

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Non-surgical Treatment-induced Reduction in the Biomechanical Risk Factors Related to Knee Osteoarthritis: A systematic review and Bayesian network meta-analysis of randomized controlled trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051608
Article Type:	Original research
Date Submitted by the Author:	24-Mar-2021
Complete List of Authors:	Huang, XiMeng; Peking University Third Hospital Yuan, Fu-Zhen; Peking University Third Hospital Chen, You-Rong; Peking University Third Hospital Huang, Ying; Peking Union Medical College Hospital Yang, Ze-Xi; Peking University Third Hospital Lin, Lin; Peking University Third Hospital Yu, Jia-Kuo; Peking University Third Hospital
Keywords:	Biophysics < NATURAL SCIENCE DISCIPLINES, Adult orthopaedics < ORTHOPAEDIC & TRAUMA SURGERY, Knee < ORTHOPAEDIC & TRAUMA SURGERY, REHABILITATION MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

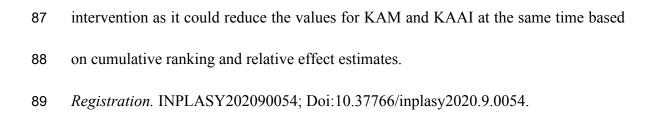
The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Title: Non-surgical Treatment-induced Reduction in the Biomechanical Risk				
2	Factors Related to Knee Osteoarthritis: A systematic review and Bayesian				
3	network meta	-analysis of randomized controlled trials			
4	Authors: Xi-N	Ieng Huang ^{1*} , MD; Fu-Zhen Yuan ^{1*} , MD; You-Rong Chen ¹ , MD; Ying			
5	Huang ² , MD; Z	Ze-Xi Yang ³ , MD; Lin Lin ¹ , MD; Jia-Kuo Yu ¹ , MD&PhD			
6	1. Institute of	f Sports Medicine, Peking University Third Hospital, Beijing Key			
7		Sports Injuries, Beijing, 100191, China			
8	2	on Medical College, Plastic Surgery Hospital, Chinese Academy of			
	-				
9		ces, Beijing, China.			
10	3. Department of Orthopedic, Peking University Third Hospital, Beijing, 100191,				
11	China				
12	Xi-Meng Huang: 1510301201@pku.edu.cn				
13	Fu-Zhen Yuan: yuanfuzhen2009@sina.com				
14	You-Rong Chen: <u>chenyourong1990@qq.com</u>				
15	Ying Huang: <u>1510122916@pku.edu.cn</u>				
16	Ze-Xi Yang: 15101301202@pku.edu.cn				
17	Lin Lin: <u>simon.lin2003@163.com</u>				
18	Jia-Kuo Yu: <u>yı</u>	ujiakuo@126.com; Tel: 86-10-1861290798			
19	First author: Xi-Meng Huang and Fu-Zhen Yuan				
20	Corresponding	author: Lin Lin and Jia-Kuo Yu			
21	Full correspon	ndence details (for review) for contact purposes only:			
	Name	Jia-Kuo Yu			
	Institution	Institute of Sports Medicine, Peking University Third Hospital,			
		Beijing Key Laboratory of Sports Injuries			
	Country	China			
	Tel	86-10-1861290798			
	Mob Fax	Nil			
	Nil				
	Email <u>yujiakuo@126.com</u>				
22	-	ndence (for publication) for contact purposes only:			
	Name Jia-Kuo Yu				


Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

1 2				
3 4		Institution		itute of Sports Medicine, Peking University Third Hospital, ing Key Laboratory of Sports Injuries
5 6		Country	Chi	
7		Country		
8		Email		akuo@126.com
9	23	Abbreviated t	itle:	Biomechanical Phenomena, Osteoarthritis, Knee, Physical and
10	24			Rehabilitation Medicine
11 12 13	25 26	Key words:		Physical Therapy; Orthopedic Equipment; Knee Osteoarthritis; KAM; KAAI; Bayesian Network Meta-analysis.
14	27	Word Count:		234words (Abstract)
15	28			3812words (Introduction, Method, Results, Discussion)
16	29	References :		59
17	30	Tables:		3
18 19				4
20	31	Figures:		1
21	32	eAddenda:		
22	33	Ethics approv		Nil
23	34	Competing in		
24 25	35	Source(s) of s	uppor	t: This work was supported by the National Key R&D Program of
26	36			China (No.2017YFB1303000).
27	37	Corresponder	nce: Jia	a-Kuo Yu, Institute of Sports Medicine, Peking University Third
28	38	-		Hospital, Beijing Key Laboratory of Sports Injuries, China,
29	39			yujiakuo@126.com
30 31	40			
32	41			
33	42			
34				
35	43			
36 37	44			
38	45			
39	46			
40	47			
41 42	48			
42 43	49			
44	50			
45	51			
46	52			
47 48	53			
48 49	54			
50	54 55			
51	55 56			
52				
53 54	57			
55	58			
56	59			
57	60			
58	61			
59 60	62			

63 64 65	
66	ABSTRACT
67	Objectives: Do physical therapy and orthopedic equipment efficiency in reducing the
68	biomechanical risk factors in people with knee osteoarthritis (KOA)? Is one therapy
69	better than the others for improving these outcomes?
70	Design: Systematic review with network meta-analysis of randomised trials.
71	Participants: People with KOA.
72	Intervention: Physical therapy, orthopedic equipment and control (no/sham exercise or
73	placebo).
74	Outcome measures: First and second peak knee adduction moment (KAM), and knee
75	adduction angular impulse (KAAI)
76	Results. Eighteen randomized controlled trials, including 944 participants, met the
77	inclusion criteria. Based on the collective probability of being the overall best therapy
78	for reducing the first peak KAM, lateral wedge insoles (LWI) plus knee brace was
79	closely followed by gait retraining, and knee brace only. Although no significant
80	difference was observed among the eight interventions, variable-stiffness shoe and
81	neuromuscular exercise exhibited a lower rate of reducing the first peak KAM. And
82	based on the collective probability of being the overall best therapy for reducing KAAI,
83	gait retraining was followed by LWI only, and lower limb exercise.
84	Conclusion. The ranking statistics like surface under the cumulative ranking curve
85	values of our Bayesian network meta-analysis support the use of LWI plus knee brace
86	for reducing the first peak KAM. We found gait retraining to be the most effective
	Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

Page 5 of 72

BMJ Open

90 Significance and Innovations

91 ① This Bayesian network meta-analysis is the first review on effect of physical
92 therapy and orthopedic equipment on the biomechanical parameters (KAM &
93 KAAI) of the knee OA.

- 94 ② This review observes a null statistical reduction in KAM and KAAI for most
 95 physical therapies and orthopedic equipment, using these non-surgical treatments
 96 clinically could improve symptoms and physical activity level without increasing
 97 the biomechanical magnitude; thus, improving the quality of life of patients with
 98 KOA.
- 99 ③ This review suggests that further studies should require more research articles in
 100 these areas to further explore the impact of various non-surgical therapies on OA
 101 patients.

1. INTRODUCTION

Knee osteoarthritis (KOA), a chronic progressive disease, affects approximately 3.8%
of people worldwide, mainly middle-aged and older adults. It is more prevalent in
women than in men ^{1,2}. The main clinical manifestation of KOA is knee pain and is
often accompanied by radiographic degeneration of the intra-articular cartilage

associated with hypertrophic bone changes ³. With the development of KOA,

patients may also report stiffness, locking, instability and function loss. Though it is not fatal, the persistent pain and movement difficulties associated with this condition negatively impact the physical and mental health of the patients; thus, reducing their quality of life⁴. These pathological changes of knee joint structure are the result of the break of biomechanical balance and the progression of the disease is now believed to be associated with malalignment of the lower limb ⁵. Of the three compartments of a knee joint, KOA mostly occurs in the medial tibiofemoral compartment as it bears 60-91% of the total body load, higher than the lateral one ⁶. The external knee adduction moment (KAM) results from the unequal distribution of the transmitted load on both sides in the normal gait of humans. It is defined as the cross product of the ground reaction force and the distance between the knee joint and the force line ⁷. Individuals with obesity or other risk factors tend to have frontal plane knee malalignment, which alters the normal force line, forcing the medial knee joint to bear more load and increased KAM^{8,9}. The accumulation effect of the moment is determined by calculating the integral of the moment to time, which is also termed as Knee adduction angular impulse (KAAI). It reflects the change in knee joint rotation state during a stance period of gait ¹⁰. Previous studies have revealed a strong correlation between the peak levels of KAM and KAAI and the severity and progression of the disease, which was reflected and calculated by the loss of medial tibial cartilage^{11,12}. Both these biomechanical parameters (KAM and KAAI) are

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

 Page 7 of 72

BMJ Open

131 commonly used to evaluate the medial knee load and predict the long-term132 structural deterioration.

Recent advancements in healthcare have resulted in the development of several protocols for the intervention and treatment of KOA. KOA patients are primarily recommended non-surgical treatments with the intention of correcting the deviated force line and delaying the progressive pathological damage inside the knee joint ⁷. Several non-surgical treatments, such as exercise therapies and noninvasive orthotic devices, have been introduced in orthopedic clinics. Both these modalities focus on relieving pain and improving patients' symptoms by changing the biomechanical state of the knee joint. The exercise therapies mainly include muscular strengthening and gait modification, while orthotic devices include customized shoes/footwear, wedged insoles, and knee braces.

Previous studies have shown the positive impact of exercise therapy in KOA. The strengthening of related lower limb muscles, which play a vital role in disease progression, are known to reduce pain and improve motor functions and are often recommended to KOA patients ¹³. Additionally, gait training presents a viable way to correct the patients' underlying gait pattern, which could also reduce their knee load and pain ^{14,15}. Further, several kinds of orthotic devices have been introduced for the treatment of KOA. The clinical use of lateral wedge insoles (LWI) has gained immense popularity since its origin in 1987 ^{16,17}. The insoles work by shifting the lateral part of the foot more than the medial part by a slope. Thus, a slope is created to increase the valgus tendency of lower extremities. The center of

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

60

1

the ground reaction force is shifted laterally, which induces a reduction in force lever arm length and magnitude. Also, the valgus knee brace is a commonly used device. It applies an external valgus force around the knee joint to reduce the medial knee load.

57 In the past, several systematic reviews and meta-analysis have been published featuring the medical effects of a single KOA treatment. However, only a few of 8 them have focused on multifaceted interventions. Also, only a few reviews have 9 reported the effects of these changes on the biomechanical parameters. The 0 1 mechanical changes in the body were not sufficiently investigated. Current reviews on KAM and KAAI have also not compared these changes. Thus, we performed a 2 network meta-analysis (NMA) to appraise the benefits of physical treatments in 3 4 reducing the biomechanical risk factors in KOA patients to overcome these shortcomings, and to help achieve the goal of reducing pain and improving function. 5 Therefore the research questions for this systematic review were: 6 7 1. Do physical therapy and orthopedic equipment efficiency in reducing the biomechanical risk factors in people with knee osteoarthritis (KOA)? 8 2. Is one therapy better than the others for improving these outcomes? 9

170 **2. METHODS**

171 The protocol was registered on the INPLASY (registration number:
172 INPLASY202090054; Doi:10.37766/inplasy2020.9.0054). All pooled analyses
173 were derived from previous studies and, therefore, did not require ethical approval
174 and informed consent.

Page 9 of 72

1 2	
3 4	
5 6 7	
8 9 10	
11 12	
13 14 15	
16 17	
18 19 20	
21 22	
22 23 24 25	
26 27	
28 29 30	
31 32 33	
34 35	
36 37 38	
39 40	
41 42 43	
44 45	
46 47 48	
49 50 51	
52 53	
54 55 56	
57 58	
59 60	

175	2.1 Identification and selection of studies.
-----	--

We searched the following databases for randomized controlled trials that were 176 177 published before January 2021, which explored the benefits of using non-surgical treatments in reducing the biomechanical risk factors which included the KAM and 178 179 the KAAI in patients with KOA: PubMed, Web of Science, Cochrane Library, Embase, and MEDLINE. The search was not restricted by language, date, 180 publication type, or publication status (see Appendix 1). Additionally, we 181 performed manual analyses of the published references regarding the use of non-182 183 surgical treatments for treating KOA. The eligibility of searched publications was independently reviewed by HXM, YZX 184 following the Cochrane manual ¹⁸. Any additional inconsistencies were resolved 185 186 either by deliberation or by a senior expert (HY). First, the study titles and abstracts,

published in the English language, were screened. Next, complete articles werereviewed against the following criteria in Box 1.

189 Eligible comparison subjects, including standard/conventional care or waiting list control (analgesic advice and education), were defined as "standard care." Standard 190 191 care treatment also included placebo intervention, no intervention, and shamexercise. In this network meta-analysis, lower limb exercise was defined as the 192 simultaneous exercise of multiple groups of muscles (including hip abductors, 193 quadriceps, and hamstrings). Since our research needed to maintain clinical and 194 195 statistical homogeneity and also focus on the left-over biomechanical effects after intervention, we selected articles whose measurements were strictly obtained under 196

197 the condition of bare foot.

The exclusion criteria included: (1) studies that were not consistent with the eligibility criteria; (2) studies that were in the form of the non-trail papers, including abstracts, comments, letters, or reviews; (3) studies including participants who had received surgical treatment in the past; (4) studies that did not report suitable data.

