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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Review of “A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially 

resolved tissue phenotyping at single-cell resolution” by M. Bortolomeazzi et al. 

 

In their manuscript the authors have proposed SIMPLI as a multiplexed imaging analysis-software that 

performs single cell analysis for different types of multiplexed imaging modalities. To demonstrate the 

efficacy of their platform the authors have analyzed four different multiplexed data sets using SIMPLI. 

 

Unfortunately, despite its potential, SIMPLI falls short of its high goals. Specifically, 

 

1. Approaches based on cell and pixel level analysis have already been proposed (see, eg. 

https://doi.org/10.1101/2021.01.05.425362) and in my opinion, those proposed by the authors are 

not novel enough to merit publication. 

 

2. Unifying image analysis pipelines have also been proposed (eg. 

https://doi.org/10.1101/2021.03.15.435473). Again, I am finding it difficult to see the fundamental 

improvement that SIMPLI provides. 

 

3. Although the authors are proposing a generalized and technology-agnostic pipeline, their detailed 

description of SIMPLI shows that it is a collection of many available software tools/scripts (eg. 

EBImage, CellProfiler, Seurat, etc.) and requires many user- (or expert-) defined (ad-hoc) parameters 

like many of the current software technologies that the authors criticize. 

 

4. The specific computational methods that have been proposed are not novel but have been known in 

image processing/analysis, computer vision literature, and do not provide any significant technology 

innovation. In fact, the CODEX paper (http://www.ncbi.nlm.nih.gov/pmc/articles/pmc7479520/), 

whose data the authors have utilized in their work, performs similar types of analyses. In my opinion 

the differences do not meet the novelty and significance threshold of Nature Communications. 

 

5. I was quite surprised to see the short shrift given to cell segmentation. This is a major bottleneck 

that affects analyses of these images, and some seminal work has been done is this area 

(https://doi.org/10.1101/2021.03.01.431313). It is not clear how robust SIMPLI is in this regard. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors describe a new containerised workflow for the analysis of spatial data derived from 

multiple platforms, including CODEX, IMC and mIF. With these technologies are becoming more 

commonplace, this study is timely as it aims to streamline the downstream quantitative analyses. 

They showcase their tool using 4 case studies with diverse tissues and distinct biological questions, 

exemplifying the diversity of applications of SIMPLI. Overall this is a well-written and easy to read and 

understand manuscript. 

 

Major comments: 

- The main strengths of SIMPLI seems to be quick computing time and an automated pipeline that 

reduces manual input from users and processing time. However, it largely relies on other well-

established tools that are used for each of the main steps in the workflow (such as CellProfiler, 

EBImage, Seurat), and the distances calculations between cells has been implemented in multiple 

other tools that the authors have highlighted in Table 1. The types of analyses suggested by SIMPLI 

have been featured in multiple other studies as well that the authors have largely referenced. This 



work is likely be of most interest to computational biologists working with microscopy images or 

imaging facilities or labs. Significant major novel methodological contributions that expand our ability 

to understand spatial data were not clearly identifiable. 

 

The authors discuss two modes of classification, using an unbiased approach with UMAPs and with 

expert input. Based on the manuscript, it was unclear why one was used over another, or how a 

binary threshold compared to that of an unbiased clustering approach. While the advantage of a 

clustering approach is not having to rely on expert input, in theory, it could also potentially help 

distinguish cells with different marker levels (e.g PDL1 high and PDL1 low expressing cells), that would 

be missed with a single threshold. However, the authors provide no metrics of the strengths of the 

unbiased clustering approach used by SIMPLI. 

 

Normalisation of intensity is a generally a debated topic in the field. While normalisation has the 

advantage of being able to use similar thresholds across images or overlap clusters of cell phenotypes, 

the potential danger is that the level of background intensity and intensity of markers are often 

associated with tissue-specific properties (tissue age, length of time in fixation solution, among 

others). Therefore, a simple normalisation across tissues as used by the authors might over call or 

under call cell types. Additionally, often staining across a single tissue is not uniform, with better 

staining in some areas than others. The authors should provide a comparison of how the analysis of 

normalised data compares to that using raw data, tailoring thresholds for each image. 

 

The pixel-based analysis is potentially a source of novelty, as it does not rely on cell segmentation, 

and provides information on extracellular or secreted proteins. The results they provide with secreted 

IgA are quite intriguing. What is the size of the IgA ‘aggregates’ that can be detected? It is unlikely to 

be single-protein resolution. While this is linked to the resolution at which the tissues were imaged, 

authors should touch on potentially artefacts and limitations of these analysis, including how SIMPLI 

distinguishes real secreted aggregates from dirt or other artefacts that lead to ‘bright spots’ in the 

images. 

 

Selection of thresholds to identify cells positive for a marker in Figure 3F,G and Figure 4B,C are not 

convincing based on the distribution. The threshold seems to be arbitrary and roughly in the centre of 

the distribution, likely resulting in many false negative and false positive phenotypes. Could the 

authors expand on how they chose these thresholds, and how they have validated them? 

 

The authors claim that there are significant differences in the distribution of distances from Tregs, B 

cells and macrophages to tumour cells and B cells to blood vessels with very significant p-values 

reported from Wilcoxon tests. However, visually, there are no convincing differences in the 

distributions. This is an often encountered problem in spatial analysis, where the large number of cells 

dramatically increases the power, resulting in seemingly significant differences. Did the authors 

calculate the distance for each cell in each of the 35 images, and then used that as their input to the 

Wilcoxon test, or did they calculate the average or median in each image and then performed the 

tests? The former is not ideal, given that each cell is not independent of each other and cannot be 

considered independent replicates. While in general I agree that the statistics for these types of 

analyses are still in their infancy and taking a non-parametric approach is a good proxy in most cases, 

I disagree with having this as a major result of the paper with such unconvincing differences in 

distributions. 

 

Unfortunately due to technical reasons on my end unrelated to your software, I was unable to install 

and test it. Overall, based on the code repository, I commend the group for having a well-developed 

documentation. My general impression is that the usability of the software is highly unlikely to change 

my opinion regarding the content and value of the work for the community/readership of Nature 

Communications. 

 

Minor comments: 



The authors have selected relatively small ROIs for their analysis of 1 mm^2. However, most 

multiplex technologies allow staining and scanning of whole tissue sections. It is unclear how the 

authors selected specific ROIs in the images, and how their tool will scale up to larger ROIs covering 

entire tissue sections. 

 

The the supplementary table 1, the legend is cutoff into two pages. 

 

In Figure 4g, it is unclear what the highlighted cells correspond to. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Bortolomeazzi et al present SIMPLI, an integrated multiplexed image analysis pipeline that can handle 

data from a range of different modalities. The authors first describe the workflow of their pipeline, 

which includes image preprocessing and normalization, single cell segmentation and phenotyping, and 

downstream spatial analysis. They then apply SIMPLI to a range of different imaging datasets, 

showing that their software is capable of analyzing data from many different sources. The authors 

have made SIMPLI publicly available via a well-documented github page. 

 

Although the authors have created a one-stop-shop for all of the most common steps in analyzing 

imaging data, they have not adequately demonstrated that they solved the problem which has led to 

the current proliferation of different image analysis tools. In particular, the reason so many different 

approaches exist for analyzing imaging data is because of the peculiarities of imaging data from 

different sources. Given that no benchmarking was performed in this paper, it is not possible to 

evaluate how SIMPLI performs compared to these other, more limited analytical packages. 

 

 

Major concerns: 

1. The authors do not clearly delineate where they have developed novel techniques, and where they 

are using previously developed tools. For example, they use CellProfiler as their segmentation engine 

and Seurat for clustering. However, these are described in the same way as their spatial analysis 

code, which they have written themselves. This makes it challenging to identify which parts of the 

work represent novel contributions conceptually, and which are software engineering advancements 

meant to facilitate easy interoperability of existing tools. 

