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1 The sustained treatment effect parameter

In the main manuscript, we defined the intent-to-treat parameter to represent the effect of initiating treatment at a given

point during a pregnancy where the pregnancy duration is allowed to be random and potentially precede the planned

initiation. The sustained treatment effect is the effect of initiating and remaining on treatment from the given time

point until the end of pregnancy.

1.1 Observed data

The observational data collected for each of n participants are independent and identically distributed (i.i.d.) and of the

form (W (t), A(t), D(t); t = 1, ...,K, Y ). The full description is given in the main text, but briefly, W (t) represents

the covariates, A(t) is the exposure, and D(t) is the delivery status at time t. Time K is the first time point at which

all subjects have delivered (i.e. D(K) = 1 for all butD(K − 1) = 0 for some). Let TD represent the observed time of

delivery. Let an overbar refer to a history of a variable up to the indicated time point, e.g. A(k) = {A(0), ..., A(k)} if

k > 0 and A(0) = A(0). Y is the outcome measured at delivery.
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We define the indicator σk(t) of sustaining strategy k up to and including time t as

σk(t) =


1 if TD ≤ k and A(k) = 0

1 if k < TD and A(k − 1) = 0, A(k∗) = 1 for all k∗ ∈ {k,min(t, TD)}

0 otherwise

which indicates whether a participant initiated treatment at time k and continued treatment until time t or were following

this strategy until they delivered.

1.2 Sustained treatment strategy parameter and identifiability assumptions

Now we define the effect of initiating and sustaining treatment at time k until interrupted by delivery. The potential

outcome under the sustained strategy Y σk is the outcome that a participant would have had had they persisted in taking

the assigned treatment from time k to K until interrupted by delivery. The parameter of interest is thus E(Y σ
k

) for

each starting time k, allowing us to make contrasts between alternative start times.

In order to estimate the sustained treatment strategy effect with observational data, we require similar assumptions

to that of the ITT parameter. Consistency here means that Y = Y σ
k if σk(K) = 1. As before, if a participant

has not yet initiated treatment prior to a delivery time TD < k, then their observed outcome is assumed to be equal

to the counterfactual Y σk for any k ≥ TD. Positivity here means that, conditional on the measured covariates

(including delivery status) at a time point, all subjects would have a non-zero probability of continuing to follow any

sustained treatment strategy at each time point. By construction, once a delivery occurs at TD, the subject has a

probability of one of continuing to follow all strategies k for which σk(TD) = 1. Thirdly, we require a stronger type of

exchangeability, that all baseline and time-dependent confounders of the exposure and outcome have been measured,

i.e. Y σk ⊥⊥ A(t) |W (t)), A(t− 1), D(t− 1) = 0. This is a stronger assumption as we must measure the confounders

of treatment taken at each time point rather than just the confounders of initiating treatment, amongst those who have

not yet delivered. Non-interference is required as before.

2 More details about the estimation of the ITT parameter

2.1 G-computation

Firstly, by construction, no deliveries have occurred at the first time point (D(0) = 0) and all deliveries have

occurred by the final time point (D(K) = 1). We then need to trivially modify our representation of the data
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to include the outcome at every time point. If the measured outcome is Y , we define a time-varying Y to be

unknown (NA) up until the delivery, after which it remains the same. Thus we initialize Y (K + 1) = Y and

define Y (t) = {Y (t + 1) if D(t − 1) = 1 or NA otherwise}, t = K, ..., 2, so that the complete data structure is

{W (t), A(t), D(t), Y (t+ 1); t = 1, ...,K}.

Initializing QK+1 = Y , the estimator for treatment initiation can be defined through the nested expectations

Qt = E{Qt+1 | D(t − 1), Y (t),W (t), Sk(t) = 1}, t = K, ..., 1. We have that E(Y k) = E(Q1) under the causal

assumptions. This corresponds to the standard decomposition of the exposition of the outcome expectation used in

longitudinal TMLE; see Schnitzer et al [1] for more explanation.

The estimation is iterative: take the vector of the predictions of Qt+1 and regress these values on the covariate

history up until time t. The prediction from this new model fit are the estimates of Qt. At t = 1, take the mean over

the estimates of Q1 to obtain the G-computation estimate of E(Y k).