2.2 Data Collection and Quality assessment.

KAM and KAAI were the preferred biomechanical measures used in this metaanalysis. The biomechanical indicators of the included studies were measured on
flat ground or treadmills. The number of trials that focused on the second peak of
KAM was insufficient to conduct an independent network meta-analysis.

Two authors (HXM, YZX) extracted data independently and then cross-checked the data. A predefined information sheet was used to extract the data, which included the details of the first author (name), country, year of publication, population characteristics, intervention, and the time point. The authors of the original study

211 were contacted if more data was required.

2.3 Assessment of characteristics of studies.

Risk of bias

In this network meta-analysis, we used the Cochrane risk bias tool to assess the risk
of bias in randomized controlled trials using the following evaluation indicators:
sequence generation, allocation concealment, blinding, incomplete outcome data
addressed, selective outcome reporting, and other biases¹⁸. The judgment of the bias
risk of this item was presented as "low," "high," and "unclear." Two authors

independently evaluated the risk of bias of the included studies. The authors
discussed or referred to the opinion of a senior author to resolve any disagreements.
Additionally, we evaluated the certainty of evidence which contributed to network
estimates of the main outcomes with the Grading of Recommendations Assessment,
Development and Evaluation (GRADE) framework.

Intervention

In order to describe the experimental intervention, we extracted the following information: the method of training with relevant further details, the details and characteristics of orthopedic equipment, the frequency and total duration of training or wearing.

Outcome measures

Biomechanical risk factors were extracted from barefoot walking test, including the first peak KAM, the second peak KAM and KAAI. KAM was normalized as %body weight times height, with conversion to Nm/kg where necessary. KAAI was the accumulation effect of the moment which was determined by calculating the integral of the moment to time.

2.4 Statistical Analysis.

We conducted a network meta-analysis to compare multiple interventions, including both direct evidences (where treatments were compared directly) and indirect evidences (where treatments were compared with a common control), maintaining randomization in each independent study. Interventions and demographic characteristics were either consistent or comparable across the

3 4 5	241		included studies ¹⁹⁻²⁴ .
6 7	242		Due to different units, the continuous data used the standard mean difference (SMD)
8 9 10	243		as the statistical indicator of the effect, and the Frequentist 95% confidence interval
11 12 13	244		(CI) of each effect was calculated. Additionally, the I ² statistic was used to analyze
14 15	245		the overall heterogeneity of the two-arm study and the network. The fixed-effect
16 17 18	246		model was used in case no statistical heterogeneity was found between the studies
19 20 21	247		(p > 0.05, $I^2 < 50\%$); else, the random effect model was used, and the source of
22 23	248		heterogeneity was analyzed. The Node-Split Model was used for testing
24 25 26	249		consistency. If $p > 0.05$, then the consistency model was used for analysis; else, the
27 28	250		inconsistency model was used for analysis. Normal likelihood distributions were
29 30 31	251		assumed, non-informative prior distributions were set, and three Markov chains
32 33 34	252		were run simultaneously. The number of update iterations was 50,000, a total of
35 36	253		5000 simulations were used for annealing, and the subsequent 45,000 iterations
37 38 39	254		were examined. The mean rank and surface under the cumulative ranking curve
40 41	255		(SUCRA) were used for reporting the probability values. A SUCRA value of 100%
42 43 44	256		was considered best, whereas 0% indicated the worst treatment.
45 46 47	257		The data from eligible studies were combined using the Review Manager (RevMan)
48 49	258		software v5.3. The contribution of the effect sizes was dependent on the sample size
50 51 52	259		and their estimation accuracy. We performed the Bayesian analyses using
53 54	260		WinBUGs v1.4.3. Stata (StataCorp. 2015. Stata Statistical Software: Release 15.
55 56 57	261		College Station, TX: StataCorp LP) was used to conduct the frequentist NMA.
58 59 60	262	3.	RESULTS

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21 22	
22 23	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
55 56	
56 57	
57 58	
58 59	

263	3.1	Flow	of stud	ies thro	ugh th	ne review
-----	-----	------	---------	----------	--------	-----------

Overall, the database search strategy found 4919 citation. After screening articles 264 265 by title and abstract, and deleting duplicate articles, we identified 526 studies that might meet the criteria for inclusion, and then we searched and evaluated their full 266 267 text. Figure 1 presents the study selection flow chart. Eighteen randomized controlled trials, including 944 participants, met the inclusion criteria ²⁵⁻⁴². Since 268 the present network meta-analysis only considered trials comparing the nine 269 treatments with usual care or each other, only fourteen trials (792 participants) were 270 271 included.

- 272 **3.2** Characteristics of included studies

All studies included the radiologically confirmed tibiofemoral OA. The duration of 273 treatment ranged from 2 weeks to 12 months, although most intervention times were 274 administered over an 8-13-week period. The number of exercises varied from 2-5 275 times per week, depending on the preparation ^{31,33,36,37}. Both studies of gait training 276 277 used the faded feedback paradigm, which meant gradual removal of the real-time biofeedback ^{27,32}. Of the fourteen studies that were included in NMA, nine were 278 279 classified as Kellgren/Lawrence grade 2 and above. All studies reported either the BMI or the values for height and weight, and in some studies recruiting a general 280 population, the mean BMI was classified as overweight or obese. One study 281 included in NMA had a randomized crossover design ²⁵. After referring to the 282 283 manual and consulting a professional statistician, the mean and standard deviation of the experimental and the control groups were analyzed in this network meta-284

analysis ¹⁸. Tables 1 and 2 summarize the characteristics of the included studies and
participants.

3.3 KAM.

A study reported that the VER-brace offers additional advantages on first peak KAM compared to V3P-brace and ACL-brace⁴². No first peak KAM reduction was observed between proprioceptive neuromuscular facilitation group and control group⁴⁰, and the result of the study of minimal footwear was the same³⁹. Table 3 shows the NMA results of a comparative analysis of the reduction of the first peak KAM. We found insignificant differences in most of the treatment modalities; however, several interventions (Standard care (A) -1.06, 95% CI -1.63 to -0.49; LWI (B) -1.26, 95% CI -1.90 to -0.61; Knee Brace (C) -1.47, 95% CI -2.29 to -0.66; LWI + Knee Brace (D) -1.98, 95% CI -3.15 to -0.81; Gait retraining (E) -1.59, 95% CI -2.30 to -0.87; Quadriceps strengthening (F) -0.93, 95% CI -1.60 to -0.27; Hip strengthening (H) -0.76, 95% CI -1.49 to -0.03; Lower limb exercise (I) -0.97, 95% CI -1.73 to -0.21; and Neuromuscular exercises (J) -0.69, 95% CI -1.36 to -0.02) showed a statistically significant reduction in the first peak KAM over variable-stiffness shoes (G). The overall difference in first peak KAM (v standard care(A)) was -0.53 (95% CI -0.95 to -0.10) for gait retraining (E), 1.06 (95% CI 0.49 to 1.63) for variable-stiffness shoes (G), and 0.37 (95% CI 0.02 to 0.71) for neuromuscular exercises (J). Based on the collective probability of being the overall best therapy for reducing the first peak KAM, LWI plus knee brace (D) (93.4%) was closely followed by gait retraining (E) (85.7%), and knee brace only(C) (79.3%) (Figure

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

 Page 15 of 72

BMJ Open

2		
3 4 5	307	2). On the other hand, after the electroacupuncture treatment, compared with the
6 7 8	308	control group, the second peak KAM significantly increased immediately when the
9 10	309	patient ascended stairs ⁴¹ .
11 12 13	310	3.4 KAAI.
14 15	311	KAAI was reported in ten studies ^{25,27,31,34-39,42} . After wearing the three kinds of
16 17 18	312	brace separately, the KAAI measured under barefoot conditions did not decrease
19 20 21	313	significantly, and there was no significant difference between the groups ⁴² . Table 3
22 23	314	shows the NMA results of the reduction of KAAI. Most treatments were not
24 25 26	315	statistically different from each other, consistent with the results of the first peak
27 28	316	KAM. Only gait retraining (E) has a statistical reduction compared with the
29 30 31	317	standard care treatment (A) (-0.48, 95% CI -0.96 to -0.01). Based on the collective
32 33 34	318	probability of being the overall best therapy for reducing KAAI, gait retraining (E)
35 36	319	(90.7%) was followed by LWI only (B) (74.1%), and lower limb exercise (I) (53.8%)
37 38 39	320	(Figure 3).
40 41	321	3.5 Risk of bias.
42 43 44	322	Figure 4 presents a summary of the quality of methods used in this analysis. Nine
45 46 47	323	studies presented a clear description of generating a randomization sequence ²⁹⁻
48 49	324	^{31,33,36-39,41} . The study by Hinman et al. was the only double-blinded study, while
50 51 52	325	other studies were either single-blinded or did not clearly describe their blind design.
53 54	326	All trials provided follow-up data on their outcomes. Six studies did not report the
55 56 57	327	number or the reason for lost visits due to the length of follow-up ^{25,29,30,32,33,36} .
58 59 60	328	Consequently, all studies were included in the synthesis evaluation and qualified

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

for literature assessment. And we prepared comparison-adjusted funnel plots that represented different comparisons with different colors. The funnel plots were symmetrically distributed based on a visual inspection, which suggested the absence of small-sample effects for our outcomes (see Appendix 5).

333 4. DISCUSSION

Our results did not show significant differences regarding the superiority of intervention among different types of non-surgical therapies. This lack of difference was attributed to the fact that the number of studies for several pairwise comparisons was small. However, some of these therapies were still worth recommending. Due to the small number of studies studying the outcome of the KAAI, We found gait retraining to be the relatively more convincing intervention as it could reduce the values for KAM and KAAI at the same time based on cumulative ranking and relative effect estimates. Due to the lack of significant differences among the exercise interventions, we were not able to conclusively accept the cumulative ranking obtained by the network meta-analysis. For example, gait retraining, which occupied the first rank position (90.7%) for reducing the KAAI, was only superior to the neuromuscular exercise interventions.

This study had several strengths and limitations. Eligible RCT studies were identified by conducting a comprehensive search on several databases and resources. Additionally, two independent reviewers scanned through the search output, extracted data, classified interventions, and evaluated the methodological quality of each trial to minimize potential bias.

Page 17 of 72

BMJ Open

This network meta-analysis is the first report on the effects of physical therapy and orthopedic equipment on the parameters of knee load (KAM, KAAI). Since non-surgical therapy is a complex intervention with a small number of trials comparing the different types of interventions, network meta-analysis appeared to be the most relevant form of analysis. The results of this meta-analysis would be more useful for the decision-makers, service specialists, and caregivers to choose among the various available options, compared with multiple separate pairwise meta-analyses ⁴³. Additionally, this network meta-analysis conducted each comparison separately with both direct and indirect statistical effects, deriving statistical power from all included data ⁴³. Also, the Bayesian method provided the probability estimates regarding the superior efficacy of specific exercise interventions, even though the standard methods described the absence of a significant difference between them. In addition, we calculated alternative rankings (second, third best, etc), because in some cases the best exercise intervention might be unavailable, more costly, or contraindicated in some patients.

As with most meta-analyses on non-surgical therapies for osteoarthritis, one of the limitations of this network meta-analysis includes the inclusion of trials that had variable periods of follow-up, which could have introduced heterogeneity into the study analysis. Although there was no study that exclusively reported the immediate effect, the span in follow-up periods cannot be ignored. There exist several methods of analyzing and comparing trials with multiple durations of follow-up, as recommended by the Cochrane handbook, such as performing individual patient

BMJ	Open
-----	------

2 3		
4 5	373	data meta-analysis and evaluating at a particular time point. However, methods are
6 7 8	374	being developed that would include all time points in a network meta-analysis ¹⁸ .
9 10	375	We removed a study which had a short follow-up time and might cause
11 12 13	376	heterogeneity ²⁵ , and performed another network meta-analysis. There is no
14 15	377	difference between the results of the reanalysis and the current ranking (see
16 17 18	378	Appendix 7). We were not able to evaluate the influence of population
19 20	379	characteristics (such as mean age, the severity of osteoarthritis), as the number of
21 22 23	380	the included studies was not large enough ⁴⁵⁻⁴⁷ . Additionally, other parameters, such
24 25 26	381	as the external knee flexion moment to joint load, should have been studied.
27 28	382	However, due to the small number of related articles, we were temporarily unable
29 30 31	383	to include them. By the way, according to the GRADE framework (see Appendix
32 33	384	6), the quality of the most comparisons was assessed as low or very low, which
34 35 36	385	might affect the reliability of the evidence.
37 38	386	A previous review showed that LWIs were able to reduce the KAM at baseline ⁴⁸ ;
39 40 41	387	however, the effect was no longer observed after a period of time. One study
42 43 44	388	showed that a 1-month wear-in period was the longest time period studied where
45 46	389	no reduction in biochemical risk factors was observed despite continued wear ⁴⁹ .
47 48 49	390	Besides, several systematic reviews had concluded that exercise and gait retraining
50 51 52	391	could reduce pain and improve motor functioning in people with KOA 50-52, it was
52 53 54	392	possible that any clinical changes in previous studies may due to the increased
55 56 57	393	physical activity levels, and not have been the results of altered loading environment
58 59 60	394	within the knee joint. Furthermore, another study revealed that an increase in the