2. Given that the field of image analysis is progressing so rapidly, the ability to swap out individual 

components of such a workflow is a crucial aspect. Segmentation is one example where the state of 

the art is advancing rapidly. The authors have chosen to use CellProfiler, instead of more accurate 

methods like StarDist, NucleAIzer, CellPose, or Mesmer. There are significant technical hurdles 

involved with integrating deep learning based segmentation into a pipeline; if the authors feel the 

costs outweigh the benefits, these should be discussed and justified in the text. Either way, a more 

detailed description of the modularity of their pipeline and examples for how to provide alternate 

containerized algorithms for key steps in the pipeline should be provided 

3. The authors do not perform any benchmarking in the paper. Instead, to demonstrate that their 

approach works, they show a series of vignettes from different imaging modalities. As a methods 

paper, it is not necessary to discover novel biology in addition to demonstrating that their method 

performs well. However, in the absence of any benchmarking, the vignettes are the only source of 

confirmation that their pipeline produces reasonable results. As such, the fact that PD-L1 interacting T 

cells showed no change in cytotoxic markers (Figure 4e) does not represent the type of confident 

evidence needed to validate their approach. Similarly, the observation that Tregs are 6 um 

(approximately 1 cell length) closer to tumor cells in DII (Figure 5c) is not a sufficiently robust finding 

to validate their approach. In its current form, it is not possible to say whether their method actually 

works on imaging data from different modalities, or whether it simply produces results on imaging 

data from different modalities. 



4. The authors appear to have systematically under-represented the ability of competing methods to 

work across image modalities in Table 1. As just two examples, both Ilastik and QuPath are capable of 

processing imaging data from all five modalities listed in the table. It is not clear how the authors 

populated this list, but it creates a highly biased impression of the relative advantage of their method. 

 

Minor concerns 

1. The authors should add Giotto 

(https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02286-2), and MCMICRO 

(https://www.biorxiv.org/content/10.1101/2021.03.15.435473v1.full) to Table 1 

2. Image preprocessing is often platform specific, with different algorithms, approaches, and 

thresholds used for image data from different multiplexed imaging platforms. The authors have 

instead opted for a single preprocessing pipeline. The authors should validate that their selection of a 

single workflow for preprocessing is not inferior to the custom, platform-specific preprocessing 

employed for these different imaging techniques. In addition, some guidance for users about which 

parameters work well out of the box, and which will require fine-tuning, would be useful. 

3. The authors make the following claim in a few places in the text: “Cells are assigned to populations 

using previously defined masks.” However, it’s not clear what this means. The description of cell 

classification in the methods section states that either unbiased clustering or user-defined thresholds 

are used to identify distinct populations. However, in Figure 2e it appears that cell populations have 

instead been defined using mask overlap. A more detailed description of what this step entails, and 

why it was chosen, is necessary to understand their approach 

4. In general, the methods section is quite sparse, and does not describe the analytical workflow in 

sufficient detail to understand what the authors have done at each step. For example, the authors 

state that CellProfiler4 is used to generate thresholded images and masks, as well as the single-cell 

segmentation step, but do not go into further detail. It would be helpful to include more details here, 

such as which parameters need to be changed, how these masks are generated, and when one would 

use the different parts of the pipeline. 

5. In the caption for Figure 2, the authors state that all cells overlapping with the lamina propria mask 

by at least 30% were considered resident. How was this threshold chosen and how does varying this 

threshold affect the results? 

6. In Figure 2f, it would be more helpful to show stacked bar plots of the cell type breakdown (or 

somehow group the observations by CLN). This would allow the reader to better assess heterogeneity 

across CLNs. 

7. In figure 3, the authors use both clustering methods to identify T cell subpopulations. However, 

they do not compare the results from these two approaches to show how closely they agree with one 

another. 

8. In Figure 4g, the authors confirmed the localization of PDL1+CD68+ macrophages in close 

proximity to PD1+CD8+ cells by inspecting images, but the representative example is not clear. From 

where the arrow is pointing in the image inset, it looks as if the CD68 (pink) signal is adjacent to the 

PDL1 (green) signal, instead of being co-expressed in a single cell. Furthermore, the authors only 

phenotyped CD8+ T cells using their thresholding approach. To back-up the claim that PDL1+CD68+ 

macrophages are in close proximity to PD1+CD8+ cells, the authors could use unsupervised clustering 

or thresholding to quantify the number of CD68+ macrophages and quantify their distance to the 

PD1+CD8+ cells. 

9. In the spatial analysis in Figure 5, the distance calculations of immune cells to tumor cells and 

blood vessels could be confounded by the number of tumor cells or the size of the epithelium in the 

ROI. It would be helpful here to perform a randomization of the cells in each ROI to generate a null 

distribution and assess whether the calculated distances are significant compared to a null distribution. 

10. The authors state in the introduction that many competing approaches require “ad hoc 

configuration files.” However, the authors use manually specified segmentation parameters in a 

configuration file as part of their analysis pipeline, and it appears that each dataset required a 

different set of parameters in order to produce accurate segmentations. This is likely the result of 

using Cell Profiler to perform segmentation, which is extremely sensitive to differences in image 

intensity and often requires manual tuning. 



 

 

 

Reviewer #4: 

None 
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Reviewer n.1 
1. Approaches based on cell and pixel level analysis have already been proposed 
(see, eg. https://doi.org/10.1101/2021.01.05.425362) and in my opinion, those 
proposed by the authors are not novel enough to merit publication. 
The tool mentioned by the Reviewer is described in a preprint, not yet peer reviewed, 
paper and the codes are not yet publicly available. This indicates that the field is fast 
moving and our method is as timely and novel as the others. 
From the submitted manuscript we gather that the main differences with SIMPLI are: 

1- At the cell level, this tool uses FlowSOM for clustering, which generally returns a 
very large number of clusters (100 in the cited preprint). These clusters then require 
extensive manual curation to derive biologically meaningful cell phenotypes. 
SIMPLI (which relies on Seurat for unsupervised clustering) allows the user to 
perform clustering at different levels of resolution in a single run and returns 
visualisations plots to help identify the most biologically meaningful phenotypes.  

2- At the pixel level, the cited method applies unsupervised clustering to pixel values. 
SIMPLI instead measures pixel positive areas for all or user-defined combinations 
of markers. Additionally, these positive areas can be normalised over the area of 
the whole image, specific tissue compartments or cell populations for direct 
comparisons across samples and conditions. 

For these reasons we think that the tools are sufficiently different. Moreover, other 
existing approaches enabling analyses at cell and pixel level all have limits in terms of 
technologies and analytical steps that they can cover. These methods are all listed in 
Table 1 and their limits are further explained in the Introduction (p. 3-4). 
 
2. Unifying image analysis pipelines have also been proposed (eg. 
https://doi.org/10.1101/2021.03.15.435473).  
The approach cited by the reviewer (MCMICRO) is again described in a preprint, not 
yet peer-reviewed paper. Also in this case, it is significantly different from SIMPLI in 
terms of: 

1- Tools implemented in the two pipelines, which have no overlap.  
2- Possibility offered by SIMPLI (but not MCMICRO) to skip specific analytical steps 

and be use alternative input at each step of the analysis. This is now explained in 
the Results (p. 7), new Supplementary Fig.1 and software documentation in 
Github. 

3- Requirements by MCMICRO of a specific file directory structure, thus limiting 
flexibility. SIMPLI instead only requires metadata files than can be edited with any 
text editor. This is now explained in the Introduction (p. 4), in the Methods (p. 31), 
and in the software documentation in Github. 

