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Peer Review File



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

In their paper, Goos et al. describe their efforts to map protein interactions for 110 human 

transcription factors using both AP-MS and BioID. The result of this effort is a sizeable interaction 

network, most of which has not been previously described, and which provides numerous insights 

into the biology of individual transcription factors and transcription complex organization more 

generally. The authors select a couple of specific examples for targeted follow-up, looking for 

effects of NFIA silencing on activity of several transcription factors to which it binds. They also 

used ChIP-seq to show that NFIA silencing impacts SOX2 binding to chromatin. Finally, they mine 

their network for additional biological insights using various bioinformatic approaches, several of 

which they discuss in some detail. While I expect this work will eventually be of broad interest to 

the scientific community, I have some technical concerns and questions that need to be addressed 

before this paper will be ready for publication. 

MAJOR COMMENTS 

1. As the authors point out, there are ~1600 human transcription factors. Since just a fraction of 

these (110) were characterized in this study, how these were selected and how representative 

they are of the larger group will have important implications for how this network can be used. 

How did the authors decide which transcription factors to target in this study? 

2. Close examination of Table S1B-C raises some questions about how the data were filtered to 

identify significant interactions. First, in both BioID and AP-MS datasets, the target baits are 

themselves reported as interacting proteins. For example, at the top of Table S1C we find the 

protein BRAC listed in the “Prey” column for the BRAC pulldown. It’s also listed as a prey when it is 

the target of BioID analysis as well (Table S1B). This is true for most or all baits in both AP-MS 

and BioID datasets. That these bait proteins are detected – and strongly enriched – is to be 

expected, since they are being specifically targeted for purification. However, labeling these 

proteins as “preys” in their own IP’s and including these observations in final interaction lists and 

total interaction counts for the dataset as the authors have done is misleading. People accessing 

these data in the future may erroneously take these entries to imply homo-dimerization, especially 

once these data are incorporated into databases like BioGRID and IntACT. These entries should be 

removed from the supplementary tables and the total interaction counts throughout the text 

adjusted accordingly. 

3. A second concern emerging from examination of Table S1B is that at least one obvious 

contaminant protein seems to be detected repeatedly as an interacting partner. Bovine serum 

albumin (BSA) from cell culture media is identified as an interacting partner via BioID for 11 

different transcription factors, representing 10% of the dataset: ELK4, FOS, FOXQ1, GATA3, GLI2, 

HME1, LHX6, MYC, MYOD1, SMAD5, and STAT3. These are only detected in the BioID dataset. I 

didn’t find BSA listed at all in the AP-MS interaction list. This raises a few points. First, the authors 

should filter out these interactions since they’re clearly artifacts. More generally, if BSA passed as 

an interacting protein in 10% of their BioID experiments, this raises questions about whether their 

BioID platform is particularly susceptible to interference from background proteins and to what 

extent other contaminating proteins remain in their filtered interaction lists. Are the authors sure 

they’ve sufficiently dealt with these artifacts? 

4. Starting on line 244, the authors highlight a cluster of actin/myosin-related prey proteins in the 

BioID dataset that cluster together and link to several transcription factors. The authors interpret 

these interactions as evidence of a link between these transcription factors (especially FOS and 

STAT1) and actin/myosin signaling in the nucleus. Perhaps this is the case - there is evidence that 

some of these proteins (ACTB, MYO1C, etc) do reside in the nucleus where they perform functions 

related to chromatin remodeling and transcription regulation. However, a skeptic might wonder 

whether most of these actin/myosin-related proteins are instead artifacts for several reasons. 

First, though a few of these proteins are known to reside partially in the nucleus and participate in 

transcription-related processes, many are not. (Examples include MYO1B, MYO1D, MYL6B, MYH9, 

MYH10, MYO5A, etc. according to Uniprot and Human Protein Atlas as listed in Table S2 of this 



paper.) Second, actin, myosin, and related proteins are themselves abundant and are often 

detected as background in these kinds of experiments. Third, there may in fact be elevated 

background in the BioID experiments targeting baits associated with Cluster 2. As I mentioned 

above, the contaminant BSA is present at elevated levels and flagged as an interacting partner in 

BioID experiments associated with 11 baits, reflecting anomalous background. Nine of these baits 

are linked to this actin/myosin cluster (Cluster 2 - see Table S7). Fourth, relatively few of the 

preys in this cluster appear to be nuclear, while several (PGRC1, TIM50, RAB8A, ATPA, ATPB, 

AT1A1, ADT2, ENPL, CALX, etc) localize to membranes, mitochondria, ER, and other alternate 

compartments and would seem to be contaminants (Table S7). Finally, while the BioID data for 

FOS and STAT1 reveal many proximal actin/myosin proteins, none of these interactions appear in 

the AP-MS data. While this could mean that these interactions are too transient or weak to survive 

AP-MS purification, it could also mean that these are artifacts specific to these BioID samples, 

much like BSA and the membrane/mitochondrial/ER preys detected alongside them. If the authors 

want to highlight this cluster, they will need to make a stronger case that these observations 

represent biology and should provide additional independent experimental confirmation to show 

that these links between FOS/STAT1 and actin/myosin proteins are real. Alternatively, they could 

cut this example and focus instead on other clusters where the data are more convincing. 

5. I also note that the authors report that the mitochondrial carboxylase ACACB interacts with 

about 22 different transcription factors. This is also likely an artifact, as this protein is 

endogenously biotinylated according to Uniprot and Lee et al. (2008) Proteins 72:613-24. I should 

also point out that all 22 of these IP’s with excessive ACACB levels are associated with Cluster 2, 

seemingly linking that cluster to another experimental artifact. Endogenous biotinylation may also 

explain the presence of some other likely artifacts reported as interactions in the BioID data, 

including mitochondrial carboxylases MCCA, MCCB, PCCA, and PCCB that are covalently modified 

with biotin (e.g. Samavarchi-Tehrani et al. (2020) Mol Cell Proteom 19:757-773). 

6. In various places in the text the authors contrast BioID and AP-MS, saying for example that 

BioID “… was used to detect also transient and proximal interactions of the TFs.” (Line 96). And 

“The BioID method has been suggested to be efficient for studying transient interactions….” (Line 

111). These statements are true, though the authors should point out explicitly that as long as 

they’re close together, a prey protein doesn’t actually need to physically associate with a given 

bait to be labeled via BioID. And given the confined nature of chromatin, these TF’s might be 

unusually prone to labeling other proteins that are in close proximity but don’t actually interact. 

MINOR COMMENTS 

1. I’m curious about the authors’ observation that relatively few of the interactions they saw had 

been previously reported (Figure 1C). Is this fraction higher for really well characterized 

transcription factors (e.g. P53, MYC, etc) versus other less thoroughly characterized transcription 

factors? 

2. Figure 1D: It looks like about 20 baits are missing from this plot. Why aren’t all 110 shown? If 

the authors can’t fit them all in the plot, then they should at least indicate in the figure legend that 

only a subset of baits are shown. Also, there seems to be a typo – one bait is simply labeled as 

“T”. 

3. Line 140: I’m not sure it’s fair to say co-IP isn’t sensitive enough. The issue is that AP-MS and 

BioID are measuring two phenomena that are related but distinct. One measures physical binding 

while the other measures proximity. 

4. Figure 2: I’m having trouble distinguishing the blue and black edges. I’d change the color 

scheme for improved contrast. The same is true for Figure 4A. 

5. Figure 4C. It seems that HME1 is an alternative name for EN1 (both labels are given in Figure 

2). Why is there a row labeled “HME1” in the PAX6 plot? This looks like a mislabeling. Also, the 

authors should use consistent terminology in the panel labeled EN1 (Lower lefthand corner of 

Figure 4C) – right now the same protein is labeled EN1 at the top of the plot and HME1 below the 

bar graph. 



6. In the Methods section titled “Protein identification” the authors write “FASTA library was 

complemented with BSA, tag sequences, trypsin, biotin, and GFP.” Since biotin is a small molecule, 

perhaps the authors mean they included streptavidin (in place of strep-tactin, whose sequence is 

presumably proprietary)? 

7. In the “Protein identification” section the authors also write that “oxidation … of methionine or 

N-terminus were used as dynamic modification”. Oxidation of the N-terminus doesn’t make 

chemical sense in this context. Do the authors mean acetylation of the N-terminus? Also, what was 

the product ion mass error? 

8. Instrumentation Methods (lines 522 – 533): What dynamic exclusion settings were used on the 

instrument? 

9. In line 544 the authors write that “All the TFs were analyzed in two or four replicates”. What 

determined whether each TF was analyzed two versus four times? Were these biological or 

technical replicates? Were replicates performed separately or side-by-side? 

10. Line 542: the authors say they filtered peptides to an FDR <5%. What was the resulting 

protein-level FDR? And what additional steps (if any) were taken to control the protein-level FDR? 

