to 29.33				

Fig. 21 Quantification of SA- β -Gal positivity in primary cultured chondrocytes transfected with negative control siRNA or siRNA targeting *Sephs1* followed by NAC treatment at the indicated doses (n = 4).

Two-way ANOVA with siRNA and treatment siRNA : treatment interaction as factors F(1,18) = 69.7372 for siRNA, *P*-value < 0.0001, df = 1 F(2,18) = 16.6613 for treatment, *P*-value < 0.0001, df = 2 F(2,18) = 22.6534 for siRNA : treatment, *P*-value < 0.0001, df = 2

Dunnett's post-hoc test					
Groups	P-value	Estimates 95% CI of diff			
NAC 0 : siSephs1 vs NAC 0 : siNC	<0.0001	8.444 to 14.88			
NAC 0 : siSephs1 vs NAC 0.5 : siSephs1	<0.0001	3.231 to 9.671			
NAC 0 : siSephs1 vs NAC 0.5 : siNC	<0.0001	7.682 to 14.12			
NAC 0 : siSephs1 vs NAC 1 : siSephs1	<0.0001	6.963 to 13.40			
NAC 0 : siSephs1 vs NAC 1 : siNC	<0.0001	7.714 to 14.15			

Fig. 2m and Supplementary Fig. 4c Relative mRNA expression of SASP factors in chondrocytes transfected with negative control siRNA or siRNA targeting *Sephs1* (n = 6).

Two independent sample t test (equal variance)						
Mmn2	Shapi	ro-Wilk test	test Discussion test Disclus		05% CL of diff of moone	
wimp3	siNC	siSephs1	Levenestest	r -value	95% CI OI UIII OI Means	
siNC vs.	W = 0.9407	W = 0.9574	F-value = 0.6864	$B_{\rm Voluo} = 0.0122$	0 2772 to 1 7979	
siSephs1 P-	<i>P</i> -value = 0.6652	<i>P</i> -value = 0.7997	<i>P</i> -value = 0.4267	P-value = 0.0123	0.2773 10 1.7878	

Two independent sample t test (equal variance)						
Mmp10	Shapii	-Wilk test		05% Cl of diff of moone		
winp10	siNC	siSephs1	Levenestest	r -value	95% CI OI UIII OI Means	
siNC vs.	W = 0.9547	W = 0.9565	F-value = 0.0253	$B_{\rm M}$ value -0.0094	0.0744 to 4.4425	
siSephs1 P-valu	<i>P</i> -value = 0.7785	<i>P</i> -value = 0.7924	<i>P</i> -value = 0.0084	0.2744 to 1.4435		

Two independent sample t test (equal variance)							
Mmm 42	Shapii	ro-Wilk test	Levene's test	D volue			
wmp13	siNC	siSephs1		r-value	95% CI OI UIII OI means		
siNC vs.	W = 0.9237	W = 0.9814	F-value = 3.9749	B volue - 0.0051	0.2000 to 1.7250		
siSephs1 P-va	<i>P</i> -value = 0.5325	<i>P</i> -value = 0.9584	<i>P</i> -value = 0.0742	P-value = 0.0051	0.3996 to 1.7250		

Welch's t test (unequal variance)						
Mmp14	Shapir	Shapiro-Wilk test		<i>R</i> value	05% CL of diff of moone	
	siNC	siSephs1	Levenestest	r-value	95% CI OI UIII OI Means	
siNC vs.	W = 0.9475	W = 0.8348	F-value = 6.0763	$B_{\rm M}$ value = 0.0240	0.0000 to 1.5500	
siSephs1	<i>P</i> -value = 0.7203	<i>P</i> -value = 0.1181	<i>P</i> -value = 0.0334	P-value = 0.0249	0.2223 10 1.5520	

Welch's t test (unequal variance)						
lgfbp7	Shapiro-Wilk test		Lovens's test	D volue	OFO(Cl of diff of moone	
	siNC	siSephs1	Levenestest	F-value	95% CI OI UIII OI IIIEAIIS	
siNC vs.	W = 0.9607	W = 0.8915	F-value = 24.4072	$B_{\rm M}$ value -0.0124	0.0714 to 0.0140	
siSephs1	<i>P</i> -value = 0.8251	<i>P</i> -value = 0.3259	<i>P</i> -value = 0.0006	P-value = 0.0124	0.8711 to 3.3142	

Two independent sample t test (equal variance)						
Verfe	Shapii	o-Wilk test	Duralia tast Duralia		OF0/ Cl of diff of moone	
vegra	siNC	siSephs1	Levenestest	<i>F</i> -value	95% CI OI UIII OI Means	
siNC vs.	W = 0.9149	W = 0.8507	F-value = 3.0702	$B_{\rm M}$ value -0.0275	0.0000 to 0.0001	
siSephs1 P-value = 0.	<i>P</i> -value = 0.4668	<i>P</i> -value = 0.1595	<i>P</i> -value = 0.1103	P-value = 0.0375	0.0229 to 0.6291	

Fig. 5b Body weight of 21-week-old DMM-operated mice after completion of the supplementation scheme ($n \ge 6$).

Two-way ANOVA with genotype and treatment	
F(2,28) = 0.7594 for treatment, <i>P</i> -value = 0.4773, df = 2	
F(1,28) = 2.1090 for genotype, <i>P</i> -value = 0.1576, df = 1	

No post-hoc test was performed after two-way ANOVA analysis.