1 2

Page 19 of 72

1 2

BMJ Open

2		
3 4 5	395	amount of reduction in peak KAM in LWIs plus knee brace group was observed
6 7 8	396	after 4 weeks ⁵³ .
9 10	397	On the other hand, physical therapies and orthopedic equipment also need to be
11 12 13	398	considered for relieving patients' pain, which has been the focus of several reviews
14 15	399	in the past. As an important factor in kinetics and kinematics of gait, the joint pain
16 17 18	400	can affect the kinetics and kinematics of walking ⁵⁴ . A meta-analysis reported that
19 20 21	401	exercise therapy had a positive impact on knee pain and kinematic function, though
22 23	402	this relief of pain subsided with time. After initiation, the efficiency of physical
24 25 26	403	exercise over placebo reached maxima at 2 months ⁵⁵ .
27 28	404	Cumulative loading is another significant parameter regarding knee load exposure
29 30 31	405	in OA ⁵⁶ . KAAI has been proposed as another indicator to evaluate the duration and
32 33 34	406	intensity of KOA load, despite the association between KAM and disease
35 36	407	progression. According to a 12-month study, the loss of medial tibiofemoral
37 38 39	408	cartilage was not directly related to KAM but was related to KAAI ⁵⁷ . Although the
40 41	409	effect of physical therapy and orthopedic equipment on KAM may gradually
42 43 44	410	disappears, it may have a huge cumulative effect on the knee during the early stages
45 46 47	411	of treatment. This should be considered while interpreting the results of this network
48 49	412	meta-analysis.
50 51 52	413	The results presented in this study are both scientifically and clinically instructive.
53 54	414	Despite observing a null statistical reduction in KAM and KAAI for most non-
55 56 57	415	surgical therapies, using these treatments clinically could improve symptoms and
58 59 60	416	physical activity level without increasing the biomechanical magnitude; thus,

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 72

1	
2	
3	
4	
5	
5 6 7	
7	
/	
8	
9	
10	
11	
12	
12	
1.0	
14	
 7 8 9 10 11 12 13 14 15 16 	
16	
12 13 14 15 16 17	
18	
19	
20	
21	
19 20 21 22 23 24	
22	
23	
24	
24 25	
26	
26 27 28	
28	
29	
20	
30	
31	
32 33	
33	
34 35 36 37 38	
35	
36	
37	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	
60	

60

1

417 improving the quality of life of patients with KOA. Since the studies included in
418 this network meta-analysis mainly involves patients with medial knee osteoarthritis,
419 the results would be more useful for these patients.

420 On the other hand, previous study reported that the increase in KAAI can explain 421 the significant variation in the uCTX-II levels and the uCTX-II:sCPII ratio in patients with medial tibiofemoral KOA when additional variables are controlled⁵⁸. 422 This showed that intervention in the biomechanical structure of the knee joint in 423 patients with KOA is a potential beneficial role on cartilage structure. Mazzoli et 424 425 al. pointed out that adopting a modified gait that reduces the KAM can decrease the pain in the medial compartment in KOA more than walking alone⁵⁹, which suggests 426 that the KAM and KAAI of patients under non-surgical treatment can be restricted 427 428 to help reduce pain and improve joint function. More research is needed to further illustrate the impact of changes in knee biomechanics on the prognosis of patients. 429 Additionally, some other therapies have been reported, such as Taiji, ultrasound, 430 431 acoustic exercise, etc. However, due to the lack of RCT study design or the report of their biomechanical outcomes, we were not able to include these therapies in our 432 433 review. Therefore, further studies would require more research articles in these areas to further explore the impact of various non-surgical therapies on OA patients. 434 After accumulating evidence regarding the role of non-surgical therapy in KOA, we 435 could conduct a similar network meta-analysis to understand the relative 436 437 effectiveness of various types of these interventions in relevant patients.

438 5. Conclusion

BMJ Open

This network meta-analysis provides valuable insight regarding the alterations in
KAM and KAAI of OA patients after non-surgical treatment. The results indicate
that lateral wedge insoles plus knee brace was the best therapy for reducing the first
peak KAM and gait retraining had the best effect on reducing the KAAI. On the
contrary, variable-stiffness shoe and neuromuscular exercise exhibited an increase
in the first peak KAM compared to the standard care group. Taken together, these
findings suggest that clinicians should choose carefully when treating OA.

446 6. Auth

6. Authors' Contributions

HXM and YFZ conceived of the study, and participated in its design and
coordination and helped to draft the manuscript; YZX, HY and CRY contributed
significantly to analysis and manuscript preparation; YJK and LL helped perform
the analysis with constructive discussions and revised it critically for important

451 intellectual content.

- **7.** Competing interests
- 453 There were no conflicts of interest.

8. Funding

455 This work was supported by the National Key R&D Program of China

- 456 (No.2017YFB1303000).
 - 457 9. Ethics approval
 - 458 Not required.
 - **10. Patient and public involvement**
 - 460 Patients and/or the public were not involved in the design, or conduct, or reporting,

2 3		
4	461	or dissemination plans of this research.
5		
6 7	462	References:
8	463	1. Srikanth VK, Fryer JL, Zhai G et al. A meta-analysis of sex differences prevalence, incidence and
9 10	464	severity of osteoarthritis. Osteoarthr Cartilage. 2005;13(9):769-81
11	465	2. Cross M, Smith E, Hoy D et al. The global burden of hip and knee osteoarthritis: estimates from the
12	466	global burden of disease 2010 study. Ann Rheum Dis. 2014;73(7):1323-30
13 14	467	3. Turpin KM, De Vincenzo A, Apps AM et al. Biomechanical and clinical outcomes with shock-
15	468	absorbing insoles in patients with knee osteoarthritis: immediate effects and changes after 1 month
16	469	of wear. Arch Phys Med Rehab. 2012;93(3):503-8
17	470	4. Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr Cartilage.
18 19	471	2013;21(9):1145-53
20	472	5. Tanamas S, Hanna FS, Cicuttini FM et al. Does knee malalignment increase the risk of development
21	473	and progression of knee osteoarthritis? A systematic review. Arthritis and rheumatism.
22 23	474	2009;61(4):459-67
24	475	6. Xing F, Lu B, Kuang M et al. A systematic review and meta-analysis into the effect of lateral wedge
25	476	arch support insoles for reducing knee joint load in patients with medial knee osteoarthritis. <i>Medicine</i> .
26 27	477	2017;96(24):e7168
27 28	478	7. Reeves ND, Bowling FL. Conservative biomechanical strategies for knee osteoarthritis. <i>Nature</i>
29	479	reviews. Rheumatology. 2011;7(2):113-22
30	480	8. Block JA, Shakoor N. Lower limb osteoarthritis: biomechanical alterations and implications for
31 32	481	therapy. Curr Opin Rheumatol. 2010;22(5):544-50
33	482	9. Englund M. The role of biomechanics in the initiation and progression of OA of the knee. <i>Best</i>
34	483	practice & research. Clinical rheumatology. 2010;24(1):39-46
35 36	484	10. Arnold JB, Wong DX, Jones RK, Hill CL, Thewlis D. Lateral Wedge Insoles for Reducing
37	485	Biomechanical Risk Factors for Medial Knee Osteoarthritis Progression: A Systematic Review and
38	486	Meta-Analysis. Arthrit Care Res. 2016;68(7):936-51
39 40	487	11. Brisson NM, Wiebenga EG, Stratford PW et al. Baseline knee adduction moment interacts with body
40 41	488	mass index to predict loss of medial tibial cartilage volume over 2.5 years in knee Osteoarthritis.
42	489	Journal of orthopaedic research : official publication of the Orthopaedic Research Society.
43	490	2017;35(11):2476-2483
44 45	491	12. Bennell KL, Bowles K, Wang Y et al. Higher dynamic medial knee load predicts greater cartilage
46	492	loss over 12 months in medial knee osteoarthritis. <i>Ann Rheum Dis.</i> 2011;70(10):1770-4
47	493	13. Goh S, Persson MSM, Stocks J et al. Efficacy and potential determinants of exercise therapy in knee
48 49	494	and hip osteoarthritis: A systematic review and meta-analysis. <i>Annals of physical and rehabilitation</i>
49 50	495	medicine. 2019;62(5):356-365
51	496	14. Cheung RTH, Ho KKW, Au IPH et al. Immediate and short-term effects of gait retraining on the
52	497	knee joint moments and symptoms in patients with early tibiofemoral joint osteoarthritis: a
53 54	498	randomized controlled trial. Osteoarthr Cartilage. 2018;26(11):1479-1486
55	490 499	15. Shull PB, Jirattigalachote W, Hunt MA, Cutkosky MR, Delp SL. Quantified self and human
56	499 500	movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and
57 58	500 501	intervention. <i>Gait Posture</i> . 2014;40(1):11-9
58 59	501	16. Sasaki T, Yasuda K. Clinical evaluation of the treatment of osteoarthritic knees using a newly
60	302	10. Sasaki 1, Tasuda K. Chinear evaluation of the treatment of Osteoarthittic knees using a newly

BMJ Open

2		
3	503	designed wedged insole. Clin Orthop Relat R. 1987;(221):181-7
4 5	504	17. Yasuda K, Sasaki T. The mechanics of treatment of the osteoarthritic knee with a wedged insole.
5 6	505	<i>Clin Orthop Relat R.</i> 1987;(215):162-72
7	506	18. Furlan AD, Malmivaara A, Chou R et al. 2015 Updated Method Guideline for Systematic Reviews
8	507	in the Cochrane Back and Neck Group. Spine. 2015;40(21):1660-73
9 10	508	19. Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison
11	509	meta-analysis. <i>Stat Med.</i> 2010;29(7-8):932-44
12	510	20. Cooper NJ, Sutton AJ, Morris D, Ades AE, Welton NJ. Addressing between-study heterogeneity and
13	511	inconsistency in mixed treatment comparisons: Application to stroke prevention treatments in
14 15	512	
15		individuals with non-rheumatic atrial fibrillation. <i>Stat Med.</i> 2009;28(14):1861-81
17	513	21. Welton NJ, Caldwell DM, Adamopoulos E, Vedhara K. Mixed treatment comparison meta-analysis
18	514	of complex interventions: psychological interventions in coronary heart disease. Am J Epidemiol.
19	515	2009;169(9):1158-65
20 21	516	22. Salanti G, Higgins JPT, Ades AE, Ioannidis JPA. Evaluation of networks of randomized trials. Stat
22	517	Methods Med Res. 2008;17(3):279-301
23	518	23. Caldwell DM, Ades AE, Higgins JPT. Simultaneous comparison of multiple treatments: combining
24	519	direct and indirect evidence. BMJ (Clinical research ed.). 2005;331(7521):897-900
25	520	24. Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Stat
26 27	521	Med. 2004;23(20):3105-24
28	522	25. Jones RK, Nester CJ, Richards JD et al. A comparison of the biomechanical effects of valgus knee
29	523	braces and lateral wedged insoles in patients with knee osteoarthritis. <i>Gait Posture</i> . 2013;37(3):368-
30	524	372
31	525	
32 33		26. Khosravi M, Arazpour M, Sharafat Vaziri A. An evaluation of the use of a lateral wedged insole and
34	526	a valgus knee brace in combination in subjects with medial compartment knee osteoarthritis (OA).
35	527	Assistive technology : the official journal of RESNA. 2019:1-8
36	528	27. Hunt MA, Charlton JM, Krowchuk NM, Tse CTF, Hatfield GL. Clinical and biomechanical changes
37 38	529	following a 4-month toe-out gait modification program for people with medial knee osteoarthritis: a
39	530	randomized controlled trial. Osteoarthr Cartilage. 2018;26(7):903-911
40	531	28. Arazpour M, Bani MA, Maleki M et al. Comparison of the efficacy of laterally wedged insoles and
41	532	bespoke unloader knee orthoses in treating medial compartment knee osteoarthritis. Prosthet Orthot
42	533	Int. 2012;37(1):50-57
43 44	534	29. Lim BW, Hinman RS, Wrigley TV, Sharma L, Bennell KL. Does knee malalignment mediate the
45	535	effects of quadriceps strengthening on knee adduction moment, pain, and function in medial knee
46	536	osteoarthritis? A randomized controlled trial. Arthritis & Rheumatism. 2008;59(7):943-951
47	537	30. Erhart-Hledik JC, Elspas B, Giori NJ, Andriacchi TP. Effect of variable-stiffness walking shoes on
48 49	538	knee adduction moment, pain, and function in subjects with medial compartment knee osteoarthritis
50	539	after 1 year. J Orthop Res. 2012;30(4):514-521
51	540	31. Bennell KL, Hunt MA, Wrigley TV et al. Hip strengthening reduces symptoms but not knee load in
52		
53	541	people with medial knee osteoarthritis and varus malalignment: a randomised controlled trial.
54 55	542	Osteoarthr Cartilage. 2010;18(5):621-628
56	543	32. Cheung RTH, Ho KKW, Au IPH et al. Immediate and short-term effects of gait retraining on the
57	544	knee joint moments and symptoms in patients with early tibiofemoral joint osteoarthritis: a
58	545	randomized controlled trial. Osteoarthr Cartilage. 2018;26(11):1479-1486
59 60	546	33. Foroughi N, Smith RM, Lange AK et al. Lower limb muscle strengthening does not change frontal
60		