11. Line 546. The authors write “….we used 44 and 75 similarly tagged and analysed GFP control 

runs for the BioID analysis and AP-MS analysis, respectively. We also included GFP’s with a nuclear 

localization signal….” Are the authors saying that those 44 and 75 GFP control runs in BioID and 

AP-MS were performed using GFP with a nuclear localization signal? Or were the analyses of GFP’s 

with a nuclear localization signal separate from those listed in the preceding sentence? 

Reviewer #2: 

Remarks to the Author: 

The manuscript by Göös et al. with title of “Human transcription factor protein interaction 

networks” presented a comprehensive interactome profiling of 110 human transcription factors 

using both AP-MS and BioID approaches. As the authors well summarized that transcription factors 

represent 6-9% of human proteome and play crucial roles in gene transcription related 

mechanisms. A systematic profiling of such type of protein machinery is desirable and should 

provide a valuable resource to related biological fields. The combination of traditional AP-MS 

analysis in cell lysate and proximity labeling-proteomic analysis in living cells should provide 

complimentary information for better viewing their molecular functionality. However, current 

manuscript didn’t present sufficient information to support the above goals and therefore needs to 

be significantly improved before further consideration. 

Major comments: 

1. Interactome profiling of transcription factors has been a popular topic in the past decade 

especially by using standard AP-MS approach. However, the authors failed to systematically review 

and summary these early efforts and clearly present the novelty of their own study. For example, 

yeast chromatin-associated interactome by Figeys and co-workers in 2010 (Mol. Syst. Biol., 6, 

448) and large-scale endogenous IP-MS analysis of transcriptional proteins by Qin and co-workers 

in 2011 (Cell, 145, 787). In addition, continuous global-scale AP-MS analysis of more than 10,000 

human proteins by the BioPlex project leading by Gygi and co-workers should also cover a 

significant fraction of transcription factors (BioRxiv, https://doi.org/10.1101/2020.01.19.905109). 

Except for expanding early efforts for profiling transcription factor interactome, the authors should 

deliver more clear biological rationale for such type of study and major biological conclusion. 

2. Along this line, the authors didn’t explain why the 110 transcription factors were selected for 

this specific study. Are there any previous AP-MS studies which have studies some of them? The 

authors should perform a related bioinformatic analysis and provide extended discussion about the 

rationale for studying this limited fraction of transcription factors. 



3. As a valuable resource, the data quality is critically important especially for BioID type of data 

which represent the proximal proteome and tends to generate significant amount of nonspecific 

labeling. The authors only presented very general overview of the design of the study. Current 

data presentation failed to convince the audience. The authors have to significantly expend their 

data analysis dedicated for data quality part. Specifically, for example, the authors mentioned two 

or four replicates were performed. Why it is not consistent for such a critical experimental design? 

How the data reproducibility was evaluated and controlled? The authors used 44 and 75 GFP 

control runs for the BioID analysis and AP-MS anslysis, respectively. How did these important 

control data use for filtering out nonspecific adsorption and labeling? For all the figures in this 

study, the authors only presented the interaction network data. It’s hard to conclude the reliability 

of the highlighted interaction hubs – associated peptide counts etc. should be properly presented. 

4. In Fig. 1C, the authors highlighted much higher number of identified PPI by the BioID approach. 

As stated before and the cited papers by the authors, it’s not proper to define the identified 

proteins as PPI, but only proximal proteins. Along this line, the authors should extend their 

discussion about how the nonspecific labeling was properly filtered? Any more accurate 

quantification was used, which has becoming the standard approach in the proximity proteomics 

field. 

5. Line 104, the authors highlighted >75% TF interactome were previously unreported. The 

authors should specify the resource for such a comparison. In the section of “Comparison to other 

studies”, the authors well compared with Li et al.’s work for studying 59 TF interactome. However, 

only 6% of PPIs identified by BioID and 26% of PPIs by AP-MS were overlapped. These two 

analyses further raise the concern for the quality of the current study and should be further 

explored. 

6. Line 139-140, “As BioID can capture transient and proximal interactions, most experimental 

validation methods, such as coimmunoprecipitation, are not sufficiently sensitive to validate the 

results”. This statement is not accurate and also leads to the major problem of this study – none 

of the novel interaction was properly validated by alternative approaches, such as 

coimmunoprecipitation for stable interaction and proximity interaction by immunofluorescence 

colocalization or reciprocal proximity labeling and western blot. The data presented in Fig. 4C-D 

presented nice functional exploration of the NFIA related interaction hub. However, the interaction 

should be firstly validated. The authors should provide multiple cases of validation especially for 

the extensively discussed prey-prey correlation analysis part. 

Minor comments: 

1. In general, the description for figure legends should be properly extended by including critical 

information. For example, it’s not clear that the western blot in Fig. 4C is properly repeated. 

2. The information in Fig. 1D and Fig. 2B is largely redundant and should be improved. 

3. Fig. 2A is too busy to clearly present the overlap between AP-MS and BioID profiling of the 

same bait proteins. Better presentation of this critical information should be provided. 

4. Line 111, “The BioID method has been suggested to be efficient for studying transient 

interactions, and this is supported by our results, strongly suggesting that BioID is the method-of-

choice for studying TF”. The authors should specify how their own results could support this 

statement. 

5. There are some typos which need to be carefully corrected. For example, line 184. 

6. In several figures, it’s not clear whether BioID data, AP-MS data or combined interaction 

network are presented and discussed. 

Reviewer #3: 

Remarks to the Author: 



In the paper by Göös et al. the authors examine the interactome of 110 selected transcription 

factors (TFs) when misexpressed in HEK 293 cells. Using two mass-spectrometry based methods 

to characterize stable (AP-MS) and more transient (BioID) protein-protein interactions the authors 

detect thousands of interactions, of which many have not yet been reported. The authors perform 

several clustering analyses and show that TFs within the detected interactomes often consist of 

TFs of the NFI family. To examine if NFI TFs may regulate the activity of the analyzed TFs the 

authors perform Luciferase-reporter assays. These experiments show that NFIA knock-down 

affects the activity of the examined TFs, regardless of their interaction with NFIA. Furthermore, 

using ChIP-seq the authors further show that the binding pattern of ectopically expressed SOX2 is 

significantly affected by NFIA knock-down. Although this study addresses an important question 

the ectopic context that the experiments are performed in questions their biological relevance. 

Comments: 

1)The experiments are performed in HEK293 cells. This cellular context is highly ectopic for some 

of the TFs. To what extent is the cellular context and growth conditions of the HEK293 cells 

affecting the composition of the reported interactomes? The authors must discuss the value of 

analyzing TF interactomes in an ectopic context? 

2)The authors show that upon the removal of NFIA, the genome-wide binding pattern of SOX2 is 

substantially altered. These experiments raise a number of questions. 

a)What antibodies were used to precipitate SOX2? 

b)Is NFIA binding overlapping with that of SOX2? 

c)How many times were these experiments repeated? 

d)What TF binding motifs were enriched in the SOX2 bound regions (peaks)? 

e)Is there a selective enrichment of NFI binding motifs in SOX2 bound regions sensitive to NFIA 

levels? 

3)Using luciferase-reporter assays the authors examine how TF function is affected by the loss of 

NFIA. Are the regulatory DNA regions containing NFI binding motifs? If so, what is the distance 

between binding sites of the examined TFs? Most TFs appear to be affected by the loss of NFIA, 

even TFs that are not interacting with NFIA. The authors conclude that this is due to an indirect 

regulation of their activities. Why are not these important controls shown in the main figure? Why 

are only synthetic regulatory DNA-regions analyzed? 

Reviewer #4: 

Remarks to the Author: 

The manuscript entitled “Human transcription factor protein interaction networks” describes an 

extensive characterization of PPI networks of 110 transcription factors using AP-MS and BioID. The 

paper thus provides an extensive list of several thousand potential interactions. 

Two approaches are included. The first one is using the single-step Strep-tag affinity purification 

for AP-MS and the second one is using the same system but to purify proteins that were 

biotinylated by BirA* following addition of biotin to the media. It is mentioned that the expression 

of studied TF was adjusted to close to physiological level of the Tet inducible system, but no 

experimental evidence is presented in the paper. Considering the low expression level of TF in 

general, I doubt this was possible to achieve using the Flp-In Tet inducible system, which is 

notoriously difficult to titrate. 

Regarding the large amount of data and the number of PPI identified, I find it relatively troubling 

that such a large proportion of interactions (over 75%) were not previously reported. Other large-

scale studies with TF published have very little overlap with their own, as mentioned in the text. 

There are also several studies with transcriptions factors that have been performed using BioID 

that could have been used to compare with their own BioID, which has identified the most 

interactions. This is hand-waved on the fact that the difference is likely due to the transient nature 

of the TF interactions and/or the different tagging strategies used, but in the absence of validation, 

it is difficult to determine which of the studies (theirs or the others) represent a true catalogue of 

PPI for TFs. 



Overall, the manuscript is interesting and includes a large amount of data. The following analysis 

performed underlines interesting observations, including the interactions with other transcription 

factors and the identification of biological complexes. However, the data presented in a large 

number of tables makes the data somewhat hard to digest. 