 
3. Although the authors are proposing a generalized and technology-agnostic pipeline, 
their detailed description of SIMPLI shows that it is a collection of many available 
software tools/scripts (eg. EBImage, CellProfiler, Seurat, etc.) and requires many 
user- (or expert-) defined (ad-hoc) parameters like many of the current software 
technologies that the authors criticize. 
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SIMPLI integrates novel and well-established tools, which all require custom codes to 
be run as standalone software. This is a limit for users with limited computational 
background. SIMPLI overcomes this limit by automatically formatting input and output 
of each tool to make them interoperable, without the need of user intervention but still 
allowing the user to choose specific parameters if desired. This is now explained in 
the Introduction (p. 4), Results (p. 7), Methods (p. 31-33) and Supplementary Fig.1) 
It should be noted that, of all the tools used by SIMPLI, CellProfiler is the only one 
requiring user-defined parameters. This step cannot be avoided because it depends 
on the specifics of the experiment (tissue type, imaging technology, etc.). However, 
parameters can be configured through CellProfiler’s graphical interface and the 
resulting metadata can then be easily imported into SIMPLI. Similarly, the expert-
guided definition of thresholds cannot be avoided because it is related to the nature of 
the tissues under investigation. 
 
4. The specific computational methods that have been proposed are not novel but 
have been known in image processing/analysis, computer vision literature, and do not 
provide any significant technology innovation. In fact, the CODEX paper 
(http://www.ncbi.nlm.nih.gov/pmc/articles/pmc7479520/), whose data the authors 
have utilized in their work, performs similar types of analyses. In my opinion the 
differences do not meet the novelty and significance threshold of Nature 
Communications.  
As explained in previous points, SIMPLI introduces novel tools and integrates them 
with well-established ones (now clarified in Supplementary Fig.1 and in the text). 
 
In the specific case of the CODEX Toolkit , itis a pipeline for the cell level analysis of 
CODEX images only. We show that SIMPLI can not only perform similar analysis 
(Figure 5a,b) but also add the cell spatial characterisation (Figure 5 c-f) that the 
CODEX Toolkit does not provide.  
 
5. I was quite surprised to see the short shrift given to cell segmentation. This is a 
major bottleneck that affects analyses of these images, and some seminal work has 
been done is this area (https://doi.org/10.1101/2021.03.01.431313). It is not clear how 
robust SIMPLI is in this regard.  
The method cited by the reviewer is again described in a pre-print manuscript and we 
do think it is appropriate to implement it into SIMPLI before it has been fully peer 
reviewed. 
To address the point of the Reviewer (see also response to point 2 of Rev. 3), in 
addition to CellProfiler, we have now implemented the option to perform segmentation 
with StarDist, which is based on machine learning and uses star-convex polygons to 
represent cell shapes1. It is therefore a completely different approach than CellProfiler. 
We have expanded the description of the cell segmentation step in SIMPLI (p. 7) and 
added a comparison between StarDist and CellProfiler (Supplementary Figs. 1, 3a; 
Results p. 16; Methods p. 31). 
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Reviewer n.2  
Overall this is a well-written and easy to read and understand manuscript.  
We thank the reviewer and are glad that they found the manuscript clear. 
 
Major comments: 
1- The authors discuss two modes of classification, using an unbiased approach with 
UMAPs and with expert input. Based on the manuscript, it was unclear why one was 
used over another, or how a binary threshold compared to that of an unbiased 
clustering approach. While the advantage of a clustering approach is not having to rely 
on expert input, in theory, it could also potentially help distinguish cells with different 
marker levels (e.g PDL1 high and PDL1 low expressing cells), that would be missed 
with a single threshold. However, the authors provide no metrics of the strengths of 
the unbiased clustering approach used by SIMPLI.  
The two modes of cell classification (phenotyping) implemented in SIMPLI are not 
mutually exclusive and the user can prefer one over the other depending on their 
scientific questions and experimental setting. The two approaches can also be used 
to cross-validate each other, as shown for the analysis of PD1+ T follicular helper cells 
(Fig. 3d-h). We clarify this in the text (p.7), Fig. 1 and Supplementary Fig. 1. 
To compare cell classifications obtained with binary thresholding and unbiased 
clustering, we extended the analysis of all T cells unsupervised clusters shown in Fig. 
3d,e and confirmed that they are largely replicated using expert-defined thresholds 
(Supplementary Fig. 3b,c,d). This is now commented in the text (p. 17). 
To provide further evidence of the robustness of the unbiased clustering, we compared 
clusters at different levels of resolutions (0.25, 0.50, 1). All three runs of clustering 
group cells into similar populations. However, the five clusters shown in Fig. 3e (0.25 
resolution) were split into smaller subgroups when using higher resolutions. For 
example, as suggested by the reviewer, CD4+PD1+ T cells composing cluster 5 in 
Fig.3d-e were further split in CD4+ PD1 high and PD1 low cells when using a resolution 
of 1 (Supplementary Fig. 3a). This is now extensively commented in the Results (p. 
16-17), Methods (p. 37), revised Fig.3 and Supplementary Fig.3a. Finally, the 
possibility of choosing different levels of resolution for unsupervised clustering 
classification is now fully explained in the software documentation in Github 
 
2- Normalisation of intensity is a generally a debated topic in the field. While 
normalisation has the advantage of being able to use similar thresholds across images 
or overlap clusters of cell phenotypes, the potential danger is that the level of 
background intensity and intensity of markers are often associated with tissue-specific 
properties (tissue age, length of time in fixation solution, among others). Therefore, a 
simple normalisation across tissues as used by the authors might over call or under 
call cell types. Additionally, often staining across a single tissue is not uniform, with 
better staining in some areas than others. The authors should provide a comparison 
of how the analysis of normalised data compares to that using raw data, tailoring 
thresholds for each image.  
We shall note that in SIMPLI normalisation is performed separately for each marker in 
each sample by rescaling all pixel values of each channel up to the 99th percentile of 
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the distribution. It therefore should not be affected by tissue properties. Normalised 
images are then used to identify unique thresholds that are applied across samples. 
In addition, this step can be skipped by the user if desired. We clarified this in the 
Results (p. 7), revised Fig.1a and software documentation in GitHub. 
To address the point raised by the reviewer, we compared the pixel-level IgA 
distribution in normal colon mucosa with and without normalisation. This comparison 
showed a strong linear correlation between values of IgA+ areas from normalised and 
raw data (Supplementary Fig. 2c). This is now described in the Results (p. 12) and 
Methods (p. 36). 
 
3- The pixel-based analysis is potentially a source of novelty, as it does not rely on cell 
segmentation, and provides information on extracellular or secreted proteins. The 
results they provide with secreted IgA are quite intriguing. What is the size of the IgA 
‘aggregates’ that can be detected? It is unlikely to be single-protein resolution. While 
this is linked to the resolution at which the tissues were imaged, authors should touch 
on potentially artefacts and limitations of these analysis, including how SIMPLI 
distinguishes real secreted aggregates from dirt or other artefacts that lead to ‘bright 
spots’ in the images. 
The resolution of imaging mass cytometry (1µm2) unfortunately does not allow single-
molecule detection. It is however compatible with detection of secreted IgA 
aggregates, as shown in Figure 2b. We have several indications that these are real 
aggregates and not artefacts: 

1- Secreted IgA are usually formed of IgA dimers bound to a joining protein (J chain) 
and a secretory component which facilitates transcytosis through the mucosal 
epithelium. This process occurs preferentially in the epithelial crypts2. We now 
added histological evidence to show that secreted IgAs indeed localise in the 
epithelial crypts with only a minimal contribution of IgA+ area in the surface 
epithelium (Supplementary Figure 2a, Results p. 11-12). 