We decompose the Qt expectations in order to develop reasonable modeling strategies. We note that

Qt = D(t− 1)Y (t) + {1−D(t− 1)}E{Qt+1 | D(t− 1) = 0,W (t), Sk(t) = 1}

=


D(t−1)Y+{1−D(t−1)}E{Qt+1|D(t−1)=0,W (t),A(k−1)=0,A(k)=1} if k ≤ t

D(t−1)Y+{1−D(t−1)}E{Qt+1|D(t−1)=0,W (t),A(t)=0} otherwise
(1)

The above equation shows that if delivery has occurred by t − 1, the outcome Y = Y (t + 1) is in the history and

included in the conditioning statement, so the (nested) expectation of the outcome is equal to the outcome. If delivery

has not yet occurred, then we need to model the expectation. For instance, we may model the expectations in the

equation 1 by regressing the predictions Qt+1 on covariate and treatment history amongst those who have not yet

delivered at time t− 1. We obtain the estimates of Qt by then taking the predictions from the regression model fit and

setting A(k − 1) = 0 and, if k < t, also setting A(k) = 1, for all subjects who have not yet delivered. For those who

have delivered by t− 1, their estimate of Qt is Y .
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2.2 TMLE

Algorithm 1 Targeted Minimum Loss-Based Estimation for E(Y k)

1: Initialize Q∗K+1,n = Y .

2: for t = K, ..., 1 do

3: Estimate Qt,1 = E{Qt+1 | W (t), Sk(t) = 1, D(t − 1) = 0} for all subjects with D(t) = 0 by running a

regression with outcome Q∗t+1,n in the subset with D(t− 1) = 0. Use this regression fit to make a prediction on

the scale of the outcome for all patients with D(t− 1) = 0. Denote this prediction by Qt,1,n.

4: “Update” these predictions by running a logistic regression of Q∗t+1,n with an intercept term and offset

logit(Qt,1,n) with weights wkn(t) in the subset of patients withD(t− 1) = 0. Denote the estimate of the intercept

as ε̂t.

5: Set Q∗t,1,n = expit{logit(Qt,1,n) + ε̂t}, the updated estimate of Qt,1.

6: Set Q∗t,n = D(t− 1)Y + {1−D(t− 1)}Q∗t,1,n, the updated estimate of Qt.

7: The final estimate is the mean of Q∗1,n over all subjects.

3 Estimation of the sustained treatment effect parameter

3.1 IPW

The probabilities of following the treatment strategy to initiate and sustain treatment starting at time k = 1, ...,K or

never (k = K + 1) unless delivered are as follows:

P (σk(t) = 1 |W (t), σk(t− 1) = 1, D(t− 1))

=


P (A(t)=I(k≤t)|W (t),D(t−1)=0,{A(l−1)=I(k≤l−1);l=2,...,t}) if D(t− 1) = 0

1 otherwise
,

for t = 1, ...,K where the argument involving σk(0) is disregarded.

Once these probabilities are estimated, the IPW calculation for the effect of sustained treatment from time k involves

running an intercept-only linear regression for the outcome with weights wkσ,n(K) equal to estimates of wkσ(K) where

wkσ(t) = σk(t)×
[ t∏
l=1

P{σk(l) = 1 |W (l), σk(l − 1) = 1, D(l − 1)}
]−1

.

4



The estimated intercept from the resulting model fit is the IPW estimate of the parameter E(Y σ
k

).

3.2 G-computation

Recall that the complete data structure is {W (t), A(t), D(t), Y (t+ 1); t = 1, ...,K}.

For the sustained treatment effect, we define QσK+1 = Y and Qσt = E{Qσt+1 | D(t), Y (t),W (t), σk(t) = 1}, t =

K, ..., 1. The simplifications are the same as for the ITT setting, resulting in

Q
σ

t =


D(t−1)Y+{1−D(t−1)}E{Qσt+1|W (t),A(k−1)=0,At(k)=1,D(t−1)=0} if k ≤ t

D(t−1)Y+{1−D(t−1)}E{Qσt+1|W (t),A(k−1)=0,D(t−1)=0} otherwise

where we take At(k) = (A(k), ..., A(t)) to indicate treatments from time k to t when k ≤ t.

3.3 TMLE

The TMLE procedure for the sustained treatment effect follows essentially the same steps as the procedure for the ITT

parameter.

Algorithm 2 Targeted Minimum Loss-Based Estimation for E(Y σ
k

)

1: Initialize Qσ∗K+1,n = Y .

2: for t = K, ..., 1 do

3: Estimate Qσt,1 = E{Qσt+1 | W (t), σk(t) = 1, D(t− 1) = 0} for all subjects with D(t− 1) = 0 by running a

regression with outcome Qσ∗t+1,n in the subset with D(t− 1) = 0. Use this regression fit to make a prediction on

the scale of the outcome for all patients with D(t− 1) = 0. Denote this prediction by Qσt,1,n.

4: “Update” these predictions by running a logistic regression of Qσ∗t+1,n with an intercept term and offset

logit(Q
σ

t,1,n) with weights wkσ,n(t) in the subset of patients with D(t − 1) = 0. Denote the estimate of the

intercept as ε̂t.

5: Set Qσ∗t,1,n = expit{logit(Qσt,1,n) + ε̂t}, the updated estimate of Qσt,1.

6: Set Qσ∗t,n = D(t− 1)Y + {1−D(t− 1)}Qσ∗t,1,n, the updated estimate of Qσt .

7: The final estimate is the mean of Qσ∗1,n over all subjects.
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