Other comments: 

The identified proteins were filtered using a SAINT score cut-off of 0.74, but no further discussion 

is provided on why this value was used. Considering the analysis presented the results from 2-4 

repeats for each TF, I think it would be appropriate to provide a better rationale. Is this threshold 

actually stringent, and are they losing significant proteins that should be taken into account? 

Some important information is missing for protein identification with Proteome Discoverer. An FDR 

for peptide was set to 0.05. What was the minimum number of peptides used in the study? Was 

that taken into accounts when identifying an interaction? For example, an identification in at least 

2 of the repeats could be used to filter out potential contaminants. 

The quality of the text is poor. There are several errors that goes beyond typos or grammatical 

errors. The text will have to be extensively edited for English.



REVIEWER COMMENTS 
 
Reviewer #1 (Expertise: MS-proteomics for systems-level cell biology): 
 
In their paper, Goos et al. describe their efforts to map protein interactions for 110 human 
transcription factors using both AP-MS and BioID. The result of this effort is a sizeable 
interaction network, most of which has not been previously described, and which provides 
numerous insights into the biology of individual transcription factors and transcription 
complex organization more generally. The authors select a couple of specific examples for 
targeted follow-up, looking for effects of NFIA silencing on activity of several transcription 
factors to which it binds. They also used ChIP-seq to show that NFIA silencing impacts 
SOX2 binding to chromatin. Finally, they mine their network for additional biological 
insights using various bioinformatic approaches, several of which they discuss in some detail. 
While I expect this work will eventually be of broad interest to the scientific community, I 
have some technical concerns and questions that need to be addressed before this paper 
will be ready for publication. 
 
MAJOR COMMENTS 
 
1. As the authors point out, there are ~1600 human transcription factors. Since just a fraction 
of these (110) were characterized in this study, how these were selected and how 
representative they are of the larger group will have important implications for how this 
network can be used. How did the authors decide which transcription factors to target in this 
study?  
 
The selection process is now clarified in beginning of the Results-sections (Page 5, rows 90-
100): “To systematically investigate the protein–protein interactions of human TFs, we 
selected a representative set of 109 TF genes from different TF families (Table S1A). 
Selection was based on the availability of full-length TF constructs. Selected TFs were 
analyzed in two biological replicates and, as the correlation between the technical and 
biological replicates were excellent (Figure S1A), either in one or two technical replicates. 
TFs are often classified according to their DNA-binding domains (DBDs), and the DBD 
distribution of studied TFs compared to all human TFs is shown in Figure 1A. The majority 
of the studied TFs had C2H2 zing finger (ZF) or homeodomain DBDs, which are the most 
common DBDs among the human TFs4. 
The selected TFs were subjected to two independent mass spectrometry-based interactome 
analysis methods (Figure 1B).” 
 
2. Close examination of Table S1B-C raises some questions about how the data were filtered 
to identify significant interactions. First, in both BioID and AP-MS datasets, the target baits 
are themselves reported as interacting proteins. For example, at the top of Table S1C we find 
the protein BRAC listed in the “Prey” column for the BRAC pulldown. It’s also listed as a 
prey when it is the target of BioID analysis as well (Table S1B). This is true for most or all 
baits in both AP-MS and BioID datasets. That these bait proteins are detected – and strongly 
enriched – is to be expected, since they are being specifically targeted for purification. 
However, labeling these proteins as “preys” in their own IP’s and including these 
observations in final interaction lists and total interaction counts for the dataset as the authors 
have done is misleading. People accessing these data in the future may erroneously take these 
entries to imply homo-dimerization, especially once 
these data are incorporated into databases like BioGRID and IntACT. These entries should be 



removed from the supplementary tables and the total interaction counts throughout the text 
adjusted accordingly.  
 
We thank the reviewer pointing out this important point. This is ongoing debate in 
interactomics, but bait-bait interactions are commonly reported – as analysing the same 
organism the lack of these is not possible to prove. This feature is visible in all of the data 
repositories as well (there are over 8000 “self-interactions” in BioGrid, over 2500 in IntAct, 
and nearly 1000 in PINA2).   
However, as suggested by the reviewer all bait-bait interactions are now removed, and figures 
and tables corrected accordingly.  
 
3. A second concern emerging from examination of Table S1B is that at least one obvious 
contaminant protein seems to be detected repeatedly as an interacting partner. Bovine serum 
albumin (BSA) from cell culture media is identified as an interacting partner via BioID for 11 
different transcription factors, representing 10% of the dataset: ELK4, FOS, FOXQ1, 
GATA3, GLI2, HME1, LHX6, MYC, MYOD1, SMAD5, and STAT3. These are only 
detected in the BioID dataset. I didn’t find BSA listed at all in the AP-MS interaction list. 
This raises a few points. First, the authors should filter out these interactions since they’re 
clearly artifacts. More generally, if BSA passed as an interacting protein in 10% of their 
BioID experiments, this raises questions about whether their BioID platform is particularly 
susceptible to interference from background proteins and to what extent other contaminating 
proteins remain in their filtered interaction lists. Are the authors sure they’ve sufficiently 
dealt with these artifacts? 
 
Bovine albumin is now removed from the list. In addition, we used control purification data 
from CRAPome-database (that includes contaminant proteins with abundancies and 
frequencies from 716 experiments) to further filter possible contaminants from the high-
confidence interactor list.  
 
In BioID data, only the proteins with lower frequency than 50 % (358/716) in CRAPome 
were allowed. Also preys with CRAPome frequency 25-50% (179-358/716) and with higher 
CRAPome average spectral count compared to our average spectral count were removed. 
This led to exclusion of 520 interactions from BioID data (Table S1B).  
 
From AP-MS data, in addition to Saint cut-off, preys that were present with higher frequency 
than 50% in Crapome (358/716) were required to have three-time higher average spectral 
count than average spectral count in CRAPome. This led to exclusion of 640 interactions 
from AP-MS data (Table S1C).  
 
As the BioID and AP-MS methods differ from each other in interaction stability, the exactly 
same filtering methods cannot not be utilized as it leads to not stringent enough filtering of 
BioID data. However, we are confident that now with the strict filtering used, the resulting 
interactions are actually very high-confidence interactions. Tables, figures and text are now 
corrected accordingly. 
 
4. Starting on line 244, the authors highlight a cluster of actin/myosin-related prey proteins in 
the BioID dataset that cluster together and link to several transcription factors. The authors 
interpret these interactions as evidence of a link between these transcription factors 
(especially FOS and STAT1) and actin/myosin signaling in the nucleus. Perhaps this is the 
case - there is evidence that some of these proteins (ACTB, MYO1C, etc) do reside in the 



nucleus where they perform functions related to chromatin remodeling and transcription 
regulation. However, a skeptic might wonder whether most of these actin/myosin-related 
proteins are instead artifacts for several reasons. First, though a few of these proteins are 
known to reside partially in the nucleus and participate in transcription-related processes, 
many are not. (Examples include MYO1B, MYO1D, MYL6B, MYH9, MYH10, MYO5A, 
etc. according to Uniprot and Human Protein Atlas as listed in Table S2 of this paper.) 
Second, actin, myosin, and related proteins are themselves abundant and are often detected as 
background in these kinds of experiments. Third, there may in fact be elevated background in 
the BioID experiments targeting baits associated with Cluster 2. As I mentioned above, the 
contaminant BSA is present at elevated levels and flagged as an interacting partner in BioID 
experiments associated with 11 baits, reflecting anomalous background. Nine of these baits 
are linked to this actin/myosin cluster (Cluster 2 - see Table S7). Fourth, relatively few of the 
preys in this cluster appear to be nuclear, while several (PGRC1, TIM50, RAB8A, ATPA, 
ATPB, AT1A1, ADT2, ENPL, CALX, etc) localize to membranes, mitochondria, ER, and 
other alternate compartments and would seem to be contaminants (Table S7). Finally, while 
the BioID data for FOS and STAT1 reveal many proximal actin/myosin proteins, none of 
these interactions appear in the AP-MS data. While this could mean that these interactions are 
too transient or weak to survive AP-MS purification, it could also mean that these are 
artifacts specific to these BioID samples, much like BSA and the 
membrane/mitochondrial/ER preys detected alongside them. If the authors want to highlight 
this cluster, they will need to make a stronger case that these observations represent biology 
and should provide additional independent experimental confirmation to show that these links 
between FOS/STAT1 and actin/myosin proteins are real. Alternatively, they could cut this 
example and focus instead on other clusters where the data are more convincing.  
 
We thank the reviewer for the critical aspects of the actin and myosin related cluster. We 
agree that these actin/myosin proteins are difficult to study as they are frequently observed as 
a high abundant contaminant. However, transcription factors FOS and STAT1 do seem to 
have a very specific actin- and myosin- linked interactions. They for example uniquely 
interacted with ACTB and ACTBL2 within studied 109 TFs. However, due to the reviewer’s 
listed reasons and the scope of this article, we have as suggested decided to leave this cluster 
out as a highlight.  
 