2- Bright pixel artefacts are removed during the image pre-processing step by 
applying Gaussian smoothing with a radius of 1.5 pixel before thresholding the IgA 
signal. This is now further explained in the Methods (p. 35-36). 

3- Remaining artefact located outside the tissue masks (an example is provided in 
Supplementary Figure 2a) are not retained because they do not overlap with any 
compartment mask (Supplementary Figure 2b).  

 
4- Selection of thresholds to identify cells positive for a marker in Figure 3F,G and 
Figure 4B,C are not convincing based on the distribution. The threshold seems to be 
arbitrary and roughly in the centre of the distribution, likely resulting in many false 
negative and false positive phenotypes. Could the authors expand on how they chose 
these thresholds, and how they have validated them? 
We agree with the Reviewer that the distribution of the marker expression across cells 
is not always reliable, particularly when it is not bimodal and thus does not indicate a 
clear value for the threshold. This is why thresholds for each marker were selected 
after expert visual inspection of the original images. We have expanded the general 
explanation of this approach in the manuscript (p. 8) and specifically for Figure 3f,g (p. 
17 and 37). 
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We now provide extensive support showing that cells identified by expert-defined 
thresholds and those identified by unsupervised clustering share very similar 
expression profiles (Figure 3e-h, Supplementary Fig.3b-d).  
Also in the case of Figure 4b,c we applied user-defined thresholds. In the new Figure 
4i (see response to minor point 3) we provide example of cells whose identity has 
been assigned with this approach and that indeed express all relevant markers.  
 
5- The authors claim that there are significant differences in the distribution of 
distances from Tregs, B cells and macrophages to tumour cells and B cells to blood 
vessels with very significant p-values reported from Wilcoxon tests. However, visually, 
there are no convincing differences in the distributions. This is an often encountered 
problem in spatial analysis, where the large number of cells dramatically increases the 
power, resulting in seemingly significant differences. Did the authors calculate the 
distance for each cell in each of the 35 images, and then used that as their input to 
the Wilcoxon test, or did they calculate the average or median in each image and then 
performed the tests? The former is not ideal, given that each cell is not independent 
of each other and cannot be considered independent replicates. While in general I 
agree that the statistics for these types of analyses are still in their infancy and taking 
a non-parametric approach is a good proxy in most cases, I disagree with having this 
as a major result of the paper with such unconvincing differences in distributions.  
The comparison of distances between cell populations in the two CRC subgroups was 
done in two rounds: 
First, the distributions of distances between five types of immune cells (macrophages, 
Tregs, CD8+, CD4+, and B cells) and blood vessels or tumour cells were compared 
with a non-parametric two-tailed Wilcoxon test, for a total of ten comparisons. After 
FDR correction, six comparisons resulted significant (Tregs to tumour cells; CD8 T 
cells to blood vessels; macrophages to tumour cells and blood vessels; B cells to 
tumour cells and blood vessels). 
Second, to take into account the fact that the large number of cells dramatically 
increases the test statistical power (i.e. the concern raised by the reviewer), we 
retained only significant comparisons where the median cell-cell distances was greater 
than 4µm. This roughly corresponds to the radius of B and T lymphocytes3 and 
reduced the number of significant comparisons to the four previously shown in Figure 
5c,d (Tregs to tumour cells; macrophages to tumour cells; B cells to tumour cells and 
blood vessels). 
We now decided to be even more restrictive and increased the difference of median 
cell-cell distances between the CRC subtypes to 8µm, corresponding to the diameter 
of B and T cells. We reasoned that this would mean difference of at least a cell 
monolayer. With this new cut-off only two of the comparisons are retained (Tregs to 
tumour cells and B cells to blood vessels, new Figure 5c,d). 
Moreover, we added a permutation test (see also response to point 3 and minor point 
9 of Rev. 3) where we compared the observed difference to the distribution of expected 
differences. This further analysis confirmed the significance of these observations 
(Figure 5e,f) 
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We now provide more detail on this in the Results (p. 25-26), Methods (p. 40) and 
modified Figure 5c-f. 
 
Minor comments: 
1- The authors have selected relatively small ROIs for their analysis of 1 mm^2. 
However, most multiplex technologies allow staining and scanning of whole tissue 
sections. It is unclear how the authors selected specific ROIs in the images, and how 
their tool will scale up to larger ROIs covering entire tissue sections.  
For Figures 2 and 3, the ROIs were indeed of 1mm2, selected as follows: 

• For the six colon mucosa samples (Figure 2), ROIs were selected to include 
the whole structure of the mucosa with the epithelial crypts in longitudinal 
orientation.  

• For the appendix (Figure 3), the ROI was selected to contain a whole lymphoid 
follicle along with the surrounding epithelium and lamina propria. The selection 
criteria are now described in the Methods (p. 35).  

For Figure 4, the ROI was >5mm2 and we report the performance of SIMPLI in Table 
2. We now also comment on this in the Results (p. 20), Methods (p. 39), and in the 
Discussion (p. 30). 
For Figure 5, we use ROIs of approximately 1mm2, as in the original publication. 
 
2- The the supplementary table 1, the legend is cutoff into two pages. 
This is because of the automatic conversion into pdf files. The supplementary tables 
are also available as original xls files where all legends are properly formatted. 
 
3- In Figure 4g, it is unclear what the highlighted cells correspond to. 
Figure 4g showed an example of CD8+PD1+ T cells in proximity to PDL1+CD68+ 
macrophages. 
We agree with the reviewer that this was not the clearest example and have now 
replaced the panel (now Figure 4i) to improve clarity. In the new panel we show key 
markers first individually and then in a merged image. We also added a better 
description in the figure legend.  
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Reviewer n.3  
Given that no benchmarking was performed in this paper, it is not possible to evaluate 
how SIMPLI performs compared to these other, more limited analytical packages.  
At present, a comprehensive benchmark of SIMPLI is not possible because the other 
potentially comparable software that also combine all analytical steps are not yet 
available. Moreover, the individual tools included in SIMPLI (CellProfiler, EBImage, 
Seurat) are all widely adopted for the analysis of imaging or single cell data.  
However, we added further supports to the robustness of SIMPLI in the response to 
the individual points below. 
 
Major concerns: 
1. The authors do not clearly delineate where they have developed novel techniques, 
and where they are using previously developed tools. For example, they use 
CellProfiler as their segmentation engine and Seurat for clustering. However, these 
are described in the same way as their spatial analysis code, which they have written 
themselves. This makes it challenging to identify which parts of the work represent 
novel contributions conceptually, and which are software engineering advancements 
meant to facilitate easy interoperability of existing tools.  
SIMPLI is indeed a combination of well-established and newly developed tools s. We 
have now clarified this in the Results (p. 7) and Methods (p 31-33) and have 
highlighted custom codes vs established tools in in Supplementary Fig.1 and 
associated legend. 
 