Page 24 of 72

BMJ Open

1 2

2		
3 4	547	plane moments in women with knee osteoarthritis: A randomized controlled trial. Clin Biomech.
4 5	548	2011;26(2):167-174
6	549	34. Barrios JA, Butler RJ, Crenshaw JR, Royer TD, Davis IS. Mechanical effectiveness of lateral foot
7	550	wedging in medial knee osteoarthritis after 1 year of wear. J Orthop Res. 2013;31(5):659-664
8	551	35. Paterson KL, Kasza J, Bennell KL et al. Moderators and mediators of effects of unloading shoes on
9 10	552	knee pain in people with knee osteoarthritis: an exploratory analysis of the SHARK randomised
10 11	553	controlled trial. Osteoarthr Cartilage. 2018;26(2):227-235
12		
13	554	36. Bennell KL, Kyriakides M, Metcalf B et al. Neuromuscular Versus Quadriceps Strengthening
14	555	Exercise in Patients With Medial Knee Osteoarthritis and Varus Malalignment: A Randomized
15 16	556	Controlled Trial. Arthritis Rheumatol. 2014;66(4):950-959
17	557	37. Hunt MA, Pollock CL, Kraus VB et al. Relationships amongst osteoarthritis biomarkers, dynamic
18	558	knee joint load, and exercise: results from a randomized controlled pilot study. BMC Musculoskelet
19	559	Disord. 2013;14:115
20	560	38. Holsgaard-Larsen A, Clausen B, Søndergaard J et al. The effect of instruction in analgesic use
21 22	561	compared with neuromuscular exercise on knee-joint load in patients with knee osteoarthritis: a
23	562	randomized, single-blind, controlled trial. Osteoarthr Cartilage. 2017;25(4):470-480
24	563	39. Trombini-Souza F, Matias AB, Yokota M et al. Long-term use of minimal footwear on pain, self-
25	564	reported function, analgesic intake, and joint loading in elderly women with knee osteoarthritis: A
26 27	565	randomized controlled trial. <i>Clin Biomech</i> . 2015;30(10):1194-1201
27 28	566	40. Song Q, Shen P, Mao M et al. Proprioceptive neuromuscular facilitation improves pain and
29	567	descending mechanics among elderly with knee osteoarthritis. Scand J Med Sci Spor.
30	568	
31		2020;30(9):1655-1663
32 33	569	41. Wang X, Xie X, Hou M et al. [Kinetic mechanism of electroacupuncture for stair climbing in knee
34	570	osteoarthritis patients]. Zhongguo zhen jiu = Chinese acupuncture & moxibustion.
35	571	2017;37(10):1027-34
36	572	42. Robert-Lachaine X, Dessery Y, Belzile ÉL, Turmel S, Corbeil P. Three-month efficacy of three knee
37	573	braces in the treatment of medial knee osteoarthritis in a randomized crossover trial. Journal of
38 39	574	orthopaedic research : official publication of the Orthopaedic Research Society. 2020;38(10):2262-
40	575	2271
41	576	43. Cooper NJ, Kendrick D, Achana F et al. Network meta-analysis to evaluate the effectiveness of
42	577	interventions to increase the uptake of smoke alarms. Epidemiol Rev. 2012;34:32-45
43 44	578	44. Jones RK, Nester CJ, Richards JD et al. A comparison of the biomechanical effects of valgus knee
45	579	braces and lateral wedged insoles in patients with knee osteoarthritis. Gait Posture.
46	580	2013;37(3):368-72
47	581	45. Schmid CH, Stark PC, Berlin JA, Landais P, Lau J. Meta-regression detected associations between
48	582	heterogeneous treatment effects and study-level, but not patient-level, factors. J Clin Epidemiol.
49 50	583	2004;57(7):683-97
51		
52	584	46. Thompson SG, Higgins JPT. How should meta-regression analyses be undertaken and interpreted?
53	585	<i>Stat Med.</i> 2002;21(11):1559-73
54 55	586	47. Lambert PC, Sutton AJ, Abrams KR, Jones DR. A comparison of summary patient-level covariates
55 56	587	in meta-regression with individual patient data meta-analysis. J Clin Epidemiol. 2002;55(1):86-94
57	588	48. Arnold JB, Wong DX, Jones RK, Hill CL, Thewlis D. Lateral Wedge Insoles for Reducing
58	589	Biomechanical Risk Factors for Medial Knee Osteoarthritis Progression: A Systematic Review and
59 60	590	Meta-Analysis. Arthrit Care Res. 2016;68(7):936-951
60		

BMJ Open

2		
3	591	49. Hinman RS, Bowles KA, Bennell KL. Laterally wedged insoles in knee osteoarthritis: do
4 5	592	biomechanical effects declineafter one month of wear? Bmc Musculoskel Dis. 2009;10:146
6	593	50. Bennell KL, Hinman RS. A review of the clinical evidence for exercise in osteoarthritis of the hip
7	594	and knee. J Sci Med Sport. 2011;14(1):4-9
8	595	51. Fransen M, McConnell S, Hernandez-Molina G, Reichenbach S. Exercise for osteoarthritis of the
9	596	
10 11		hip. The Cochrane database of systematic reviews. 2009;(3):CD007912
12	597	52. Fransen M, McConnell S. Exercise for osteoarthritis of the knee. The Cochrane database of
13	598	systematic reviews. 2008;(4):CD004376
14	599	53. Fu HCH, Lie CWH, Ng TP et al. Prospective study on the effects of orthotic treatment for medial
15	600	knee osteoarthritis in Chinese patients: clinical outcome and gait analysis. Hong Kong medical
16 17	601	journal = Xianggang yi xue za zhi. 2015;21(2):98
18	602	54. Divine JG, Hewett TE. Valgus Bracing for Degenerative Knee Osteoarthritis. The Physician and
19	603	Sportsmedicine. 2005;33(2):40-46
20	604	55. Goh S, Persson MSM, Stocks J et al. Efficacy and potential determinants of exercise therapy in knee
21	605	and hip osteoarthritis: A systematic review and meta-analysis. Annals of Physical and Rehabilitation
22 23	606	<i>Medicine</i> . 2019;62(5):356-365
24	607	56. Maly MR. Abnormal and cumulative loading in knee osteoarthritis. <i>Curr Opin Rheumatol.</i>
25	608	2008;20(5):547-52
26		
27	609	57. Bennell KL, Bowles K, Wang Y et al. Higher dynamic medial knee load predicts greater cartilage
28 29	610	loss over 12 months inmedial knee osteoarthritis. Ann Rheum Dis. 2011;70(10):1770-4
30	611	58. Hunt MA, Pollock CL, Kraus VB et al. Relationships amongst osteoarthritis biomarkers, dynamic
31	612	knee joint load, and exercise: results from a randomized controlled pilot study. Bmc Musculoskel
32	613	Dis. 2013;14:115
33	614	59. Maleki M, Arazpour M, Joghtaei M et al. The effect of knee orthoses on gait parameters in medial
34 35	615	knee compartment osteoarthritis: A literature review. Prosthet Orthot Int. 2016;40(2):193-201
36	616	
37		
38		
39 40		
41		
42		
43		
44		
45 46		
40		
48		
49		
50		
51		
52 53		
54		
55		
56		
57		
58 59		
59 60		

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25 26
27
28
29
30
31
32
33
34
35
36
37
38
39
39 40
40 41
42
43
44
45

1

Table 1. Characteristics of included studies (1) *

	Clinical criteria†	Radiographic features	Intervention	Comparisons	Follow up
US	Medial compartment knee OA; Pain VAS (≥3 of 10 upon walking)	K/L grade ≥2, medial tibiofemoral compartment	bespoke full-length LWI	Placebo	12 months
Australia	Medial compartment knee OA; Pain NRS (> 4 of 11 upon walking) over the previous week	K/L grade ≥2, medial tibiofemoral compartment	5° full-length LWI	Placebo	6 months
Iran	Medial compartment knee OA	K/L grade 1 and 2, medial tibiofemoral compartment	6° full-length LWI	bespoke unloader knee braces	6 weeks
UK	Medial compartment knee OA	K/L grade 2 and 3, medial JSN	LWI: The heel was inclined at 5° with the inclination reduced to 0° at the 5th metatarsal head with a contoured arch profile	6° valgus knee brace	2 weeks
Iran	Medial compartment knee OA	K/L grade 2 and 3	Full length custom-made LWI; LWI+ knee brace	three-point valgus knee brace	6 weeks
OA): Knee adductio	n moment (KAM); Knee adduction an	gular impulse (KAAI)			
	Australia Iran UK Iran	Pain VAS (≥3 of 10 upon walking) Australia Medial compartment knee OA; Pain NRS (> 4 of 11 upon walking) over the previous week Iran Medial compartment knee OA UK Medial compartment knee OA Iran Medial compartment knee OA	Pain VAS (≥3 of 10 upon valking) tibiofemoral compartment walking) Australia Medial compartment knee OA; Pain NRS (> 4 of 11 upon valking) over the previous week K/L grade 2, medial tibiofemoral compartment Iran Medial compartment knee OA K/L grade 1 and 2, medial tibiofemoral compartment UK Medial compartment knee OA K/L grade 1 and 2, medial tibiofemoral compartment	Pain VAS (≥3 of 10 upon walking) tibiofemoral compartment walking) Australia Medial compartment knee OA; Pain NRS (> 4 of 11 upon walking) over the previous week K/L grade 2, medial tibiofemoral compartment 5° full-length LWI Iran Medial compartment knee OA K/L grade 1 and 2, medial tibiofemoral compartment 6° full-length LWI UK Medial compartment knee OA K/L grade 2 and 3, medial JSN LWI: The heel was inclined at 5° with the inclination reduced to 0° at the 5th metatarsal head with a contoured arch profile Iran Medial compartment knee OA K/L grade 2 and 3 Full length custom-made LWI; LWI+ knee brace	Pain VAS (≥3 of 10 upon tibiofemoral compartment walking) tibiofemoral compartment 5° full-length LWI Placebo Australia Medial compartment knee OA; K/L grade ≥2, medial tibiofemoral compartment 5° full-length LWI Placebo Tran Medial compartment knee OA K/L grade 1 and 2, medial tibiofemoral compartment 6° full-length LWI bespoke unloader knee braces UK Medial compartment knee OA K/L grade 2 and 3, medial JSN LWI: The heel was inclined at 5° with the inclination reduced to 0° at the 5th metatarsal head with a contoured arch profile 6° valgus knee brace Iran Medial compartment knee OA K/L grade 2 and 3 Full length custom-made three-point valgus knee brace Iran Medial compartment knee OA K/L grade 2 and 3 Full length custom-made three-point valgus knee brace

BMJ Open

	* OA=osteoarthritis; LWI=lateral wedged insoles; VAS=visual analog scale; NRS=numerical rating scale; K/L=Kellgren/Lawrence; NR=not reported; JSN=joint space narrowing;
]	Tables
k	Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	Tor peer review only - http://bhijopen.bhij.com/site/about/guideines.xhtml

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
~ ~	
20	
21 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
37 38	
39	
39 40	
41 42	
42	
43	
44	
45	
46	

Table 1. Characteristics of included studies (2) *

Authors	Country	Clinical criteria†	Radiographic features	Intervention	Comparisons	Follow up
Hunt 2018 ²⁷	US	Medial compartment knee OA; Pain (≥3 of 10) longer than 6 months	K/L grade ≥2, medial tibiofemoral compartment	Toe-out gait modification	Walking without any guidance	4 months
Lim 2008 ²⁹	Australia	Medial compartment knee OA; Medial knee pain	K/L grade ≥2, medial JSN	Quadriceps strengthening	No intervention	12 weeks
Erhart-Hledik 2012 ³⁰	US	Medial compartment knee OA; Medial knee pain	K/L grade ≥1	Variable-stiffness shoe with stiffer soles on the lateral side	Constant-stiffness control shoe	12 months
Bennell 2010 ³¹	Australia	Medial compartment knee OA; Varus malalignment; Pain (> 3 of 11 upon walking)	K/L grade ≥2, medial JSN	Hip strengthening	No intervention	13 weeks
Cheung 2018 ³²	China	Medial compartment knee OA; Knee pain occurred at least one day a week during each of the 8 weeks prior	K/L grade 1 and 2	Gait retraining for KAM reduction	Walking without any guidance	6 weeks

Authors	Country	Clinical criteria†	Radiographic features	Intervention	Comparisons	Follow up
Foroughi 2011 ³³	Australia	Primary knee OA	K/L grade ≥1	Lower limb exercise	Sham-exercise	6 months
Bennell 2014 ³⁶	Australia	Medial compartment knee OA; Pain VAS (≥25 of 100) over the past week	K/L grade ≥2, medial tibiofemoral compartment	Neuromuscular exercise	Quadriceps strengthening	12 weeks
Hunt 2013 ³⁷	Canada	Medial compartment knee OA; Knee pain >3/10 on most days of the previous month	-	Lower limb exercise	No intervention	11 weeks
Holsgaard-Larsen 2017 ³⁸	Denmark	Primary knee OA Pain KOOS(< 80 of 100, at least mild pain)	K/L grade ≤3	Neuromuscular exercise	Analgesic advice	8 weeks
* OA=osteoarthritis;	LWI=lateral wedg	ed insoles; VAS=visual analog scale;	NRS=numerical rating scale;	K/L=Kellgren/Lawrence; NI	R=not reported; JSN=join	t space narrowing
Knee osteoarthritis (K	OA); Knee adductio	n moment (KAM); Knee adduction and	gular impulse (KAAI) - http://bmjopen.bmj.com/si	to /shout /guidalings white l		