5. I also note that the authors report that the mitochondrial carboxylase ACACB interacts 
with about 22 different transcription factors. This is also likely an artifact, as this protein is 
endogenously biotinylated according to Uniprot and Lee et al. (2008) Proteins 72:613-24. I 
should also point out that all 22 of these IP’s with excessive ACACB levels are associated 
with Cluster 2, seemingly linking that cluster to another experimental artifact. Endogenous 
biotinylation may also explain the presence of some other likely artifacts reported as 
interactions in the BioID data, including mitochondrial carboxylases MCCA, MCCB, PCCA, 
and PCCB that are covalently modified with biotin (e.g. Samavarchi-Tehrani et al. (2020) 
Mol Cell Proteom 19:757-773).  
 
We agree with the reviewer on this. It is often a difficult task to remove all probable 
contaminants using a systematic filtering strategy, and ACACB is seen as an interactor in 
many articles. However, using now the approach with more stringent filtering parameters 
(including the usage of CRAPome) (described in detail earlier (Q3)), complete removal of 
ACACB and in most cases of all the mitochondrial carboxylases was achieved. 
 
 



6. In various places in the text the authors contrast BioID and AP-MS, saying for example 
that BioID “… was used to detect also transient and proximal interactions of the TFs.” (Line 
96). And “The BioID method has been suggested to be efficient for studying transient 
interactions….” (Line 111). These statements are true, though the authors should point out 
explicitly that as long as they’re close together, a prey protein doesn’t actually need to 
physically associate with a given bait to be labeled via BioID. And given the confined nature 
of chromatin, these TF’s might be unusually prone to labeling other proteins that are in close 
proximity but don’t actually interact. 
 
We agree with the reviewer on this. It is often impossible to derive from BioID data alone if 
the interaction is stable, transient, direct or proximal. To clarify this, we have now added 
(lines 103-106)” Activation of BirA allows it to biotinylate proteins within close proximity 
(10 nm) of the studied TFs, including transient interactions. However, no physical contact is 
needed for biotinylation, and because of the confined nature of chromatin, proteins other than 
interacting proteins might also be labeled in low amounts. “ 
 
 
MINOR COMMENTS 
 
1. I’m curious about the authors’ observation that relatively few of the interactions they saw 
had been previously reported (Figure 1C). Is this fraction higher for really well characterized 
transcription factors (e.g. P53, MYC, etc) versus other less thoroughly characterized 
transcription factors? 
 
Yes, well characterized TFs had more previously reported PPIs. It is now clarified in text  
(lines 165-168) “The PPIs of several well-studied TFs, such as SOX2, MYC, TYY1, PAX6, 
HNF4a and GATA2, overlapped with more than 45 known interactions in the databases, 
whereas the PPIs of other less studied TFs, such as ZIC3, ELK4, ESR1, IRF3 and IRF9, did 
not overlap with any known PPIs from the databases or studies (Table S1B).” 
 
2. Figure 1D: It looks like about 20 baits are missing from this plot. Why aren’t all 110 
shown? If the authors can’t fit them all in the plot, then they should at least indicate in the 
figure legend that only a subset of baits are shown. Also, there seems to be a typo – one bait 
is simply labeled as “T”. 
 
Thank you for noticing that graphical issue. Scaling of the figure had resulted that some of 
the baits were not properly visible. Now all the 109 baits are visible in the figure. T-box 
transcription factor T “T” is also now for clarity changed to BRAC, which is the alternative 
name. 
 
3. Line 140: I’m not sure it’s fair to say co-IP isn’t sensitive enough. The issue is that AP-MS 
and BioID are measuring two phenomena that are related but distinct. One measures physical 
binding while the other measures proximity. 
  
We thank the reviewer for this comment, and being the catalyst for us performing this 
experiment in large scale. We now agree with the reviewer that this actually is feasible, as we 
obtained high-quality (>90%, 65/70 of the tested interaction pairs) validation data for NFI 
family of transcription factors and their interactors using co-IP approach. As it is possible that 
the approach does not work as well with all transcription factors, we have toned down the 
sentence to state “As BioID can capture transient and proximal interactions, most 



experimental validation methods, such as coimmunoprecipitation, might not be sensitive 
enough for validation of the results” (rows 147-148).  
 
4. Figure 2: I’m having trouble distinguishing the blue and black edges. I’d change the color 
scheme for improved contrast. The same is true for Figure 4A. 
 
We thank the reviewer pointing this out. We have now changed the black edges to green to 
improve the contrast. 
 
5. Figure 4C. It seems that HME1 is an alternative name for EN1 (both labels are given in 
Figure 2). Why is there a row labeled “HME1” in the PAX6 plot? This looks like a 
mislabeling. Also, the authors should use consistent terminology in the panel labeled EN1 
(Lower lefthand corner of Figure 4C) – right now the same protein is labeled EN1 at the top 
of the plot and HME1 below the bar graph. 
 
We thank the reviewer for noticing this. We have now changed EN1 to HME1 everywhere 
and mislabeling of PAX6 plot is corrected. 
  
6. In the Methods section titled “Protein identification” the authors write “FASTA library was 
complemented with BSA, tag sequences, trypsin, biotin, and GFP.” Since biotin is a small 
molecule, perhaps the authors mean they included streptavidin (in place of strep-tactin, whose 
sequence is presumably proprietary)? 
 
Biotin is now removed from the text. Thank you for pointing this mistake/typo. 
 
7. In the “Protein identification” section the authors also write that “oxidation … of 
methionine or N-terminus were used as dynamic modification”. Oxidation of the N-terminus 
doesn’t make chemical sense in this context. Do the authors mean acetylation of the N-
terminus? Also, what was the product ion mass error? 
 
N-terminus was added into sentence accidentally and is now removed from the text. We have 
also added details about product mass error: “The precursor mass tolerance was set to 15 
ppm, and the fragment mass tolerance was set to 0.05 Da” (lines 530-31) 
 
8. Instrumentation Methods (lines 522 – 533): What dynamic exclusion settings were used on 
the instrument? 
 
Settings are now added to text: “Finally, dynamic exclusion was enabled and settings were 
set as follows: repeat count: 1, repeat duration: 30s, exclusion list size: 500, exclusion 
duration 30s, exclusion mass width relative to 5 ppm. 
 
9. In line 544 the authors write that “All the TFs were analyzed in two or four replicates”. 
What determined whether each TF was analyzed two versus four times? Were these 
biological or technical replicates? Were replicates performed separately or side-by-side?  
 
In the beginning of the project, two technical replicates were produced from each biological 
replicate. However, we soon detected, that variability between the technical replicates was 
very low, and therefore chose to only run one technical replicate out of each biological 
replicate. We’ve now described this via a correlation plot Figure S1A: technical replicates 



had a correlation value of 0.974 and biological replicates 0.970, suggesting insights gained 
from technical replicates were negligible.  
This is now corrected and reads in text (lines 92-94) “Selected TFs were analyzed in two 
biological replicates and, as the correlation between the technical and biological replicates 
were excellent (Figure S1A), either in one or two technical replicates.” 
 
 
10. Line 542: the authors say they filtered peptides to an FDR <5%. What was the resulting 
protein-level FDR? And what additional steps (if any) were taken to control the protein-level 
FDR? 
 
We did not calculate the global protein-level FDR for the unfiltered interactome data. 
However, on the SAINT filtering average spectral count cut-off was set to ≥2 (detected in 
≥3/4 of the samples). This results to high-confidence interacting proteins to been assigned 
with the very stringent two-peptide rule. 
 
 
11. Line 546. The authors write “….we used 44 and 75 similarly tagged and analysed GFP 
control runs for the BioID analysis and AP-MS analysis, respectively. We also included 
GFP’s with a nuclear localization signal….” Are the authors saying that those 44 and 75 GFP 
control runs in BioID and AP-MS were performed using GFP with a nuclear localization 
signal? Or were the analyses of GFP’s with a nuclear localization signal separate from those 
listed in the preceding sentence? 
 
This is now clarified better in the text (lines 569-574) “To efficiently filter the real 
interactions, we used 44 and 75 similarly tagged and analyzed GFP control runs for the BioID 
analysis and AP-MS analysis, respectively. From these, 16 and 18, respectively, had a nuclear 
localization signal (NLS) to efficiently filter out nonspecific nuclear interactions. All GFP 
controls were used as negative controls in SAINT analysis, where the large nuclear dataset 
further facilitated the frequency-based deletion of contaminating proteins.” 
 
 
 
 
	  



Reviewer #2 (Expertise: MS-based proteomics): 
 
The manuscript by Göös et al. with title of “Human transcription factor protein interaction 
networks” presented a comprehensive interactome profiling of 110 human transcription 
factors using both AP-MS and BioID approaches. As the authors well summarized that 
transcription factors represent 6-9% of human proteome and play crucial roles in gene 
transcription related mechanisms. A systematic profiling of such type of protein machinery is 
desirable and should provide a valuable resource to related biological fields. The combination 
of traditional AP-MS analysis in cell lysate and proximity labeling-proteomic analysis in 
living cells should provide complimentary information for better viewing their molecular 
functionality. However, current manuscript didn’t present sufficient information to support 
the above goals and therefore needs to be significantly improved before further consideration. 
 