2. Given that the field of image analysis is progressing so rapidly, the ability to swap 
out individual components of such a workflow is a crucial aspect. Segmentation is one 
example where the state of the art is advancing rapidly. The authors have chosen to 
use CellProfiler, instead of more accurate methods like StarDist, NucleAIzer, 
CellPose, or Mesmer. There are significant technical hurdles involved with integrating 
deep learning based segmentation into a pipeline; if the authors feel the costs 
outweigh the benefits, these should be discussed and justified in the text. Either way, 
a more detailed description of the modularity of their pipeline and examples for how to 
provide alternate containerized algorithms for key steps in the pipeline should be 
provided  
Following the Reviewer suggestion, in addition to CellProfiler, we have now 
implemented the option to perform segmentation also with StarDist, which is based on 
machine learning and is therefore a completely different approach than CellProfiler.  
We selected StarDist over the others cited by the reviewer because it provides three 
pre-trained models that the user can test directly on their data thus avoiding the labour-
intensive requirement to train a model specific to their analysis. However, SIMPLI 
provides the option to run StarDist with user generated models on a custom set of 
markers, and thus apply this method to its full potential. Additionally, SIMPLI allows 
the selection of custom values of the probability and non-maximum suppression 
thresholds for both the pre-trained models bundled with StarDist and user generated 
ones. This is fully explained in the software documentation in GitHub 
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We have expanded the description of the cell segmentation step in SIMPLI (p. 7) and 
added a comparison between StarDist and CellProfiler (Supplementary Fig. 3a p. 7, 
16, and Methods p. 32). 
 
3. The authors do not perform any benchmarking in the paper. Instead, to demonstrate 
that their approach works, they show a series of vignettes from different imaging 
modalities. As a methods paper, it is not necessary to discover novel biology in 
addition to demonstrating that their method performs well. However, in the absence of 
any benchmarking, the vignettes are the only source of confirmation that their pipeline 
produces reasonable results. As such, the fact that PD-L1 interacting T cells showed 
no change in cytotoxic markers (Figure 4e) does not represent the type of confident 
evidence needed to validate their approach.  
We explain in response to point 1 why benchmarking is not possible. 
To the best of or knowledge, the spectrum of cytotoxic activity in exhausted CD8+PD1+ 
T cells that has been described in the literature4 is in line with what we show in Figure 
4e. 
Additionally, this is supported by the direct observation that CD8+PD1+ T cells 
expressing granzyme B can be equally found in proximity to or distant from PDL1+ 

cells (Figure 4i). We have now commented on this in the Results (p. 21). 
 
Similarly, the observation that Tregs are 6 um (approximately 1 cell length) closer to 
tumor cells in DII (Figure 5c) is not a sufficiently robust finding to validate their 
approach. In its current form, it is not possible to say whether their method actually 
works on imaging data from different modalities, or whether it simply produces results 
on imaging data from different modalities.  
The difference in distances between Tregs and tumour cells in DII and CLR subtypes 
in Figure 5c is >13µm, which is twice the cell length.  
To further support this observation, we now run a permutation test (see also response 
to minor comment 9) where we compared the observed difference to the distribution 
of expected differences. This further analysis confirmed the significance of the 
observation (Figure 5e) 
 
4. The authors appear to have systematically under-represented the ability of 
competing methods to work across image modalities in Table 1. As just two examples, 
both Ilastik and QuPath are capable of processing imaging data from all five modalities 
listed in the table. It is not clear how the authors populated this list, but it creates a 
highly biased impression of the relative advantage of their method. 
In the previous version of the manuscript, for each method we restricted the image 
technologies to those explicitly reported in the original publication.  
To address the reviewer’s comment, we performed a literature search for each method 
in Table 1 and included all imaging technologies for which there was published 
evidence of images analysed with that method (modified Table 1). We now describe 
these criteria in the legend to Table 1 (p. 6). 
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Minor concerns 
1. The authors should add Giotto 
(https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02286-2), 
and MCMICRO (https://www.biorxiv.org/content/10.1101/2021.03.15.435473v1.full) 
to Table 1 
We have added GIOTTO to Table 1, but not MCMICRO because it is a preprint, not 
yet peer reviewed method. Since GIOTTO works predominantly with spatial 
transcriptomic data, we have added this technology to the list of Table 1. 
 
2. Image preprocessing is often platform specific, with different algorithms, 
approaches, and thresholds used for image data from different multiplexed imaging 
platforms. The authors have instead opted for a single preprocessing pipeline. The 
authors should validate that their selection of a single workflow for preprocessing is 
not inferior to the custom, platform-specific preprocessing employed for these different 
imaging techniques. In addition, some guidance for users about which parameters 
work well out of the box, and which will require fine-tuning, would be useful.  
Imaging pre-processing in SIMPLI is composed of three processes (Fig.1a and 
Supplementary Fig.1a):  
1. data extraction from .mdc or .txt files to obtain raw images (limited to MIBI and IMC) 
2. data normalisation (optional)  
3. thresholding and masking with CellProfiler45. This involves either identifying unique 

thresholds to reduce background noise across samples (if step 2 has been retained) 
or deriving sample-specific thresholds to minimise the effect of non-uniform staining 
in individual raw images (if step 2 has been skipped). The selection of the thresholds 
is experiment-specific.  

This approach to data pre-processing makes SIMPLI highly flexible and thus suitable 
for the analysis of images produced with different multiplexed-imaging technologies. 
For instance, we were able to pre-process CODEX derived images obtaining similar 
results of the original publication (Figure 5a,b).  
We have now expanded our explanation of the pre-processing step in the main text 
(p. 7) and in the methods (p. 31).  
As requested by the Reviewer, we also provide a description of the default parameters, 
the documentation on the CellProfiler4 pipeline, and an explanation of the analysis run 
on the example dataset in the software documentation in GitHub.  
 
3. The authors make the following claim in a few places in the text: “Cells are assigned 
to populations using previously defined masks.” However, it’s not clear what this 
means. The description of cell classification in the methods section states that either 
unbiased clustering or user-defined thresholds are used to identify distinct 
populations. However, in Figure 2e it appears that cell populations have instead been 
defined using mask overlap. A more detailed description of what this step entails, and 
why it was chosen, is necessary to understand their approach 
We acknowledge we this point was not explained properly. 
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Cell classification (which we refer to as phenotyping throughout the text) is indeed 
done using either unsupervised clustering or applying user-defined thresholds. 
However, the starting cells can be either all single cells obtained after cell 
segmentation or only those mapping to tissue compartments (i.e. epithelium) or 
positive for certain markers (i.e. CD3). In other words, cell phenotyping can be done 
starting from all T cells or epithelial cells rather than from all cells in the image. 
Assignment to a specific tissue compartment or positivity to a certain marker derive 
from the overlap of the single cell masks with the tissue compartment or marker masks 
derived at the end of the pre-processing step.  
We have now explained this in the Results (p. 8), in revised Supplementary Figure 1b, 
in its legend and throughout the text, where we replaced the reference to ‘assignment 
to cell populations’ with ‘positivity to markers’. 
 
4. In general, the methods section is quite sparse, and does not describe the analytical 
workflow in sufficient detail to understand what the authors have done at each step. 
For example, the authors state that CellProfiler4 is used to generate thresholded 
images and masks, as well as the single-cell segmentation step, but do not go into 
further detail. It would be helpful to include more details here, such as which 
parameters need to be changed, how these masks are generated, and when one 
would use the different parts of the pipeline.  
We have now expanded the Methods significantly to provide more details on: 
- the general analytical workflow (p. 31-33), Supplementary Figure 1 and legend 
- how each of the four exemplar analyses was conducted (p. 35-40).  
Additionally, we added details on parameter selection in the software documentation 
in GitHub 
 
5. In the caption for Figure 2, the authors state that all cells overlapping with the lamina 
propria mask by at least 30% were considered resident. How was this threshold 
chosen and how does varying this threshold affect the results? 
As explained in response to point 4 of Rev. 2 and in the text (p. 8), all thresholds, 
including this one, were chosen by an expert histopathologist (JS) after reviewing the 
raw images together with the cell segmentation masks and the tissue compartment 
masks (in this case the mask of the lamina propria). 
To assess how this threshold may have affected the results, we have now repeated 
the same analyses shown in Figure 2e,f after assigning cells to the lamina propria at 
various values of thresholds. 
This analysis showed that the only cells changing assignment where those at the 
boundary between lamina propria and epithelium (Supplementary Figure 2d). They 
constituted around 10% of all cells and therefore varying these thresholds had a limited 
impact on the overall proportion of lamina cells (Supplementary Figure 2e) as well as 
of resident immune cells (Supplementary figure 2f). We now report these observations 
in the Results (p. 12) and expanded on the selection of this threshold in the Methods 
(p. 37). 
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6. In Figure 2f, it would be more helpful to show stacked bar plots of the cell type 
breakdown (or somehow group the observations by CLN). This would allow the reader 
to better assess heterogeneity across CLNs. 
We have now replaced Figure 2f and associated legend with a stacked bar plot of 
immune cell proportion as suggested. 
 