Table 1. Characteristics of included studies (3)*

Page	30	of	72
------	----	----	----

Song 2020 ⁴⁰		Clinical criteria†	Radiographic features	Intervention	Comparisons	Follow up
	China	Medial compartment knee OA in one or both legs.	K/L grade ≤3	PNF (one-hour sessions three times a week)	Watch television or read magazines at the same time	12 weeks
Wang 2017 ⁴¹	China	Medial compartment knee OA	K/L grade 2 and 3	Acupuncture with 2 Hz continuous wave in Neixiyan (EX-LE 4), Dubi (ST 35), Yanglingquan (GB 34), Yinlingquan (SP 9), Xuehai (SP 10), Liangqiu (ST 34) and Zusanli (ST 36)	2 cm next to the same acupoints with shallow acupuncture and no current	Immediate
Robert-Lachaine 2020 ⁴²	Canada	Medial compartment knee OA; Pain > $31/100$ on WOMAC; Varus knee alignment $\ge 2^{\circ}$	K/L grade 2 and 3	V3P-brace; VER-brace; ACL-brace (wear the brace as often as possible)	/	3 months
Trombini-Souza 2015 ³⁹	Brazil	Medial compartment knee OA; Knee pain between 3 and 8 on VAS	K/L grade 2 and 3	Minimalist footwear (Moleca®)	Standard, neutral tennis shoe	6 months

Page 31 of 72

1

45 46
 Table 2.
 Characteristics of participants in included studies (1) *

BMJ Open

Authors	No.	Sex, M:F	Age, years	Height, meters	Body mass, kg	BMI, kg/m ²	Bilateral knee		K/L gra	ide, no.		Main
							OA included	1	2	3	4	outcomes
Barrios 2013 ³⁴	38	NR	61.90±8.37	NR	NR	32.00±7.43	NR	0	17	14	7	1 st KAM;
												KAAI
Hinman 2016 ³⁵	164	20:21	64.30±7.45	1.67 ± 0.10	82.95±14.76	29.70±3.64	NR	0	49	52	63	1 st KAM;
												KAAI
Arazpour 2012 ²⁸	24	3:4	59.29±2.37	NR	NR	27.01±1.71	Yes	9	15	0	0	1 st KAM
Jones 2013 ²⁵	28	4:3	66.30±8.20	1.75±0.13	88.7±15.10	NR	No	0	10	18	0	1^{st} and 2^{nc}
												KAM; KAA
Khosravi 2019 ²⁶	21	13:8	58.97±6.80	1.62±0.11	79.11±9.35	NR	NR	0	9	12	0	1 st KAM
* Values are the me	an±SD un	less indicated of	otherwise. BMI=bo	dy mass index; K/I	L=Kellgren/Lawrence	e; NR=not repor	ted; JSN=joint spac	e narro	owing; K	AM=kn	ee addu	uction mome
KAAI=knee adductio	on angular	impulse.										
Table 2. Characte	ristics of J	participants in i	included studies (2	2) *								
Knee osteoarthritis (K		adduction more	oont (KAM): Knoo o	dduction angular im								
Rifee Osteoartinitis (R		auduction mon										

Authors	No.	Sex, M:F	Age, years	Height, meters	Body mass, kg	BMI, kg/m ²	Bilateral knee		Main			
							OA included	1	2	3	4	outcomes
Hunt 2018 ²⁷	79	24:55	64.99±8.60	1.65±0.10	74.59±13.15	27.35±3.48	Yes	0	37	31	11	1^{st} and 2^{nd}
												KAM; KAA
Lim 2008 ²⁹	107	48:59	64.60±8.51	1.65±0.10	79.41±15.32	28.96±4.85	Yes	0	34	29	44	1 st KAM
Erhart-Hledik	79	41:38	61.70±9.43	1.69±0.08	79.50±15.07	27.51±4.87	Yes	NR	NR	NR	NR	1 st KAM
2012 ³⁰												
Bennell 2010 ³¹	89	46:43	64.55±8.34	NR	NR	27.94±4.41	Yes	0	30	29	30	1 st KAM;
												KAAI
Cheung 2018 ³²	20	1:1	61.95±6.11	1.63±0.09	65.85±6.64	27.35±3.48	NR	5	15	0	0	1 st KAM
			otherwise. BMI=bo	ody mass index; K/I	.=Kellgren/Lawrenc	ce; NR=not repor	ted; JSN=joint spa	ce narro	wing; K	AM=kn	iee addi	uction mome
KAAI=knee adducti	on angular	impulse.										
Table 2. Characte	visting of a	auticinants in	included studios (2) *								
			included studies (.	<i></i>								
Knee osteoarthritis (ł	(OA); Knee	adduction mon	nent (KAM); Knee a	dduction angular imp	oulse (KAAI)							

Page 33 of 72

BMJ Open

Authors	No.	Sex, M:F	Age, years	Height, meters	Body mass, kg	BMI, kg/m ²	Bilateral knee		K/L gra	ade, no.		Main — outcomes
							OA included	1	2	3	4	
Foroughi 2011 ³³	54	0:54	65.48±7.44	NR	82.87±18.43	32.07±7.08	Yes	20	7	20	1	1 st and 2
												KAM
Bennell 2014 ³⁶	100	48:52	62.45±7.32	1.67±0.10	82.70±14.29	29.65±4.08	Yes	0	22	43	35	1 st KAN
												KAAI
Hunt 2013 ³⁷	17	8:9	66.10±11.3	NR	NR	27.00±4.50	Yes	0	10	5	2	1 st KAN
												KAAI
Holsgaard-Larsen	93	39:54	58.10±7.96	NR	79.64±12.49	26.90±3.09	NR	45	31	17	0	1 st KAN
2017 ³⁸												KAAI
* Values are the me	an±SD ur	nless indicated of	otherwise. BMI=bo	dy mass index; K/I	=Kellgren/Lawrenc	e; NR=not repor	ted; JSN=joint spa	ce narro	wing; k	KAM=kn	ee addu	ction mon
KAAI=knee adduction	on angular	impulse.										
KAAI=knee adductio	on angular	impulse.										
KAAI=knee adductio	on angular	impulse.										
KAAI=knee adductio	on angular	impulse.										
KAAI=knee adductio	-	-	included studies (4	D) *								
	eristics of I	participants in			pulse (KAAI)		<i>J</i>					

Authors	No.	Sex, M:F	Age, years	Height, meters	Body mass, kg	BMI, kg/m ²	Bilateral knee	K/L grade, no.				Main
							– OA included	1	2	3	4	- outcom
Song 2020 ⁴⁰	36	1:1	68.01±3.91	1.62±0.07	68.16±6.77	NR	Yes	9	20	7	0	1 st KA
Wang 2017 ⁴¹	36	1:5	63.50±7.95	NR	NR	23.75±2.66	Yes	0	19	17	0	1 st and 2
												KAM
Robert-Lachaine	e 24	7:5	57.20±8.60	1.68±0.09	89.30±18.70	31.40±5.00	NR	0	15	8	0	1 st and 2
2020 ⁴²												KAM; K
Trombini-Souza	56	NR	66.00±5.00	1.60±0.10	73.40±13.10	NR	NR	0	NR	NR	0	1 st KA
2015 ³⁹												KAA
* Values are the			therwise. BMI=b	ody mass index; K	/L=Kellgren/Lawrenc	e; NR=not repor	ted; JSN=joint spac	e narro	owing; K	AM=kn	ee add	uction mo
	0.41	0.16			81	0.30	0.54	0.3				
	(-0.66,1.49)	(-0.46,0.79)	1	(-0.23,0.64) (0	.17,1.45) -	(-0.61,1.	21) (0.02,1.07)		0.10,0.75			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

21 22	0.37	0.09	0.30	1.06	0.13	-0.53	-0.92	-0.41	-0.19	
20	(0.10,1.02)	(-0.30,0.87)	(-0.05,1.04)	(0.61,1.90)	(-0.13,0.77)	(-0.85,0.19)	(-1.70,0.25)	(-0.71,0.27)	В	(-0.52,0.08)
19	0.56	0.29	0.49	1.26	0.32	-0.33	-0.72	-0.22		-0.22
17 18	(0.11,1.45)	(-0.26,1.27)	(-0.02,1.44)	(0.66,2.29)	(-0.12,1.20)	(-0.83,0.60)	(-1.46,0.46)	С	(-0.50,0.99)	(-0.77,0.83)
16 17	0.78	0.50	0.71	1.47	0.54	-0.11	-0.50		0.25	0.03
15	(0.21,2.36)	(-0.13,2.14)	(0.10,2.33)	(0.81,3.15)	(-0.03,2.11)	(-0.71,1.49)	D	-	-	-
13 14	1.28	1.01	1.22	1.98	1.04	0.39				
12	(0.35,1.44)	(-0.04,1.28)	(0.20,1.45)	(0.87,2.30)	(0.11,1.19)	E		(-1.45,0.42)	(-0.83,0.30)	(-0.96,-0.01)
11	0.89	0.62	0.83	1.59	0.65			-0.51	-0.27	-0.48
9 10	(-0.11,0.59)	(-0.64,0.57)	(-0.39,0.74)	(0.27,1.60)	F	(-0.17,1.38)	-	(-0.91,1.10)	(-0.34,1.02)	(-0.49,0.73)
8 9	0.24	-0.04	0.17	0.93		0.61		0.09	0.34	0.12
7	(-1.36,-0.02)	(-1.73,-0.21)	(-1.49,-0.03)	G	-	-	-	-	-	-
6	-0.69	-0.97	-0.76							
4 5	(-0.50,0.64)	(-0.89,0.47)	Н	-	(-0.72,0.80)	(-0.01,1.30)	-	(-0.79,1.05)	(-0.16,0.92)	(-0.29,0.61)
3	0.07	-0.21			0.04	0.64		0.13	0.38	0.16
2	(-0.34,0.89)	I	(-1.33,0.84)	-	(-1.37,0.95)	(-0.70,1.49)	-	(-1.39,1.16)	(-0.90,1.16)	(-1.08,0.90)
1	0.28		-0.25		-0.21	0.40		-0.12	0.13	-0.09

Table 3. Detailed results of network meta-analysis for the First peak KAM (grey) and KAAI (white). Data are SMDs (from the top left to the bottom right, higher comparator versus lower comparator) and their related 95%CI. Bold texts in the table mean SMDs are statistically significant.

A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

BMJ Open

Design • Randomised controlled trial Participants • People with radiologically confirmed knee osteoarthritis Intervention • Manual therapy • Aerobic exercise • Pulsed electrical stimulation (PES) • Acupuncture • Knee braces

1 2

3

4 5

6

7

8

9 10

11

12

13 14

15

16

17

18 19

20

21

22 23

24

25

26 27

28

29

30

31 32

33

34

35 36

37

38

39 40

41

42 43

44 45 46 • Ice/cooling treatment

Box 1. Inclusion criteria

- Pulsed electromagnetic fields (PEMF)
- Balneotherapy
- Interferential therapy
- Transcutaneous electric Nerve stimulation (TENS)
- Heat treatment
- Foot orthoses
- Laser/light therapy
- Muscle-strengthening exercise
- Static magnets
- Tai Chi
- Athletic tape
- Neuromuscular electrical stimulation (NMES)

Comparator

- Control group (no/sham exercise or placebo)
- Outcome measures
- KAM and KAAI obtained under the condition of bare foot.