Major comments: 
1. Interactome profiling of transcription factors has been a popular topic in the past decade 
especially by using standard AP-MS approach. However, the authors failed to systematically 
review and summary these early efforts and clearly present the novelty of their own study. 
For example, yeast chromatin-associated interactome by Figeys and co-workers in 2010 
(Mol. Syst. Biol., 6, 448) and large-scale endogenous IP-MS analysis of transcriptional 
proteins by Qin and co-workers in 2011 (Cell, 145, 787). In addition, continuous global-scale 
AP-MS analysis of more than 10,000 human proteins by the BioPlex project leading by Gygi 
and co-workers should also cover a significant fraction of transcription factors 
(BioRxiv, https://doi.org/10.1101/2020.01.19.905109). Except for expanding early efforts for 
profiling transcription factor interactome, the authors should deliver more clear biological 
rationale for such type of study and major biological conclusion. 
 
We thank the reviewer for suggesting these large studies to be compared to our interactions. 
The overlap between the interactions identified in these studies and our study is now 
presented in Table S1. We additionally now analyzed the overlap between the three 
transcription factor interactome papers, BioPlex (which also included many TFs), and our 
dataset (Figure S1B). The overlap between our AP-MS data and Li et al (PMID25609649), 
Qin et al (PMID21620140), and Lambert et al (PMID21179020) were 2.34, 0.96, 1.43, 
respectively. The overlap between the aforementioned three TF interactomes ranged from 0 
to 1.92 %. For our BioID interactomes data, the overlap ranged between 0.25 % and 1.56 %. 
For these pairwise comparisons, we only used baits included in both interactomes. With 
BioPlex, the overlap was 2.92 % for our AP-MS data, 0.81 % for our BioID data, and 
between 0.05 and 4.17 % for the three previously published datasets.  Additionally, we have 
added discussion of this to text (lines 168-173). 
 
 
2. Along this line, the authors didn’t explain why the 110 transcription factors were selected 
for this specific study. Are there any previous AP-MS studies which have studies some of 
them? The authors should perform a related bioinformatic analysis and provide extended 
discussion about the rationale for studying this limited fraction of transcription factors. 
 
The selection process is now clarified in beginning of the Results-sections (Page 5, rows 90-
100): “To systematically investigate the protein–protein interactions of human TFs, we 
selected a representative set of 109 TF genes from different TF families (Table S1A). 
Selection was based on the availability of full-length TF constructs. Selected TFs were 



analyzed in two biological replicates and, as the correlation between the technical and 
biological replicates were excellent (Figure S1A), either in one or two technical replicates. 
TFs are often classified according to their DNA-binding domains (DBDs), and the DBD 
distribution of studied TFs compared to all human TFs is shown in Figure 1A. The majority 
of the studied TFs had C2H2 zing finger (ZF) or homeodomain DBDs, which are the most 
common DBDs among the human TFs4. 
The selected TFs were subjected to two independent mass spectrometry-based interactome 
analysis methods (Figure 1B).” 
 
 
3. As a valuable resource, the data quality is critically important especially for BioID type of 
data which represent the proximal proteome and tends to generate significant amount of 
nonspecific labeling.  
 
The authors only presented very general overview of the design of the study. Current data 
presentation failed to convince the audience. The authors have to significantly expend their 
data analysis dedicated for data quality part. Specifically, for example, the authors mentioned 
two or four replicates were performed. Why it is not consistent for such a critical 
experimental design? How the data reproducibility was evaluated and controlled? The 
authors used 44 and 75 GFP control runs for the BioID analysis and AP-MS anslysis, 
respectively. How did these important control data use for filtering out nonspecific adsorption 
and labeling? For all the figures in this study, the authors only presented the interaction 
network data. It’s hard to conclude the reliability of the 
highlighted interaction hubs – associated peptide counts etc. should be properly presented. 
 
We apologize for not obviously providing enough information about study design, controls 
and data filtering. Partly this was due to the strict space limits. 
  
In the beginning of the project, two technical replicates were produced from each biological 
replicate. However, we soon detected, that variability between the technical replicates was 
very low, and therefore chose to only run one technical replicate out of each biological 
replicate. We’ve now described this via a correlation plot Figure S1A: technical replicates 
had a correlation value of 0.974 and biological replicates 0.970, suggesting insights gained 
from technical replicates were negligible.  
This is now corrected and reads in text (lines 92-94) “Selected TFs were analyzed in two 
biological replicates and, as the correlation between the technical and biological replicates 
were excellent (Figure S1A), either in one or two technical replicates.” 
 
Regarding the GFP controls. this is now clarified better in the text (lines 569-574) “To 
efficiently filter the real interactions, we used 44 and 75 similarly tagged and analyzed GFP 
control runs for the BioID analysis and AP-MS analysis, respectively. From these, 16 and 18, 
respectively, had a nuclear localization signal (NLS) to efficiently filter out nonspecific 
nuclear interactions. All GFP controls were used as negative controls in SAINT analysis, 
where the large nuclear dataset further facilitated the frequency-based deletion of 
contaminating proteins.” 
 
To enhance the filtering even further, we now used additional control purification data from 
CRAPome-database (that includes contaminant proteins with abundancies and frequencies 
from 716 experiments) to further filter possible contaminants from the high-confidence 
interactor list.  



 
In BioID data, only the proteins with lower frequency than 50 % (358/716) in CRAPome 
were allowed. Also preys with CRAPome frequency 25-50% (179-358/716) and with higher 
CRAPome average spectral count compared to our average spectral count were removed. 
This led to exclusion of 520 interactions from BioID data (Table S1B).  
 
From AP-MS data, in addition to Saint cut-off, preys that were present with higher frequency 
than 50% in Crapome (358/716) were required to have three-time higher average spectral 
count than average spectral count in CRAPome. This led to exclusion of 640 interactions 
from AP-MS data (Table S1C).  
 
As the BioID and AP-MS methods differ from each other in interaction stability, the exactly 
same filtering methods cannot not be utilized as it leads to not stringent enough filtering of 
BioID data. However, we are confident that now with the strict filtering used, the resulting 
interactions are actually very high-confidence interactions. Tables, figures and text are now 
corrected accordingly. 
 
We thank the reviewer for suggesting adding the peptide counts and other details also in 
figures. We tried this, but for our and colleagues’ opinion this resulted in extremely busy and 
difficult figures, and we therefore decided to leave these details to table format (Table S1) 
 
4. In Fig. 1C, the authors highlighted much higher number of identified PPI by the BioID 
approach. As stated before and the cited papers by the authors, it’s not proper to define the 
identified proteins as PPI, but only proximal proteins. Along this line, the authors should 
extend their discussion about how the nonspecific labeling was properly filtered? Any more 
accurate quantification was used, which has becoming the standard approach in the proximity 
proteomics field. 
 
We, and many leading laboratories performing BioID analyses use SAINT (PMID: 
24513533) for statistically filtering the high-confident interactions. This approach has proven 
to be suitable for even with large-scale data with variable bait localizations (PMID: 
34079125). The SAINT filtering uses spectral counting. Additionally, our control set used in 
SAINT is larger than mostly used by others and includes tagged GFP controls. The set 
includes 28 (BioID) and 57 (AP-MS) normal GFP analyses (mainly cytoplasmic localization) 
and 16 (BioID) and 18 (AP-MS) nuclear localized NLS-GFP controls. This and the use of the 
new CRAPome (citation) database with 716 controls allowed us now to perform extremely 
stringent data filtering. Of note is that using the BioID tag allows much better control of the 
biotinylation than the newer much more efficient version of the BirA or APEX approaches. 
With these approaches the data shows much higher background and e.g. batch to batch 
variation, making the data extremely challenging to filter.  
In respect to MS1 quantification, we have not performed this as this approach is not 
compatible with the SAINT filtering approach. Naturally these values would be possible to 
obtain from our data if needed, however, we think this would not add much to this article. If 
there would be a clear idea / analysis type which would utilize this data we would be glad to 
include this. 
 
5. Line 104, the authors highlighted >75% TF interactome were previously unreported. The 
authors should specify the resource for such a comparison. In the section of “Comparison to 
other studies”, the authors well compared with Li et al.’s work for studying 59 TF 
interactome. However, only 6% of PPIs identified by BioID and 26% of PPIs by AP-MS 



were overlapped. These two analyses further raise the concern for the quality of the current 
study and should be further explored. 
 
We have now improved our comparison to several other studies. Apart from Li et al. study, 
the identified PPIs are now overlapped with public interaction databases such as PINA2, 
STRING, IntAct and Biogrid and several medium-to-large –scale interactome studies such as 
Lambert et al., Malovannaya et al., and Huttlin et al. (Tables S1B-C). 
 