7. In figure 3, the authors use both clustering methods to identify T cell subpopulations. 
However, they do not compare the results from these two approaches to show how 
closely they agree with one another.  
See also response to Point 1 of Rev. 2. We have now compared systematically the 
results of both phenotyping approaches in classifying CD4+PD1+ T cell 
subpopulations, showing that they are overall comparable (Supplementary figure 3b-
d). We comment extensively on this in the text (p. 18) and in the Methods (p. 36).  
 
8. In Figure 4g, the authors confirmed the localization of PDL1+CD68+ macrophages 
in close proximity to PD1+CD8+ cells by inspecting images, but the representative 
example is not clear. From where the arrow is pointing in the image inset, it looks as 
if the CD68 (pink) signal is adjacent to the PDL1 (green) signal, instead of being co-
expressed in a single cell. Furthermore, the authors only phenotyped CD8+ T cells 
using their thresholding approach. To back-up the claim that PDL1+CD68+ 
macrophages are in close proximity to PD1+CD8+ cells, the authors could use 
unsupervised clustering or thresholding to quantify the number of CD68+ 
macrophages and quantify their distance to the PD1+CD8+ cells. 
See also response to Point 4 of Rev. 2. We have now replaced the old panel with 
clearer example of CD8+PD1+ T cells in proximity to a PDL1+CD68+ macrophage 
(Figure 4i).  
 
To address the second point raised by the Reviewer, we have identified PDL1+ and 
PDL1- CD68+ macrophages by expression thresholding (Figure 4g). We then 
measured their respective distances to CD8+PD1+ T cells confirming that PDL1+ 

macrophages are significantly closer to CD8+PD1+ T cells than PDL1- macrophages 
(Figure 4h). We describe this additional validation in the main text (p. 20-21) and the 
methods (p. 39) and new Figure 4. 
 
9. In the spatial analysis in Figure 5, the distance calculations of immune cells to tumor 
cells and blood vessels could be confounded by the number of tumor cells or the size 
of the epithelium in the ROI. It would be helpful here to perform a randomization of the 
cells in each ROI to generate a null distribution and assess whether the calculated 
distances are significant compared to a null distribution. 
As suggested by the Reviewer, we now performed a permutation test for each of the 
ten comparisons by re-assigning the cell identities randomly in each sample 10.000 
times. At each permutation, we calculated the median distances of the five immune 
populations (macrophages, CD8+ T cells, CD4+ T cells, Tregs and B cells) to tumour 
cells or vessels, between CLR and DII samples. We derived ten expected distributions, 
compared each of them to the observed values using a two-tailed permutation test 
and corrected for multiple testing.  
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We confirmed that T-regs are closer to tumour cells in the DII subtype (Figure 5e), 
while B cells are closer to vessels in the DII subtype (Figure 5f), as compared to the 
corresponding expected distributions. We comment this in the Results (p. 26) 
 
10. The authors state in the introduction that many competing approaches require “ad 
hoc configuration files.” However, the authors use manually specified segmentation 
parameters in a configuration file as part of their analysis pipeline, and it appears that 
each dataset required a different set of parameters in order to produce accurate 
segmentations. This is likely the result of using Cell Profiler to perform segmentation, 
which is extremely sensitive to differences in image intensity and often requires 
manual tuning.  
See also response to Point 3 of Rev. 1. 
Of all the tools used by SIMPLI, CellProfiler is the only one requiring user-defined 
parameters. This step cannot be avoided because it depends on the specifics of the 
experiment (tissue type, imaging technology, etc.). However, parameters can be 
configured through CellProfiler’s graphical interface and the resulting metadata can 
then be easily imported into SIMPLI.  
Now we have added the option to perform cell-segmentation with StarDist. This 
removes the need for the user to tune parameters if using one of the default pretrained 
models, while still giving the possibility to use ad hoc models for use cases with highly 
specific requirements. 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have satisfactorily answered by questions and concerns. I particularly agree with their 

argument regarding comparing their work with preprints, which makes their work timely. Some of my 

other concerns were answered by them in their response to other reviewers. I, therefore, recommend 

their manuscript for publication. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

While the authors generally address the technical aspects brought up under review, they conveniently 

skip the points brought up by the reviewers regarding the lack of novelty of the work. This work is 

mainly a collection of already well-established tools and does not advance the field of spatial analysis. 

Furthermore, the use of each of the tools described is actually easier than the workflow proposed by 

SIMPLI, which makes it difficult to think that this new tool will be widely adopted. 

 

Technical issues: 

For point number 2 of reviewer 2 comments: 

If normalization is done within image alone, then this does not correspond to an adequate 

normalization, as the normalized values would be highly dependent on the cells present. For example, 

if there are no cells of a particular type, but there is some background non-specific staining for this 

marker, the rescaling done by SIMPLI will lead to false positives. It is also surprising that the authors 

claim in their paper “that data normalisation has no impact on the results” – which begs the question 

of why include this normalization at all if there are no practical benefits. 

 

For point 5 of reviewer 2 comments: 

The updates provided do not address the issues raised. As explained previously, it is not statistically 

correct to combine cells across different tissue sections and then perform statistical tests (regardless 

of the filtering the authors have done). This is because cells in an image are not independent of each 

other. For example, if you have 2 images, one with 500 cells, and the other with 400 cells, following 

the procedure set out by the authors, there would be ‘900 samples’ (minus some lost by filtering), but 

in reality, there are only 2 samples. Therefore, their procedure in adequate and artificially inflates the 

sample size. Additionally, the use of permutation tests does not support their claims, as permutation 

tests just test against complete spatial randomness, and biological tissues are not ‘random’ – 

therefore, you will likely always get significant p-values. 

 

Minor issues: 

Table I contains many inaccuracies. For example, SPIAT does in fact allow unsupervised cell 

phenotyping as outlined in their manuscript. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Bortolomeazzi et al 

 

We thank the authors for responding in detail to the points raised in our initial round. We would like to 

emphasize that the point of addressing the comments below is not to demonstrate the pipeline the 

authors have developed is perfect in every way, but to better characterize its strengths and 

weaknesses. We feel it is important to understand what the boundary conditions using SIMPLI are 

given specific data types and programmatic assumptions that are being made. Since a big part of the 



value is to unify and simplify image analysis, the end users that will most significantly benefit are 

groups with less experience in dealing with these datasets. Consequently, it is important for the 

authors to articulate where SIMPLI should perform well and in what scenarios it is more prone to 

erroneous results. With this in mind, we have listed below the areas where we have remaining 

concerns: 

 

• The authors stated that they do not want to add MCMICRO to Table 1 because it is not yet peer 

reviewed. We agree that the fact a study has not yet been published is a reasonable counterpoint to 

the novelty concerns raised by reviewer 1. However, given that preprints are citeable, we do not feel 

that it justifies exclusion from surveys of available tools, as many methods (especially computational 

ones) are available via preprint, and widely used, well in advance of final publication. 

 

• We share the concerns of reviewer 2 about the normalization technique the authors are proposing. 