Comparisons

• All interventions compared to the comparator and to each other

Figure Legends

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

Per review only

 BMJ Open

Figure 1. Flow chart of the study selection

Figure 2. Rankings for effects on First peak KAM. Graph displays distribution of probabilities for each treatment. X-axis represents the possible rank of each treatment (from the best to worst according to the outcomes), Y-axis represents the cumulative probability for each treatment to be the best option, among the best two options, among the best three options, and so on. A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Let Br, Let Br, Lution of probabilities for . Lution of probabilit Figure 3. Rankings for effects on KAAI. Graph displays distribution of probabilities for each treatment. X-axis represents the possible rank of each treatment (from the best to worst according to the outcomes), Y-axis represents the cumulative probability for each treatment to be the best option, among the best two options, among the best three options, and so on. A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; E= Gait retraining; F= Quadriceps strengthening; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Figure 4. Risk of bias summary

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

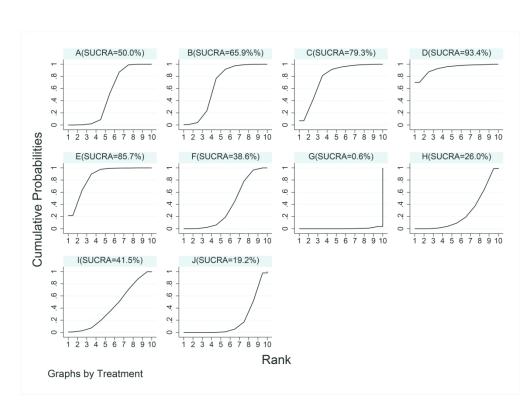
Initial citations retrieved from database search (n=4919)

Duplicates (n=1350)

Title and abstracts screened (n= 3569)

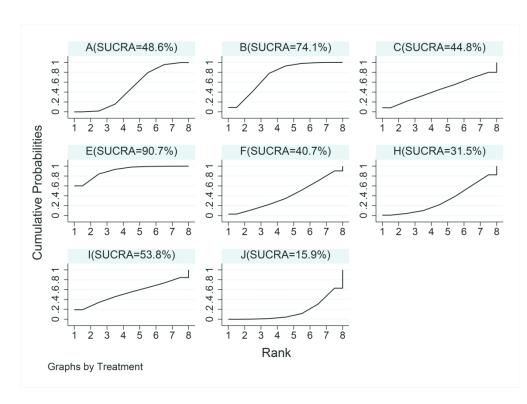
Studies were excluded based on titles/abstracts (n=3043)

- Non-related topic (n=762)
- Other medication (n=856)
- Not OA study (n=512)
- Protocol (n=150)
- Letter, editorial, review article, case report (n=763)

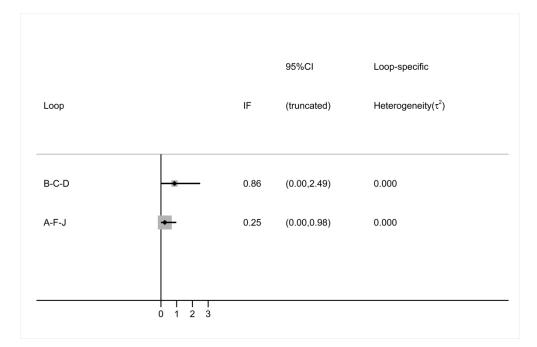

Studies were obtained for full-text evaluation (n= 526)

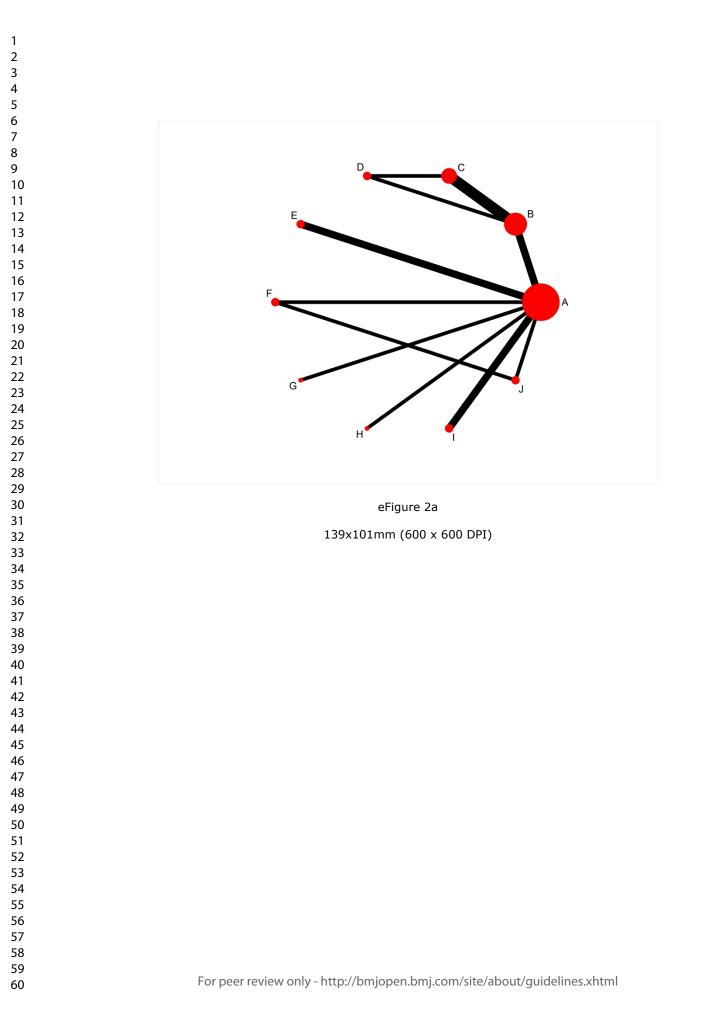
Full-text articles were excluded for the following reasons(n=508)

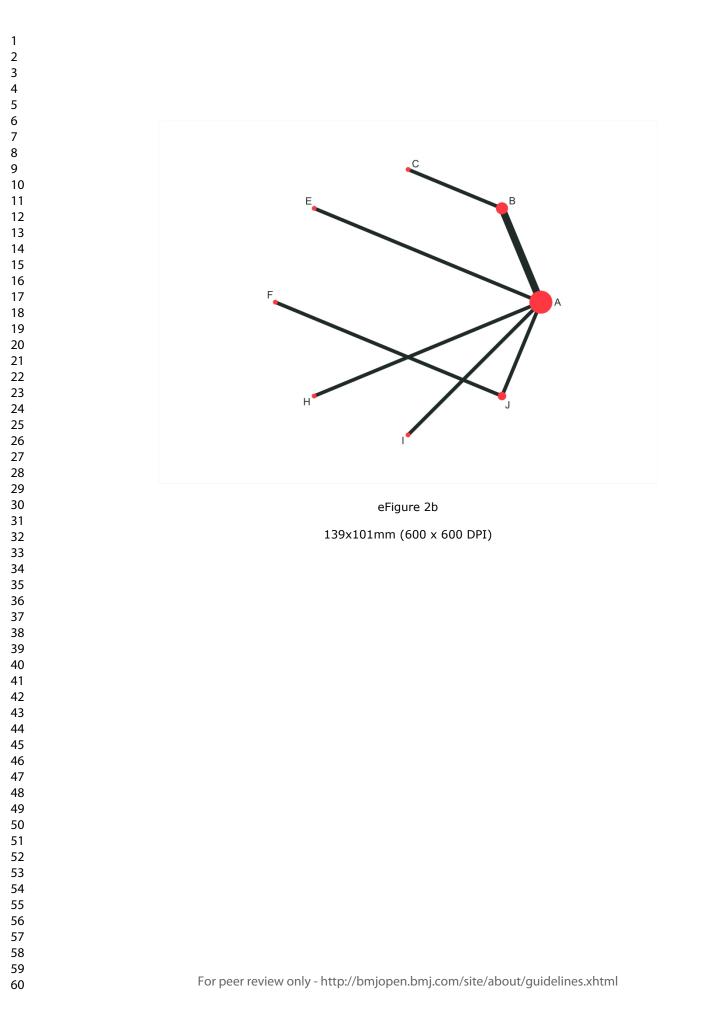
- Not randomized controlled trial (n=256)
- No suitable control group (n=35)
- Not OA study (n=8)
- No suitable data(n=119)
- Surgical intervention(n=51)
- Duplicates (n=39)

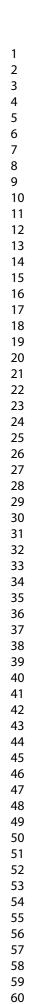

Not eligible for NMA but included in systematic review(n=4)

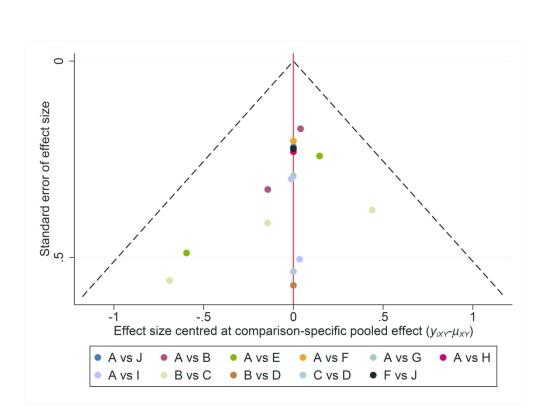
Included in final NMA(n=14)

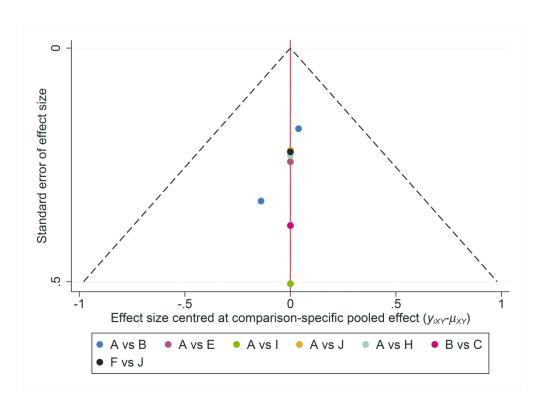

139x101mm (600 x 600 DPI)


139x101mm (600 x 600 DPI)


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


eFigure 1


146x95mm (600 x 600 DPI)


for beet terien only

139x101mm (600 x 600 DPI)

139x101mm (600 x 600 DPI)

 BMU Open

~

œ.

œ.

4

Ņ

0

ø.

ø.

4

Ņ

0

Rank

eFigure 6

C(SUCRA=71.3%)

1 2 3 4 5 6 7 8 9 10

G(SUCRA=2.3%)

1 2 3 4 5 6 7 8 9 10

D(SUCRA=90.2%)

1 2 3 4 5 6 7 8 9 10

H(SUCRA=26.4%)

1 2 3 4 5 6 7 8 9 10

~

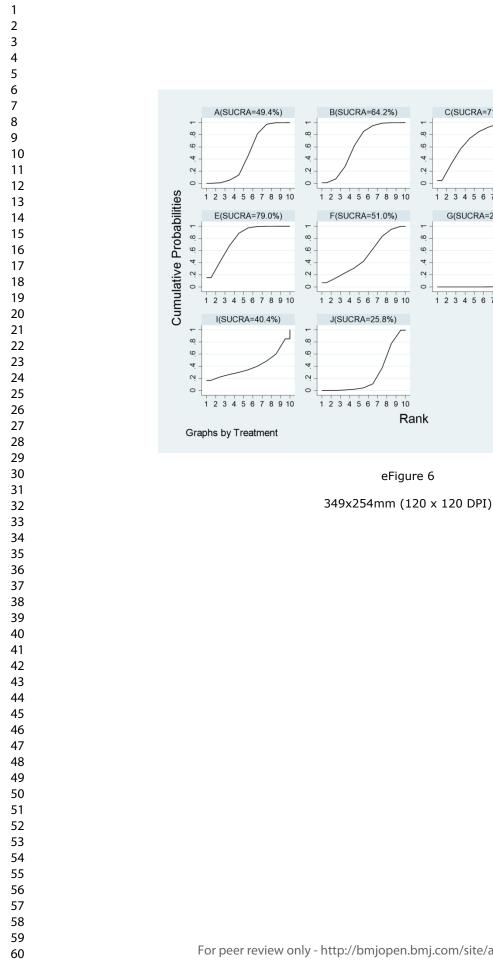
ø,

9

4

Ņ

0


-

8

9

4

2

Appendix

Appendix 1 Search strategies	.2
Appendix 2 Results of Inconsistency	.4
Appendix 3 Network Diagram	.5
Appendix 4 Conventional meta-analyses results	.7
Appendix 5 Comparison-adjusted funnel plot for each outcome from the network meta-analysis 1	0
Appendix 6 Table of GRADE1	
Appendix 7 Results of re-analysis	5

14

15

16 17

18

19

20

21 22

23

24

25 26

27

28

29 30

31

32

33

34 35

36

37

38 39

40

41

42 43

44

45

46

47 48

49

50

51 52

53

54

55 56

57

58

59

60

Appendix 1 Search strategies

Search strategies for randomized controlled trials

Pubmed

- (((((("Osteoarthritis, Knee"[Mesh]) OR Knee Osteoarthritides[Title/Abstract]) OR Knee 1. Osteoarthritis[Title/Abstract]) OR Osteoarthritis of Knee[Title/Abstract]) OR Osteoarthritis of the Knee[Title/Abstract])))) AND (((((((((("Physical Therapy Modalities"[Mesh]) OR (Modalities, Physical Therapy[Title/Abstract])) OR (Modality, Physical Therapy [Title/Abstract])) OR (Physical Therapy Modality [Title/Abstract])) OR (Physiotherapy (Techniques)[Title/Abstract])) OR (Physiotherapies (Techniques)[Title/Abstract])) OR (Physical Therapy Techniques[Title/Abstract])) OR (Physical Therapy Technique[Title/Abstract])) OR (Techniques, Physical Therapy[Title/Abstract])) OR (Group Physiotherapy[Title/Abstract])) OR (Group Physiotherapies[Title/Abstract])) OR (Physiotherapies, Group[Title/Abstract])) OR (Physiotherapy, Group[Title/Abstract])) OR (Neurological Physiotherapy[Title/Abstract])) OR (Physiotherapy, Neurological[Title/Abstract])) OR (Neurophysiotherapy[Title/Abstract])
- ((((((("Osteoarthritis, Knee"[Mesh]) OR Knee Osteoarthritides[Title/Abstract]) OR Knee Osteoarthritis[Title/Abstract]) OR Osteoarthritis of Knee[Title/Abstract]) OR Osteoarthritis of the Knee[Title/Abstract]))))) AND (((("Orthopedic Equipment"[Mesh]) OR (Equipment, Orthopedic[Title/Abstract])) OR (Equipments, Orthopedic[Title/Abstract])) OR (Orthopedic Equipments[Title/Abstract]))