We additionally now analyzed the overlap between the three transcription factor interactome 
papers, BioPlex (which also included many TFs), and our dataset (Figure S1B). The overlap 
between our AP-MS data and Li et al (PMID25609649), Qin et al (PMID21620140), and 
Lambert et al (PMID21179020) were 2.34, 0.96, 1.43, respectively. The overlap between the 
aforementioned three TF interactomes ranged from 0 to 1.92 %. For our BioID interactomes 
data, the overlap ranged between 0.25 % and 1.56 %. For these pairwise comparisons, we 
only used baits included in both interactomes. With BioPlex, the overlap was 2.92 % for our 
AP-MS data, 0.81 % for our BioID data, and between 0.05 and 4.17 % for the three 
previously published datasets.  Additionally, we have added discussion of this to text (lines 
168-173). 
 
 
6. Line 139-140, “As BioID can capture transient and proximal interactions, most 
experimental validation methods, such as coimmunoprecipitation, are not sufficiently 
sensitive to validate the results”. This statement is not accurate and also leads to the major 
problem of this study – none of the novel interaction was properly validated by alternative 
approaches, such as coimmunoprecipitation for stable interaction and proximity interaction 
by immunofluorescence colocalization or reciprocal proximity labeling and western blot. The 
data presented in Fig. 4C-D presented nice functional exploration of the NFIA related 
interaction hub. However, the interaction should be firstly validated. The authors should 
provide multiple cases of validation especially for the extensively discussed prey-prey 
correlation analysis part. 
 
We now agree with the reviewer on this. And we thank the reviewer for suggesting validation 
on the “nice functional” NFIs interactions hubs.  
We now obtained high-quality validation data for NFI family of transcription factors and 
their interactors. We have now added extensive co-IP validation for the NFI family members 
as suggested by the reviewers. This validation resulted of a large portion (>90%) of the MS 
detected interaction pairs (65/70) and in total 99/111 of the tested interaction prey pairs to be 
validated (this is added in results (lines 221-235), Supplementary Figure S3, and materials & 
methods), significantly strengthening the validity and biological relevance of our identified 
interactions. We also have accordingly adjusted our initial claims that the validation of the 
identified interactions might be difficult with co-IP due to possibly transient nature of the 
interactions. However, as it is possible that the approach does not work as well with all 
transcription factors, we have toned down the sentence and now state (lines 147-148)“As 
BioID can capture transient and proximal interactions, most experimental validation methods, 
such as coimmunoprecipitation, might not be sensitive enough for validation of the results” 
 
 
Minor comments: 
1. In general, the description for figure legends should be properly extended by including 



critical information. For example, it’s not clear that the western blot in Fig. 4C is properly 
repeated. 
 
We have now included more description to the figure legends. All experiments have been 
performed at least with two replicate, and for qualitative data a representative experiment is 
shown.  Uncropped blot of the representative experiments of the WB (Fig. 4C) is added to the 
source data table.  
 
2. The information in Fig. 1D and Fig. 2B is largely redundant and should be improved. 
 
Figure 1F and Figure 2B to our opinion describe somewhat different things. Figure 2B tries to 
transmit the similarities within the TF families, whereas the figure 1F is showing individual 
TFs interactions and act also as initial glimpse to the data together. 
  
3. Fig. 2A is too busy to clearly present the overlap between AP-MS and BioID profiling of 
the same bait proteins. Better presentation of this critical information should be provided. 
 
We agree that figure Figure 2A was overly busy to see the overlap between AP-MS and 
BioID. We have now modified Figure 2A and added new figure 1C, where the overlap is 
more clearly shown.  
 
4. Line 111, “The BioID method has been suggested to be efficient for studying transient 
interactions, and this is supported by our results, strongly suggesting that BioID is the 
method-of-choice for studying TF”. The authors should specify how their own results could 
support this statement. 
 
We believe that the majority of the results actually support this statement. The BioID results 
to large number of biologically relevant interactions. If we would need to pick one example, 
this is most strongly supported by the Gene Ontology analysis of the interactors detected by 
the BioID in Figure 3A. Additionally the prey-prey analysis identified several biologically 
relevant clusters (Figure 5). 
 
5. There are some typos which need to be carefully corrected. For example, line 184. 
 
We apologize for the typos. We have now used a Nature publishing group’s professional 
scientific language (English) editing service to improve grammar and language. We believe 
this has significantly improved the quality of the text. 
 
 
6. In several figures, it’s not clear whether BioID data, AP-MS data or combined interaction 
network are presented and discussed. 
 
We apologize this unclarity and have now added more clearly indication in figure legends of 
which data is used for which figure.  
 
 
 
 
 
	  



Reviewer #3 (Expertise: Sox transcription factors, ChipSeq): 
 
In the paper by Göös et al. the authors examine the interactome of 110 selected transcription 
factors (TFs) when misexpressed in HEK 293 cells. Using two mass-spectrometry based 
methods to characterize stable (AP-MS) and more transient (BioID) protein-protein 
interactions the authors detect thousands of interactions, of which many have not yet been 
reported. The authors perform several clustering analyses and show that TFs within the 
detected interactomes often consist of TFs of the NFI family. To examine if NFI TFs may 
regulate the activity of the analyzed TFs the authors perform Luciferase-reporter assays. 
These experiments show that NFIA knock-down affects the activity of the examined TFs, 
regardless of their interaction with NFIA. Furthermore, using ChIP-seq the authors further 
show that the binding pattern of ectopically expressed SOX2 is significantly affected by 
NFIA knock-down. Although this study addresses an important question the ectopic context 
that the experiments are performed in questions their biological relevance. 
 
Comments: 
1)The experiments are performed in HEK293 cells. This cellular context is highly ectopic for 
some of the TFs. To what extent is the cellular context and growth conditions of the HEK293 
cells affecting the composition of the reported interactomes? The authors must discuss the 
value of analyzing TF interactomes in an ectopic context? 
 
We thank the reviewer for this comment and agreed that we should discuss the value of 
analyzing the TF interactomes in HEK 293 cells. We have added the following sentences in 
the discussion part (lines 477-483): “From the established and used cell lines, HEK293 
express a wide range of different transcript, totaling ∼ 13k genes. In interaction proteomics 
HEK293 cells have been widely used as a “gold standard” for studying protein-protein 
interactions (PPIs) (Taipale et al., 2015 (PMID: 25036637); Huttlin et al., 2015 (PMID: 
26186194); Huttlin et al., 2021 (PMID: 33961781)). The proteome functional classification 
of HEK293 mimicks UniProt and most closely resembled the distribution observed for preys 
(Huttlin et al., 2015 (PMID: 26186194)). Previous study has shown that even with the 
lentiviral infection of 293 cells, overexpression has little effect on identification of true 
interacting partners after statistical filtering (Liu et al., 2020 (PMID: 32778839)).”  
 
 
2)The authors show that upon the removal of NFIA, the genome-wide binding pattern of 
SOX2 is substantially altered. These experiments raise a number of questions. 
 
a)What antibodies were used to precipitate SOX2? 
 
The antibody we used to precipitate SOX2 is against HA tag on SOX2 (Abcam, ab18181, Lot 
No: GR3288712). 
 
b)Is NFIA binding overlapping with that of SOX2? 
 
Yes, we have performed two independent experiments and found NFIA ChIP-Seq has 129 
peaks (experiment 1), and 195 peaks (experiment 2), respectively, overlapping with SOX2. 
The results shown as below:  
 



 
 
 
 
 
c)How many times were these experiments repeated? 
 
We have performed two independent experiments and obtained comparable results, as shown 
in the following figures: 
 



                        

 
                     
Experiments 1 and 2: Heatmap representation of SOX2 binding intensity based on ChIP-seq 
signals in 293T cells while treated with Control siRNA and the siRNA against NFIA, 
respectively. 
 
 
 



 
d)What TF binding motifs were enriched in the SOX2 bound regions (peaks)? 
 
TF binding motifs of the SOX family members, including SOX3, SOX2, SOX21 and so on 
indicated most enriched in the SOX2 ChIP-seq peaks. The top enriched TF binding motifs 
were shown as below: 
 
Experiment 1, SOX2 ChIP-Seq motif 

 
 
 
 
Experiment 2, SOX2 ChIP-Seq motif 



 
 
 
                           
 
 
e)Is there a selective enrichment of NFI binding motifs in SOX2 bound regions sensitive to 
NFIA levels? 
 
Overall, the answer is Yes. In the experiment 1, upon the NFIA knockdown, among the lost 
(6921) and common (362) SOX2 binding sites, we observed significant enrichment of NFI 
(NF1) binding motif. But we didn’t observe NFI binding motif enriched among the gained 
(1341) peaks. The results of this analysis are shown as below: 
 
The HOMER motif results of the lost 6921 SOX2 binding sites upon NFIA knockdown: 



 
 
 
 
The HOMER motif results of the 362 common binding sites: 

 



 

 
 
The HOMER motif results of the gain 1341 binding sites upon NFIA knockdown, we didn’t 
observe NF1 motif. 