Tissue-specific and platform-specific differences can influence which normalization techniques are 

used. The fact that the authors have performed channel-specific normalization does not mean that 

these issues have disappeared. For example, tissues or channels with particularly low signal-to-noise 

ratios may not work well with the same percentile cutoff used for the rest of a dataset. Furthermore, 

this cutoff may be different across different image platforms. 

 

• This is related to our point about benchmarking, as the majority of our concerns centered around 

preprocessing. We are not asking the authors to evaluate every aspect of their pipeline, since as they 

correctly note, it encompasses many previously validated individual tools. However, given that 

different imaging platforms often perform different normalization schemes, the authors’ claims that 

their approach can be used to uniformly process data from all of them merits a more detailed 

evaluation, as this is a departure from the way some of these data are usually analyzed. In particular, 

the authors should demonstrate across all of the imaging platforms included that the use of their 

normalization scheme yields equivalent results to the normalizations commonly used for those data 

types. This is particularly important since there is no data presented from three of the technologies 

the authors say their method works on (mIHC, MIBI, and spatial transcriptomics). 

 

• The permutation test analysis provides convincing support for the results of the spatial analysis, but 

it would be helpful to include it in the SIMPLI pipeline to allow users to assess the significance of their 

results. 

 

• The authors apply a Gaussian filter to the IgA images for pixel analysis. It is not clear why this 

threshold was chosen and if this is a tunable parameter in SIMPLI. 



 1 

Reviewer n. 1 
The authors have satisfactorily answered by questions and concerns. I particularly 
agree with their argument regarding comparing their work with preprints, which makes 
their work timely. Some of my other concerns were answered by them in their 
response to other reviewers. I, therefore, recommend their manuscript for publication.  
We thank the reviewer for their time and useful feedback on our work.  
 
Reviewer n. 2 
While the authors generally address the technical aspects brought up under review, 
they conveniently skip the points brought up by the reviewers regarding the lack of 
novelty of the work. This work is mainly a collection of already well-established tools 
and does not advance the field of spatial analysis. Furthermore, the use of each of the 
tools described is actually easier than the workflow proposed by SIMPLI, which makes 
it difficult to think that this new tool will be widely adopted.  
As stated in the manuscript (p. 6), SIMPLI integrates a collection of well-established 
tools and newly developed functionalities, such as the pixel analysis and the spatial 
analysis, as acknowledged by this Reviewer in the first round of revisions (point 3: 
“The pixel-based analysis is potentially a source of novelty, as it does not rely on cell 
segmentation, and provides information on extracellular or secreted proteins”).  
Moreover, as pointed out by Reviewer n. 3, SIMPLI facilitates the compatibility across 
tools making them more accessible for non-computational users. This is described in 
the Introduction (p. 4) 
 
Technical issues: 
For point number 2 of reviewer 2 comments: 
1. If normalization is done within image alone, then this does not correspond to an 
adequate normalization, as the normalized values would be highly dependent on the 
cells present. For example, if there are no cells of a particular type, but there is some 
background non-specific staining for this marker, the rescaling done by SIMPLI will 
lead to false positives.  
In point 2 of the previous round of comments, the Reviewer asked us to “provide a 
comparison of how the analysis of normalised data compares to that using raw data, 
tailoring thresholds for each image”. This is indeed what we did, showing that IgA+ 
areas from normalised and raw data correlate positively (Supplementary Fig. 2c).  
In the new case described by the Reviewer now (i. e. “if there are no cells of a particular 
type, but there is some background non-specific staining for this marker”), it should be 
noted that normalisation in SIMPLI is followed by a cleaning step where the user can: 
1- Apply multiple filters to remove high intensity sparkles (see point 5 of R. 3).  
2- Specify a threshold to each marker after expert review of the images.  
This is described in the Results (p. 6), Methods (p. 31) and in the GitHub 
documentation. Moreover, as explained in the text (p. 6), the normalisation step is 
optional and can be skipped (on its benefits, see next point).  
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To further test the effects on normalisation and in particular whether it leads to false 
positives, we compared the results of each of the four case studies reported in the 
paper applying SIMPLI’s normalisation with those applying alternative approaches: 
o IgA+ pixel analysis from IMC data: We have compared IgA distribution with and 

without normalisation showing a strong linear correlation (Supplementary Fig. 2c). 
This suggests that normalisation does not affect the results. This has been 
described in the Results (p. 11) and Methods (p. 36).  

o Relative proportion of cell types from IMC data: We show that the proportions of 
T cells, B cells, macrophages, dendritic cells and epithelial cells as obtained after 
SIMPLI’s normalisation (Fig. 3c) are comparable to those obtained by applying 
Histocat Z-score normalisation (Supplementary Fig. 3b). This is now commented 
in the Results (p. 15).  

o Relative proportions of cell types from mIF data: we obtained similar proportion of 
PD1+CD8+ cells and PDL1+ cells after applying SIMPLI normalisation (Fig. 4d) or 
the Inform tissue analysis software1 distributed with the Vectra Polaris automated 
quantitative pathology imaging system (Akoya Biosciences) (Fig. 4e). This is now 
commented in the Results (p. 20).  

o Relative proportion of cell populations from CODEX data: We started from the raw 
CODEX data and, after data normalisation, we obtained similar proportions of 
immune cells as in the original paper (Fig. 5b). This is discussed in the Results (p. 
25) and Methods (p. 40-41).  

 
2. It is also surprising that the authors claim in their paper “that data normalisation has 
no impact on the results” – which begs the question of why include this normalization 
at all if there are no practical benefits.  
As written by this Reviewer in point 2 of the previous round “normalisation has the 
advantage of being able to use similar thresholds across images or overlap clusters 
of cell phenotypes”.  
In practical terms, this means that, after normalisation, pixel intensity values are 
comparable across samples allowing the user to apply the same marker thresholds. 
This greatly simplifies and speeds up the analysis configuration. This is explained in 
the text, where we also explicitly state that normalisation can be skipped and replaced 
by identifying image-specific thresholds, in case the user prefers to do so (p. 6).  
 
For point 5 of reviewer 2 comments: 
3. The updates provided do not address the issues raised. As explained previously, it 
is not statistically correct to combine cells across different tissue sections and then 
perform statistical tests (regardless of the filtering the authors have done). This is 
because cells in an image are not independent of each other. For example, if you have 
2 images, one with 500 cells, and the other with 400 cells, following the procedure set 
out by the authors, there would be ‘900 samples’ (minus some lost by filtering), but in 
reality, there are only 2 samples. Therefore, their procedure in adequate and artificially 
inflates the sample size. Additionally, the use of permutation tests does not support 
their claims, as permutation tests just test against complete spatial randomness, and 
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biological tissues are not ‘random’ – therefore, you will likely always get significant p-
values.  
We think there is a misunderstanding on how the test was performed: we did not filter 
out specific cell pairs whose distance was below a given value (8µm), as the Reviewer 
seems to imply. Instead, we considered as biologically relevant only those 
comparisons where the difference of the median distances between the two 
histological subtypes was higher than 8µm. In other words, this filter took into account 
the effect size between two groups of samples (17 CLRs and 18 DIIs) and not between 
individual pairs of cells. This is now clarified in p. 26 and 41.  
Regarding the use of permutations tests, these are commonly employed in the spatial 
analysis of tissue images (see a recent review by Wilson et al. 2). Examples of spatial 
analyses that rely on permutation tests include NeighbouRhood3, HistoCAT++4, 
ImaCyte5, and Giotto6 (all cited in Table 1).  
All these tools perform random resampling of the cell labels within each sample, similar 
to what we have implemented in SIMPLI. In all these cases, the composition of the 
tissue and the proportion of cell types reshuffled in the permutations are the same as 
in the original image. This ensures that the generated expected distributions are 
representative of the original tissue. This is now further explained in the main text (p. 
8) and in the methods (p. 33) and Supplementary Fig. 1b.  
On how we have implemented the permutation test in SIMPLI, see also point 4 of R3.  
 