Embase

- ('physiotherapy'/exp OR 'physical therapy':ab,ti OR 'physical therapy (speciality)':ab,ti OR 'physical therapy (specialty)':ab,ti OR 'physical therapy modalities ':ab,ti OR 'physical therapy service':ab,ti OR 'physical therapy speciality':ab,ti OR 'physical therapy specialty ':ab,ti OR 'physical treatment':ab,ti OR ' physio therapy ':ab,ti OR 'physical therapy techniques':ab,ti OR 'physical treatment':ab,ti OR 'physiotherapy department':ab,ti OR 'therapy, physical':ab,ti) AND ('knee osteoarthritis'/exp OR 'arthrosis, knee':ab,ti OR 'femorotibial arthrosis':ab,ti OR 'gonarthrosis':ab,ti OR 'knee arthrosis':ab,ti OR 'knee joint arthrosis':ab,ti OR 'knee joint osteoarthritis':ab,ti OR 'knee osteo-arthritis':ab,ti OR 'knee osteo-arthrosis':ab,ti OR 'knee osteoarthrosis':ab,ti OR 'osteoarthritis, knee':ab,ti OR 'osteoarthrosis, knee':ab,ti)
- 2. ('orthosis'/exp OR 'device, orthotic':ab,ti OR 'devices, orthotic':ab,ti OR 'orthesis':ab,ti OR 'orthopeadic support device':ab,ti OR 'orthopedic support device':ab,ti OR 'orthoses':ab,ti OR 'orthotic device (physical object)':ab,ti OR 'orthotic devices':ab,ti) AND ('knee osteoarthritis'/exp OR 'arthrosis, knee':ab,ti OR 'femorotibial arthrosis':ab,ti OR 'gonarthrosis':ab,ti OR 'knee arthrosis':ab,ti OR 'knee joint arthrosis':ab,ti OR 'knee joint osteoarthritis':ab,ti OR 'knee osteo-arthritis':ab,ti OR 'knee

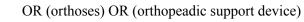
osteoarthrosis':ab,ti OR 'osteoarthritis, knee':ab,ti OR 'osteoarthrosis, knee':ab,ti)

Web of Science

1. AB=(physical

therapy OR physiotherapy OR physio therapy OR physical treatment OR physioth erapy department OR physical therapy techniques)

- 2. TI=(physical therapy OR physiotherapy OR physio therapy OR physical treatment OR physiotherapy department OR physical therapy techniques)
- 3. AB=(orthosis OR device OR orthosis OR orthoses OR orthopeadic support device OR orthotic device)
- 4. TI=(orthosis OR device OR orthosis OR orthoses OR orthopeadic support device OR orthotic device)
- 5. #4 OR #3 OR #2 OR #1
- 6. AB=(knee osteoarthritis OR femorotibial OR gonarthrosis OR arthrosis knee arthrosis OR osteo-arthritis OR knee osteoarthrosis OR knee osteoarthrosis)
- 7. TI=(knee osteoarthritis OR femorotibial arthrosis OR gonarthrosis OR knee arthrosis OR knee osteo-arthritis OR knee osteoarthrosis OR osteoarthrosis)
- 8. #6 OR #7
- 9. #8 AND #5

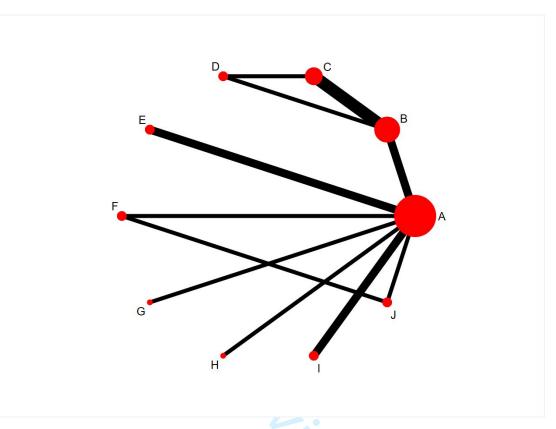

Cochrane Library

- (MeSH descriptor: [Physical Therapy Modalities] explode all trees OR (Neurological 1. Physiotherapy):ti,ab,kw OR (Physiotherapy, Neurological):ti,ab,kw OR (Neurophysiotherapy):ti,ab,kw OR (Techniques, Physical Therapy):ti,ab,kw OR (Physiotherapies (Techniques)):ti,ab,kw OR (Physical Therapy Techniques):ti,ab,kw OR (Physiotherapy (Techniques)):ti,ab,kw OR (Modality, Physical Therapy):ti,ab,kw OR (Physical Therapy Modality):ti,ab,kw OR (Physical Therapy Technique):ti,ab,kw OR (Modalities, Physical Therapy):ti,ab,kw OR (Group Physiotherapies):ti,ab,kw OR (Physiotherapy, Group):ti,ab,kw OR (Group Physiotherapy):ti,ab,kw OR (Physiotherapies, Group):ti,ab,kw) AND ((Osteoarthritis of Knee):ti,ab,kw OR (Knee Osteoarthritides):ti,ab,kw OR (Knee Osteoarthritis):ti,ab,kw OR (Osteoarthritis of the Knee):ti,ab,kw) OR MeSH descriptor: [Osteoarthritis, Knee] explode all trees)
- (MeSH descriptor: [Orthopedic Equipment] explode all trees OR (Orthopedic Equipments):ti,ab,kw OR (Equipment, Orthopedic):ti,ab,kw OR (Equipments, Orthopedic):ti,ab,kw) AND ((Osteoarthritis of Knee):ti,ab,kw OR (Knee Osteoarthritides):ti,ab,kw OR (Knee Osteoarthritis):ti,ab,kw OR (Osteoarthritis of the Knee):ti,ab,kw) OR MeSH descriptor: [Osteoarthritis, Knee] explode all trees)

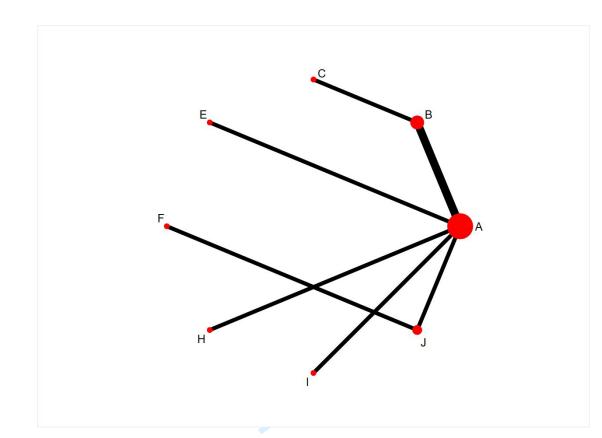
MEDLINE

- 1. (knee osteoarthritis) OR (femorotibial arthrosis) OR (gonarthrosis) OR (knee arthrosis) OR (knee osteo-arthritis) OR (knee osteoarthrosis) OR (osteoarthrosis)
- (physical therapy) OR (physiotherapy) OR (physio therapy) OR (physical treatment) OR (physioth erapy department) OR (physical therapy techniques)
- 3. (orthotic devices) OR (Orthopedic Equipment) OR (orthosis) OR (device) OR (orthesis)

1	
2 3	
4	
5 6	
7	
8 9	
10	
11 12	
13	
14 15	
16 17	
17 18	
19	
20 21	
22	
23 24	
25	
26 27	
28	
29 30	
31 32	
32 33	
34	
35 36	
37	
38 39	
40	
41 42	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53 54	
55	
56	


- 4. #2 OR #3
- 5. #1 AND #4

Appendix 2 Results of Inconsistency


eFigure 1. Inconsistency for triangular loops in First peak KAM.

Appendix 3 Network Diagram

eFigure 2a. Structure of network formed by interventions and their direct comparisons (First peak KAM). A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Footnote: Width of the lines is proportional to the number of trials comparing every pair of treatments. Size of every circle is proportional to the number of randomly assigned participants (ie, sample size).

eFigure 2b. Structure of network formed by interventions and their direct comparisons (KAAI). A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; E= Gait retraining; F= Quadriceps strengthening; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Footnote: Width of the lines is proportional to the number of trials comparing every pair of treatments. Size of every circle is proportional to the number of randomly assigned participants (ie, sample size).

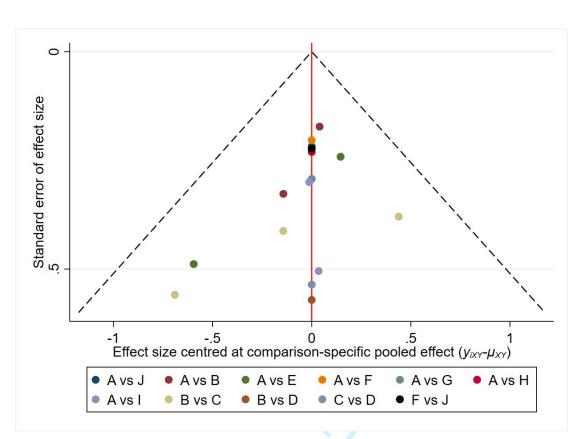
Appendix 4 Conventional meta-analyses results

Study or Subgroup 1.1.1 Gait retraining vs Sta		ital Mean		Total	Weight	Std. Mean Difference IV, Random, 95% Cl	Std. Mean Difference IV, Random, 95% Cl
Cheung 2018 Hunt 2018 Subtotal (95% CI)	-0.078 0.0839 -0.01 0.3599		0.0547 0.3666	10 33 43	33.5% 66.5% 100.0 %	-1.12 [-2.08, -0.16] -0.38 [-0.86, 0.09] - 0.63 [-1.32, 0.06]	
Heterogeneity: Tau ² = 0.13 Test for overall effect: Z = 1			46%	40		-000 [- N32, 040]	
1.1.2 LWI vs Standard Car Barrios 2013	e -0.011 0.1351	19 0.032	0.1133	19	21.7%	-0.34 [-0.98, 0.30]	
Hinman 2016 Subtotal (95% CI)	0.26 1.3295	68 0.46 87	1.234	67 86	78.3% 100.0%	-0.16 [-0.49, 0.18] - 0.19 [-0.49, 0.10]	
Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 1		P = 0.62); I ² =	0%			,	
1.1.3 Quadriceps strength Lim 2008	ening vs Standard (0.1 0.9685	49 -0.087	0.8962		100.0%	0.20 [-0.20, 0.60]	
Subtotal (95% Cl) Heterogeneity: Not applica	ble	49		48	100.0%	0.20 [-0.20, 0.60]	-
Test for overall effect: Z = 0							
1.1.4 Variable-stiffness sl Erhart-Hledik 2012	ioes vs Standard Ca 0.338 0.3763		0 2070	22	100.0%	1.06 [0.49, 1.63]	
Subtotal (95% CI)		32 -0.072 32	0.3070	23	100.0%	1.06 [0.49, 1.63]	
Heterogeneity: Not applica Test for overall effect: Z = 3							
1.1.5 Hip strengthening vs							
Bennell 2010 Subtotal (95% CI)	0.15 0.4371	39 0.02 39	0.4258	37 37	100.0% 100.0 %	0.30 [-0.15, 0.75] 0.30 [-0.15, 0.75]	
Heterogeneity: Not applica Test for overall effect: Z = 1							
1.1.6 Lower limb exercise							
Foroughi 2011 Hunt 2013	-0.02 1.26		1.0223	25	73.9% 26.1%	0.08 [-0.51, 0.67]	
Subtotal (95% CI)		29	0.9044	7 32	26.1 % 100.0%	0.13 [-0.86, 1.11] 0.09 [-0.42, 0.60]	-
Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0		r = 0.94); l² =	0%				
1.1.7 Neuromuscular exe	rcise vs Standard C	are					
Holsgaard-Larsen 2017 Subtotal (95% Cl)	0.12 0.3125	44 0.03 44	0.3168		100.0% 100.0 %	0.28 [-0.14, 0.71] 0.28 [-0.14, 0.71]	
Heterogeneity: Not applica Test for overall effect: Z = 1	ble .30 (P = 0.19)						
1.1.8 LWI vs Knee Brace							
Arazpour 2012 Jones 2013	-0.07 0.0324 -0.075 0.1296	12 -0.08 14 -0.045	0.019	12 14	36.6% 41.3%	0.36 [-0.44, 1.17] -0.22 [-0.96, 0.52]	
Khosravi 2019	-0.08 0.1752		0.1442	7	22.1% 100.0%	0.82 [-0.29, 1.92]	
Subtotal (95% CI) Heterogeneity: Tau ² = 0.06	; Chi² = 2.58, df = 2 (22%	33	100.0%	0.22 [-0.34, 0.79]	
Test for overall effect: Z = 0							
1.1.9 LWI vs LWI+Knee Br Khosravi 2019	ace -0.08 0.1752	7 -0.251	0.1153	7	100.0%	1.08 [-0.07, 2.23]	
Subtotal (95% CI) Heterogeneity: Not applica Test for overall effect: Z = 1		7		7	100.0%	1.08 [-0.07, 2.23]	
1.1.10 Knee Brace vs LWI							
Khosravi 2019 Subtotal (95% CI)	-0.22 0.1442	7 -0.251 7	0.1153		100.0% 100.0 %	0.22 [-0.83, 1.27] 0.22 [-0.83, 1.27]	
Heterogeneity: Not applica Test for overall effect: Z = 0							
1.1.11 Quadriceps streng	thening vs Neuromu	scular exer	cise				
Bennell 2014 Subtotal (95% CI)	-0.04 0.4605		0.502	38 38	100.0% 100.0 %	-0.33 [-0.77, 0.11] - 0.33 [-0.77, 0.11]	
Heterogeneity: Not applica Test for overall effect: Z = 1						,	-
1.1.12 PNF vs Standard Ca							\perp
Song 2020 Subtotal (95% Cl)	0.01 0.13	13 0.01 13	0.13	16 16	100.0% 100.0 %	0.00 [-0.73, 0.73] 0.00 [-0.73, 0.73]	
Heterogeneity: Not applica Test for overall effect: Z = 0						,	
1.1.13 Electroacupunctur		ше					
Wang 2017 Subtotal (95% CI)	0.019 0.095	18 -0.036 18	0.094		100.0% 100.0 %	0.57 [-0.10, 1.24] 0.57 [-0.10, 1.24]	
Heterogeneity: Not applica Test for overall effect: Z = 1	ble 67 (P = 0.00)	10		10	100.070	0.57 [-0.10, 1.24]	
1 est for overall effect: Z = 1		al tonnie elv	10				
Trombini-Souza 2015	-0.23 0.84	28 0.18	ре 1.15		100.0%	-0.40 [-0.93, 0.13]	
Subtotal (95% CI) Heterogeneity: Not applica		28		28	100.0%	-0.40 [-0.93, 0.13]	
Test for overall effect: Z = 1							
1.1.15 ACL-brace vs V3P- Robert-Lachaine 2020	brace 0.005 0.0991		0.0967		100.0%	0.15 [-0.46, 0.76]	_
Subtotal (95% CI) Heterogeneity: Not applica		21			100.0%	0.15 [-0.46, 0.76]	
Test for overall effect: Z = 0							
1.1.16 ACL-brace vs VER- Robert-Lachaine 2020	brace 0.005 0.0991	21 -0.018	0.1049	21	100.0%	0.22 [-0.39, 0.83]	
Subtotal (95% CI)		21 -0.018	2.1043		100.0%	0.22 [-0.39, 0.83]	-
Heterogeneity: Not applica Test for overall effect: Z = 0							
1.1.17 V3P-brace vs VER-			o		105 1		
Robert-Lachaine 2020 Subtotal (95% CI)	-0.01 0.0967	21 -0.018 21	U.1043		100.0% 100.0 %	0.08 [-0.53, 0.68] 0.08 [-0.53, 0.68]	-
Heterogeneity: Not applica Test for overall effect: Z = 0							
							-2 -1 0 1 2