 
 
 
In the experiment 2, upon the NFIA knockdown, among the lost (3720) and common (2616) 
SOX2 binding sites, we observed significant enrichment of NFI binding motif. Among the 

 



gained (1143) peaks, we observe less significant enrichment of NFI binding motif. The analysis 
results shown as below  
 
The HOMER motif results of the lost 3720 SOX2 binding sites upon NFIA knockdown: 

 
 
 
 
The HOMER motif results of the 2616 common binding sites: 

 



 

 
          
 
 
The HOMER motif results of the gain 1143 binding sites upon NFIA knockdown: 

 

 
 

 

 



 
 
3)Using luciferase-reporter assays the authors examine how TF function is affected by the 
loss of NFIA. Are the regulatory DNA regions containing NFI binding motifs? If so, what is 
the distance between binding sites of the examined TFs? Most TFs appear to be affected by 
the loss of NFIA, even TFs that are not interacting with NFIA. The authors conclude that this 
is due to an indirect regulation of their activities. Why are not these important controls shown 
in the main figure? Why are only synthetic regulatory DNA-regions analyzed? 
 
To generate luciferase-reporter assays to assess TFs transcriptional activity or pathway 
activity, the most common approach utilizes the generation of concatenated repeats for a 
specific transcriptional response elements (TREs) specific for each TF. Most common 
number of the TREs is 8 or 16. In this study to generate the large number of the TF reporters 
we also employed this strategy as this is almost the only option to obtain over 2-fold 
induction levels. Majority of the large 1kb promoter regions give really low activation >2 -
fold and are not really sensitive nor stabile enough to robustly detect the TF or pathway 
activation. Of note is that all of the reporters used in this study had minimally 5-fold 
activation the presence of the transfected corresponding TF. Also in large scale testing no 
cross-activation with other TFs was observed. This indicates that the NFI function is 
mediated by interactions and/or recruitment of other transcription regulating factor to the site 
of transcription. 
 
 
 
	  



Reviewer #4 (Expertise: MS, BioID-MS of nuclear proteins): 
 
The manuscript entitled “Human transcription factor protein interaction networks” describes 
an extensive characterization of PPI networks of 110 transcription factors using AP-MS and 
BioID. The paper thus provides an extensive list of several thousand potential interactions.  
Two approaches are included. The first one is using the single-step Strep-tag affinity 
purification for AP-MS and the second one is using the same system but to purify proteins 
that were biotinylated by BirA* following addition of biotin to the media. It is mentioned that 
the expression of studied TF was adjusted to close to physiological level of the Tet inducible 
system, but no experimental evidence is presented in the paper. Considering the low 
expression level of TF in general, I doubt this was possible to achieve using the Flp-In Tet 
inducible system, which is notoriously difficult to titrate. 
 
Regarding the large amount of data and the number of PPI identified, I find it relatively 
troubling that such a large proportion of interactions (over 75%) were not previously 
reported. Other large-scale studies with TF published have very little overlap with their own, 
as mentioned in the text. There are also several studies with transcriptions factors that have 
been performed using BioID that could have been used to compare with their own BioID, 
which has identified the most interactions. This is hand-waved on the fact that the difference 
is likely due to the transient nature of the TF interactions and/or the different tagging 
strategies used, but in the absence of validation, it is difficult to determine which of the 
studies (theirs or the others) represent a true catalogue of PPI for TFs. 
 
Overall, the manuscript is interesting and includes a large amount of data. The following 
analysis performed underlines interesting observations, including the interactions with other 
transcription factors and the identification of biological complexes. However, the data 
presented in a large number of tables makes the data somewhat hard to digest. 
 
We thank the reviewer finding our manuscript interesting and including large amount of data. 
We also acknowledge the fact that the amount of data can be, in part overwhelming, and have 
now tried to distill the major findings even better to the revised version.  For this the four 
reviewers comments were extremely helpful.  
 
In respect to validation of our identified interaction, we have now added extensive co-IP 
validation for the NFI family members as suggested by the reviewers. This validation resulted 
of a large portion 65/70 (93%) of the tested MS detected interaction pairs to be validated, 
significantly strengthening the validity and biological relevance of our identified interactions. 
We also have accordingly adjusted our initial claims that the validation of the identified 
interactions might be difficult with co-IP due to possibly transient nature of the interactions.   
 
Additionally, we have now modified the text regarding the TF expression level from “close to 
physiological” to from “physiological to mild or moderate overexpression” (line 108) We and 
others have observed in previous large-scale studies that the transgene expression obtained 
with Flp-In Tet inducible system often resemble well with the expression endogenous protein 
(eg. Silke et al. PMID: 16263936, Glatter et al. PMID: 19156129, Varjosalo et al. PMID: 
23602568, Varjosalo et al. PMID: 23455922, Go et al. PMID: 34079125 and others), 
however, in respect to transcription factors the validation of the physiological expression 
levels proved extremely difficult due to the lack of good quality antibodies against the TFs in 
reasonable numbers. 



 
Other comments: 
The identified proteins were filtered using a SAINT score cut-off of 0.74, but no further 
discussion is provided on why this value was used. Considering the analysis presented the 
results from 2-4 repeats for each TF, I think it would be appropriate to provide a better 
rationale. Is this threshold actually stringent, and are they losing significant proteins that 
should be taken into account? 
 
The threshold and the updated filtering strategy is very stringent. The SAINT score cut-off of 
0.74 alone actually requires that the bait has been seen in minimally ¾ samples.  
 
To further improve the filtering we have now added the control purification data from 
CRAPome-database (that includes contaminant proteins from 716 experiments). In BioID 
data, only the proteins with lower frequency than 50 % (358/716) in CRAPome were 
allowed. Also preys with CRAPome frequency 25-50% (179-358/716) and with higher 
CRAPome average spectral count compared to our average spectral count were removed. 
This led to deletion of 520 interactions from BioID data (Table S1B).  
 
From AP-MS data, in addition to Saint cut-off, preys that were present with higher frequency 
than 50% in Crapome (358/716) were required to have three-time higher average spectral 
count than average spectral count in CRAPome. This led to deletion of 640 interactions from 
AP-MS data (Table S1C).  
 
As the BioID and AP-MS methods differ from each other in interaction stability, same 
filtering methods cannot not be utilized as it leads to not stringent enough filtering of BioID 
data. However, we think that now the strict filtering used, results to a very high-confidence 
interactions. Tables and figures are now corrected accordingly. 
 
Some important information is missing for protein identification with Proteome Discoverer. 
An FDR for peptide was set to 0.05. What was the minimum number of peptides used in the 
study? Was that taken into accounts when identifying an interaction? For example, an 
identification in at least 2 of the repeats could be used to filter out potential contaminants. 
 
The SAINT statistical filtering does take into consideration the spectral count values of the 
detected interactions and compares these with the controls. SAINT filtering average spectral 
count cut-off was set to ≥2 (detected in ≥3/4 of the samples). This results to high-confidence 
interacting proteins to been assigned with the very stringent two-peptide rule. 
Additionally, we have made the filtering even more stringent than before as discussed on the 
previous reply above. 
 
The quality of the text is poor. There are several errors that goes beyond typos or 
grammatical errors. The text will have to be extensively edited for English. 
 
As a non-native English speaker and writers, we deeply apologize for this. We have now used 
a Nature publishing group’s professional scientific language (English) editing service to 
improve grammar and language. We believe this has significantly improved the quality of the 
text. 
 
 
 



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

I'm satisfied with the authors' responses to my comments and requests. I think the added filtering 

the authors have incorporated has enhanced the quality of their datasets and they will be a useful 

resource for the scientific community. 

Reviewer #2: 

Remarks to the Author: 

In the revised version of the manuscript entitled of “Human transcription factor protein interaction 

networks”, the authors performed additional co-IP validation for a large set of stable interactions 

with quite good success rate. However, for the main concerns related to data quality and data 

presentation raised by most of the reviewers, it is disappointed that the authors only addressed 

quite generally. Without significant improvement for the evaluation of the data quality and data 

presentation, such type of large-scale resource with great effort is hard to be appreciated by the 

audience and meet the quality of Nat. Commun. Several examples for these major concerns are 

listed as below. 

1. The authors only performed further comparison to the three papers listed as examples. 

Systematic survey for most representative works should be done. For example, the recent BioID 

human cell map (Nature, 2021, 595, 120). 

2. The authors highlighted that “the correlation between the technical and biological replicates 

were excellent (Figure S1A)”. What type of data was investigated and presented? Without 

comprehensive and solid evaluation, such conclusion tends to be overstated. 

“We thank the reviewer for suggesting adding the peptide counts and other details also in figures. 

We tried this, but for our and colleagues’ opinion this resulted in extremely busy and difficult 

figures, and we therefore decided to leave these details to table format (Table S1)” These main 

figures are full of busy hairball maps which provides limited biological information. Experimental 

data should be provided at least for the representative examples presented in Figure 4 and 6. 

3. The authors highlighted the use of SAINT and CRAPome for their data analysis, and therefore, 

concluded their data presentation is in high quality. The authors should present detailed data at 

least in Figure 4 and 6 for confirming such a conclusion. 