Minor issues: 
4. Table I contains many inaccuracies. For example, SPIAT does in fact allow 
unsupervised cell phenotyping as outlined in their manuscript.  
From their manuscript and examining the code, we understand that SPIAT implements 
a semi-supervised and a fully supervised, but not an unsupervised cell phenotyping.  
In the semi-supervised approach, a threshold for each marker is either derived from 
the shape of the distribution or calculated as the 95th percentile of the distribution.  
In the fully supervised approach, a list of preselected thresholds are applied.  
Either way, cells phenotypes are assigned based on whether the intensity of the 
markers are above or below these thresholds.  
Based on this, we believe it is correct to categorise SPIAT’s cell phenotyping method 
as “preselected” in Table 1.  
 
Reviewer n. 3 
We thank the authors for responding in detail to the points raised in our initial round. 
We would like to emphasize that the point of addressing the comments below is not to 
demonstrate the pipeline the authors have developed is perfect in every way, but to 
better characterize its strengths and weaknesses. We feel it is important to understand 
what the boundary conditions using SIMPLI are given specific data types and 
programmatic assumptions that are being made. Since a big part of the value is to 
unify and simplify image analysis, the end users that will most significantly benefit are 
groups with less experience in dealing with these datasets. Consequently, it is 
important for the authors to articulate where SIMPLI should perform well and in what 
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scenarios it is more prone to erroneous results. With this in mind, we have listed below 
the areas where we have remaining concerns: 
1- The authors stated that they do not want to add MCMICRO to Table 1 because it is 
not yet peer reviewed. We agree that the fact a study has not yet been published is a 
reasonable counterpoint to the novelty concerns raised by reviewer 1. However, given 
that preprints are citeable, we do not feel that it justifies exclusion from surveys of 
available tools, as many methods (especially computational ones) are available via 
preprint, and widely used, well in advance of final publication 
In the last months there have been several preprints describing new methods for high 
dimensional imaging data analysis. We have decided not to benchmark SIMPLI 
against any of the unpublished methods because they are likely to change 
substantially in the course of the revision process. This is what happened to SIMPLI, 
which improved thanks to the helpful comments of all reviewers.  
We acknowledge that non peer reviewed methods are often used prior to publication. 
In our opinion, this is a risky choice particularly if the users are not experts in the field 
or in fact the developers of the method. The reasons for a more cautious approach 
are exactly the ones exposed by this reviewer in their initial comment: it is important 
to know the strengths and weaknesses of a method before using it. This can be 
achieved only after a full peer reviewed process.  
 
2- We share the concerns of reviewer 2 about the normalization technique the authors 
are proposing. Tissue-specific and platform-specific differences can influence which 
normalization techniques are used. The fact that the authors have performed channel-
specific normalization does not mean that these issues have disappeared. For 
example, tissues or channels with particularly low signal-to-noise ratios may not work 
well with the same percentile cutoff used for the rest of a dataset. Furthermore, this 
cutoff may be different across different image platforms.  
As we have now clarified in the revised manuscript (p. 6) and in the GitHub 
documentation, the normalisation step is optional and can be skipped by the user, for 
example in the case described by the reviewer (i. e. when tissues or channels show 
particularly low signal-to-noise ratios).  
To further assess the effects of normalisation, we compared the analyses of the four 
case studies reported in the paper done with SIMPLI’s normalisation and with 
alternative approaches: 
o IgA+ pixel analysis from IMC data: We have compared IgA distribution with and 

without normalisation showing a strong linear correlation (Supplementary Fig. 2c). 
This suggests that normalisation does not affect the results. This has been 
described in the Results (p. 11) and Methods (p. 36).  

o Relative proportion of cell types from IMC data: We show that the proportions of 
T cells, B cells, macrophages, dendritic cells and epithelial cells as obtained after 
SIMPLI’s normalisation (Fig. 3c) are comparable to those obtained by applying 
Histocat’s Z-score normalisation (Supplementary Fig. 3b). This is now commented 
in the Results (p. 15).  

o Relative proportions of cell types from mIF data: we obtained similar proportion of 
PD1+CD8+ cells and PDL1+ cells after applying SIMPLI normalisation (Fig. 4d) or 
the Inform tissue analysis software1 distributed with the Vectra Polaris automated 
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quantitative pathology imaging system (Akoya Biosciences) (Fig. 4e). This is now 
commented in the Results (p. 20).  

o Relative proportion of cell populations from CODEX data: We started from the raw 
CODEX data and, after data normalisation, we obtained similar proportions of 
immune cells as in the original paper (Fig. 5b). This is discussed in the Results (p. 
25) and Methods (p. 40-41).  
 

3- This is related to our point about benchmarking, as the majority of our concerns 
centered around preprocessing. We are not asking the authors to evaluate every 
aspect of their pipeline, since as they correctly note, it encompasses many previously 
validated individual tools. However, given that different imaging platforms often 
perform different normalization schemes, the authors’ claims that their approach can 
be used to uniformly process data from all of them merits a more detailed evaluation, 
as this is a departure from the way some of these data are usually analyzed. In 
particular, the authors should demonstrate across all of the imaging platforms included 
that the use of their normalization scheme yields equivalent results to the 
normalizations commonly used for those data types. This is particularly important 
since there is no data presented from three of the technologies the authors say their 
method works on (mIHC, MIBI, and spatial transcriptomics).  
We have described four case studies where we apply SIMPLI to IMC, CODEX and 
mIF data. These experiments differ in terms of resolution, sample size and number of 
markers (Table 2). We have now provided evidence that, in all cases, the 
normalisation step as implemented in SIMPLI has no impact on the results.  
We feel that adding three more case studies will extend the manuscript length 
massively worsening its readability, given that we are already approaching the word 
limits. Although we do not envisage reasons why SIMPLI should under-perform in the 
case of mIHC, MIBI or spatial transcriptomic data, we acknowledge in the text that the 
normalisation process may not be directly comparable with the most commonly 
employed normalisation approaches in these techniques (p. 6).  
 
4- The permutation test analysis provides convincing support for the results of the 
spatial analysis, but it would be helpful to include it in the SIMPLI pipeline to allow 
users to assess the significance of their results 
This is an excellent suggestion and have now included the possibility to perform a 
permutation analysis within SIMPLI’s spatial pipeline. This is explained in the GitHub 
documentation as well as in the Results (p. 8), Methods (p. 33) and Supplementary 
Fig. 1B.  
 
5- The authors apply a Gaussian filter to the IgA images for pixel analysis. It is not 
clear why this threshold was chosen and if this is a tunable parameter in SIMPLI.  
The option to apply a Gaussian filter is part of the CellProfiler pipeline implemented in 
SIMPLI. This pipeline offers a number of options that can be fully customised and fine-
tuned by the user, reflecting their experimental goals and type of analysed images. 
This is now further clarified in the Results (p. 7), Methods (p. 31) and in the GitHub 
documentation.  
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Regarding the IgA analysis discussed in the manuscript, we decided to apply the 
Gaussian filter after inspection of the tissue slides which revealed a few spurious high 
intensity pixels that would have biased the downstream analysis. The only tunable 
parameter associated with the Gaussian filter is the kernel size, which se set to a 1. 5 
pixel radius, as this is approximately the size of the artefacts that we wanted to 
remove. This explained in the Methods (p. 36).  
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Reviewers' Comments: 

 

Reviewer #3: 

Remarks to the Author: 

The authors have addressed all of our comments. 