4. For the major BioID interactome, the authors still didn’t provide any validation and further solid 

data analysis. Detailed data analysis workflow should be provided. 

Reviewer #3: 

Remarks to the Author: 

The authors of the manuscript titled “Human transcription factor protein interaction network” have 

responded to several of the comments that I raised in the initial review. However, I’m stilled 

concerned by the fact that the authors only use an ectopic context (293 T-Rex cell line) to examine 

the functional interaction between lineage specific transcription factors. Moreover, the authors 

present data that lacks proper controls and that they fail to discuss/interpret. 

Specific comments 

1) The authors show that upon removal of NFIA, the genome wide binding pattern of misexpressed 

SOX2 is substantially altered in 293-cells. Without further experiments explaining how NFIA affects 

the binding pattern of SOX2, this data set is inconclusive and can be left out. 

2) In Fig. S4B the authors present a pathway enrichment analysis of genes targeted by 

misexpressed SOX2 in 293-cells, both in the presence and absence of NFIA. What is the relevance 

of this data set. Does SOX2 has a significant role in these cells that can be determined with a 

pathway enrichment analysis? 

3) In Fig. 4 and Fig. S5 the authors examine how the loss of NFIA affects the capacity of a set of 

transcription factors to regulate a reporter gene. Using synthetic enhancers that consists of 

multimerized specific transcription factor binding sites, the authors show that the loss of NFIA 

affects the activity of transcription factors, regardless of their interaction with NFIA. Again, without 



further experiments giving a reasonable explanation for this result, this data set can be left out. 

Reviewer #4: 

Remarks to the Author: 

The manuscript entitled “Human transcription factor protein interaction networks” is a 

resubmission following extensive corrections and additions. 

I believe the authors have made considerable efforts to address the comments from all reviewers, 

including more comparison with other large-scale studies of PPI of transcription factors. 

Moreover, the validation of NFI family members interactions provide a very strong argument for 

the quality of their data. 

Additional details on filtering and scoring of the interactions are also explained properly. 

Finally, the text has now been edited to proper standards. 

I believe the article is now acceptable.



 
REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
I'm satisfied with the authors' responses to my comments and requests. I think the added filtering 
the authors have incorporated has enhanced the quality of their datasets and they will be a useful 
resource for the scientific community. 
 
 
Reviewer #2 (Remarks to the Author): 
 
In the revised version of the manuscript entitled of “Human transcription factor protein interaction 
networks”, the authors performed additional co-IP validation for a large set of stable interactions 
with quite good success rate. However, for the main concerns related to data quality and data 
presentation raised by most of the reviewers, it is disappointed that the authors only addressed 
quite generally. Without significant improvement for the evaluation of the data quality and data 
presentation, such type of large-scale resource with great effort is hard to be appreciated by the 
audience and meet the quality of Nat. Commun. Several examples for these major concerns are 
listed as below.  

 
1. The authors only performed further comparison to the three papers listed as examples. 
Systematic survey for most representative works should be done. For example, the recent BioID 
human cell map (Nature, 2021, 595, 120). 

We thank reviewer for the comment. The editorial team agrees that no further systematic 
comparisons is needed. In our opinion the comparison to public interaction databases such as 
PINA2, STRING, IntAct and BioGRID and several medium- to large-scale interactome studies such as 
Li et al., Lambert et al., Malovannaya et al., and Huttlin et al. provides already a comprehensive 
overview of overlapping interactions. In addition, we show that while the overlap of identified 
interactions between our dataset and the previously mentioned large-scale interactomes studies is 
low, so is the overlap among the previous studies as well. Indeed, our results overlap more with the 
existing data, than many of the other interactomes (Figure S1B). This may suggest that all the studies 
capture slightly different facets of TF interactomes, and together form a much more complete 
picture, than any one study alone. 

 
2. The authors highlighted that “the correlation between the technical and biological replicates were 
excellent (Figure S1A)”. What type of data was investigated and presented? Without comprehensive 
and solid evaluation, such conclusion tends to be overstated. 

The correlation analysis of technical and biological replicates is shown in Figure S1A. As stated in 
figure legend “Correlation plots of biological (blue) and technical (orange) replicates performed with 
seaborn python package”.  

We found the correlation extremely high (>0,970 with biological replicates and > 0.974 with 
technical replicates, both with the p-values near to 0.) 

We have now added a more detailed description of the used correlation analysis in methods section: 
“Correlation for biological and technical replicates was analyzed using spectral count values of either 
biological or technical replicates. Pearson’s correlation coefficient values were calculated for each 



pair of replicates with the personr method from the phyton scipy.stats package (SciPy, version 1.71). 
Plots for the results were generated with lmplot method of the phyton seaborn package (version 
0.11.2). “ 

 

 
3. The authors highlighted the use of SAINT and CRAPome for their data analysis, and therefore, 
concluded their data presentation is in high quality. The authors should present detailed data at 
least in Figure 4 and 6 for confirming such a conclusion. 

“We thank the reviewer for suggesting adding the peptide counts and other details also in figures. 
We tried this, but for our and colleagues’ opinion this resulted in extremely busy and difficult figures, 
and we therefore decided to leave these details to table format (Table S1)” These main figures are 
full of busy hairball maps which provides limited biological information. Experimental data should be 
provided at least for the representative examples presented in Figure 4 and 6. 

In the revision as quoted by the reviewer, we agreed to do this if the reviewer thinks this is 
important for him/her. As per request from the Reviewer the quantitative experimental data on the 
interaction abundances has now been added to Figure 4 and Figure 6. 

 
4. For the major BioID interactome, the authors still didn’t provide any validation and further solid 
data analysis. Detailed data analysis workflow should be provided. 
 

We cordially disagree with the reviewer on NOT providing ANY validation and SOLID data analyses 
on the BioID interactions. In fact, in the revision, we added validation of almost hundred protein-
protein interactions. To our knowledge the number of interactions validated with a complementary 
analysis in this study compared to other interaction proteomics studies, is in the top 5%. 

This criticism is also somewhat disagreement with the other comments the revised manuscript 
obtained: 

”I believe the authors have made considerable efforts to address the comments from all reviewers, 
including more comparison with other large-scale studies of PPI of transcription factors.” 
 
”Moreover, the validation of NFI family members interactions provide a very strong argument for 
the quality of their data.” 
 
”Additional details on filtering and scoring of the interactions are also explained properly.” 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors of the manuscript titled “Human transcription factor protein interaction network” have 
responded to several of the comments that I raised in the initial review. However, I’m stilled 
concerned by the fact that the authors only use an ectopic context (293 T-Rex cell line) to examine 
the functional interaction between lineage specific transcription factors. Moreover, the authors 
present data that lacks proper controls and that they fail to discuss/interpret.  
 
Specific comments 



1) The authors show that upon removal of NFIA, the genome wide binding pattern of misexpressed 
SOX2 is substantially altered in 293-cells. Without further experiments explaining how NFIA affects 
the binding pattern of SOX2, this data set is inconclusive and can be left out. 
2) In Fig. S4B the authors present a pathway enrichment analysis of genes targeted by misexpressed 
SOX2 in 293-cells, both in the presence and absence of NFIA. What is the relevance of this data set. 
Does SOX2 has a significant role in these cells that can be determined with a pathway enrichment 
analysis? 

As suggested by the Reviewer and agreed by the editorial board, we have now removed the NFIA 
and Sox2 binding data and modified the figures and text accordingly.  

 
3) In Fig. 4 and Fig. S5 the authors examine how the loss of NFIA affects the capacity of a set of 
transcription factors to regulate a reporter gene. Using synthetic enhancers that consists of 
multimerized specific transcription factor binding sites, the authors show that the loss of NFIA 
affects the activity of transcription factors, regardless of their interaction with NFIA. Again, without 
further experiments giving a reasonable explanation for this result, this data set can be left out.  

As suggested by the Reviewer, we agree to remove the Figure S5. Although interesting observation, 
finding and validating a clear indirect mechanism of action of NFIA regulation of other transcription 
factor requires further studies. We have now highlighted in the text that measured transcriptional 
activity of each single TF alone and the effect of NFIA interaction on these:” Of note is that each of 
these assays measure only the possible binding activity change of each specific TF. TFs bind to 
several different sites in the DNA (Jolma et al., 2013) and it is highly unlikely that DNA mediated 
interactions would be detected in these abundancies as detected by our interactome analyses.”  
(rows 335-338). 
 
Jolma, A. et al. DNA-binding specificities of human transcription factors. Cell. 152, 327-339 (2013). 
 
Reviewer #4 (Remarks to the Author): 
 
The manuscript entitled “Human transcription factor protein interaction networks” is a resubmission 
following extensive corrections and additions. 
 
I believe the authors have made considerable efforts to address the comments from all reviewers, 
including more comparison with other large-scale studies of PPI of transcription factors. 
 
Moreover, the validation of NFI family members interactions provide a very strong argument for the 
quality of their data. 
 
Additional details on filtering and scoring of the interactions are also explained properly. 
 
Finally, the text has now been edited to proper standards. 
 
I believe the article is now acceptable. 
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