eFigure 3a. Conventional meta-analysis of treatment effects on First peak KAM.

	Exp	erimenta	I	(Control	5	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	IV, Random, 95% Cl	IV, Random, 95% Cl
1.2.1 Gait retraining vs §	Standard	Care						
Hunt 2018	-0.24	0.2699	37	0.02	0.2849	33	-0.93 [-1.42, -0.43]	
1.2.2 Lower limb exerci	se vs Sta	ndard Ca	ire					
Foroughi 2011	0.14	1.311	20	0.06	0.9254	25	0.07 [-0.52, 0.66]	
1.2.3 LWI vs Knee Brace	9							
Jones 2013	-0.06	0.144	14	-0.05	0.12	14	-0.07 [-0.81, 0.67]	
1.2.4 Electroacupunctur	e vs Sha	m-acupu	ncture					
Wang 2017	-0.002	0.093	18	-0.046	0.012	18	0.65 [-0.02, 1.32]	
1.2.5 ACL-brace vs V3P	brace							
Robert-Lachaine 2020	-0.001	0.106	21	-0.002	0.0989	21	0.01 [-0.60, 0.61]	
1.2.6 ACL-brace vs VER	brace							
Robert-Lachaine 2020	-0.001	0.106	21	-0.014	0.1043	21	0.12 [-0.48, 0.73]	
1.2.7 V3P-brace vs VER	brace							
Robert-Lachaine 2020	-0.002	0.0989	21	-0.014	0.1043	21	0.12 [-0.49, 0.72]	
								-1 -0.5 0 0.5 1 Favours [experimental] Favours [control]

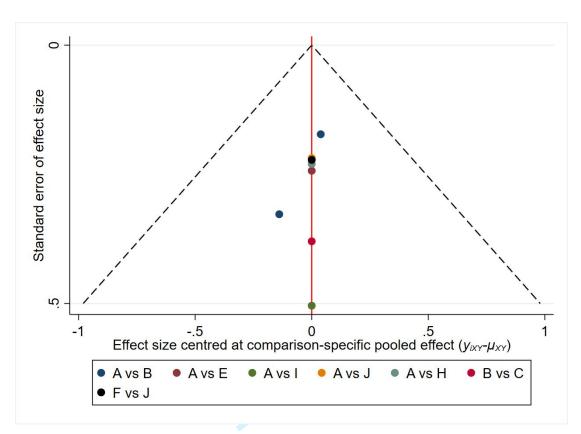
eFigure 3b. Conventional meta-analysis of treatment effects on Second peak KAM.


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Study or Sub-		rimental	Tot-!		ontrol	Tot-	Maintet	Std. Mean Difference	Std. Mean Difference
<u>Study or Subgroup</u> 1.3.1 LWI vs Standard Ca	Mean	50	Total	Mean	20	rotal	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
		0.0707	40	0.040	0.004	40	24 700	0.0014.00.0.001	
Barrios 2013 Llinmon 2016	-0.009		19	0.016	0.064	19	21.7% 78.3%	-0.36 [-1.00, 0.28]	
Hinman 2016 Subtotal (95% CI)	0.07	0.451	68 87	0.15	0.435	67 86	100.0%	-0.18 [-0.52, 0.16] - 0.22 [-0.52, 0.08]	
Heterogeneity: Tau ² = 0.00	1: Chi R = 0 :	00 df = 1		60V-18 - 0	ov.	00	100.0%	-0.22 [-0.32, 0.06]	
Test for overall effect: Z = 1			(F – U.	03),1 = 0	70				
1.3.2 Gait retraining vs St	andard Ca	re							_
Hunt 2018	-0.04	0.105	37	0.01	0.0987	33	100.0%	-0.48 [-0.96, -0.01]	
Subtotal (95% CI)			37			33	100.0%	-0.48 [-0.96, -0.01]	
Heterogeneity: Not applica Test for overall effect: Z = 1		05)							
1.3.3 Hip strengthening v	s Standard	Care							
Bennell 2010		0.1873	39	0.02	0.1825	37	100.0%	0.16 [-0.29, 0.61]	
Subtotal (95% CI)			39				100.0%	0.16 [-0.29, 0.61]	
Heterogeneity: Not applica	able								
Test for overall effect: Z = I		48)							
1.3.4 Lower limb exercise			-		0.4057	-	4.00.007	0.0014.00.000	
Hunt 2013 Subtatal (05% CI)	-0.12	0.3775	9	-0.08	0.4951		100.0%	-0.09 [-1.08, 0.90]	
Subtotal (95% CI)	shla		9			(100.0 %	-0.09 [-1.08, 0.90]	
Heterogeneity: Not applica Test for overall effect: Z = I		86)							
1.3.5 Neuromuscular exe									
Holsgaard-Larsen 2017	0.05	0.1316	44	0.01	0.1109		100.0%	0.32 [-0.10, 0.75]	
Subtotal (95% CI)			44			41	100.0%	0.32 [-0.10, 0.75]	
Heterogeneity: Not applica									
Test for overall effect: Z = 1	1.49 (P = 0.	14)							
1.3.6 LWI vs Knee Brace Jones 2013	-0.0395	0.0697	14	-0.0215	0.0726	14	100.0%	-0.25 [-0.99, 0.50]	
Subtotal (95% CI)	-0.0383	0.0007	14	-0.0215	0.0720	14	100.0%	-0.25 [-0.99, 0.50]	
Heterogeneity: Not applica	blo		14			14	100.076	-0.25 [-0.55, 0.50]	
Test for overall effect: Z = I		51)							
1.3.7 Quadriceps strengt	-								_
Bennell 2014	-0.02	0.1809	44	0.02	0.213		100.0%	-0.20 [-0.64, 0.23]	
Subtotal (95% CI)			44			38	100.0%	-0.20 [-0.64, 0.23]	
Heterogeneity: Not applica Test for overall effect: Z = I		36)							
1.3.8 Minimalist footwear	vs Standa	rd, neutra	al tenr	iis shoe					
Trombini-Souza 2015	-0.09	0.3652	28	0.01	0.4803		100.0%	-0.23 [-0.76, 0.29]	
Subtotal (95% CI)			28			28	100.0 %	-0.23 [-0.76, 0.29]	
Heterogeneity: Not applica Test for overall effect: Z = I		39)							
1.3.9 ACL-brace VS V3P-	brace								
Robert-Lachaine 2020		4.9428	21	0	4.8368	21	100.0%	0.04 [-0.56, 0.65]	
Subtotal (95% CI)			21				100.0%	0.04 [-0.56, 0.65]	
Heterogeneity: Not applica								-	
Test for overall effect: Z = I	0.13 (P = 0.	90)							
1.3.10 ACL-brace vs VER		4.0400	24	o •	4.0824	24	400.0%	0401040.070	
Robert-Lachaine 2020 Subtotal (95% Cl)	0.2	4.9428	21 21	-0.4	4.9624		100.0% 100.0%	0.12 [-0.49, 0.72] 0.12 [-0.49, 0.72]	
	blo		21			21	100.0%	0.12[-0.49, 0.72]	
Heterogeneity: Not applica Test for overall effect: Z = I		70)							
1.3.11 V3P-brace vs VER	brace								
Robert-Lachaine 2020	0	4.8368	21	-0.4	4.9624		100.0%	0.08 [-0.53, 0.69]	
Subtotal (95% CI)			21			21	100.0%	0.08 [-0.53, 0.69]	
Heterogeneity: Not applica									
	0.26 (P = 0.	80)							
Test for overall effect: Z = I									1
l est for overall effect: Z = I								-	-1 -0.5 0 0.5 1

eFigure 3c. Conventional meta-analysis of treatment effects on KAAI.

BMJ Open


Appendix 5 Comparison-adjusted funnel plot for each outcome from

the network meta-analysis

eFigure 4a. Comparison-adjusted funnel plot for First peak KAM.

A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

eFigure 4b. Comparison-adjusted funnel plot for KAAI. A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; E= Gait retraining; F= Quadriceps strengthening; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Appendix 6 Table of GRADE

Based on all the above information, we GRADEd each network estimate according to the following criteria:

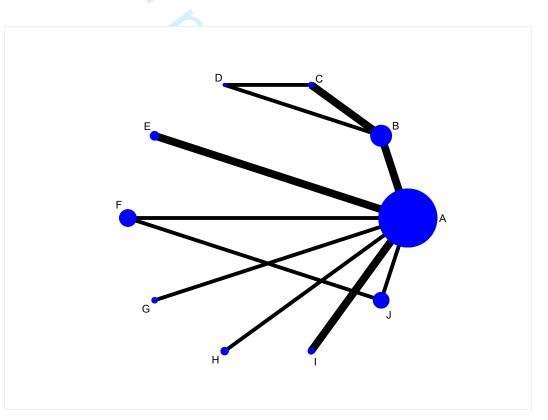
- Study limitations: We downgraded by one level when the contributions from low RoB comparisons were less than 30% and contributions from moderate RoB comparisons were 70% or greater. And we downgraded by two level when the contributions from low RoB comparisons were more than 30%.
- Imprecision: We considered a clinically meaningful threshold for CI to be 0 and did not downgrade the estimate if the upper limit is below 0; or if the lower limit is above 0.
- 3) Inconsistency: We rated two concepts, heterogeneity and incoherence (inconsistency), in this domain. For heterogeneity, we did not downgrade any network estimate for heterogeneity, because we looked at the common tau and found that it is low. For

BMJ Open

inconsistency, we looked at the results of inconsistency (Appendix 2), where we have not downgraded for imprecision.

- 4) Indirectness: We have assured transitivity in our network by limiting the included studies to patients with knee osteoarthritis. Evaluation of transitivity for singly-connected nodes is unclear, so we downgraded such nodes for indirectness.
- 5) Publication bias: The comparison-adjusted funnel plot (Appendix 5) did not suggest presence of overall publication bias. We managed to retrieve supplementary and unpublished information included in the available systematic reviews and network meta-analyses, and we are confident that we have all available information that is possible to capture from clinical trial registries. Although we cannot completely rule out the possibility that some research is still missing, we still believe that the project does not need to be downgraded.

Comparison	Nature of the Evidence	GRADE	Downgarding due to
AB: Placebo vs LWI	Mixed	LOW	Study limitations; Imprecision
AC: Placebo vs Knee Brace	Indirect	LOW	Study limitations; Imprecision
AD: Placebo vs LWI+Knee Brace	Indirect	LOW	Study limitations; Imprecision
AE: Placebo vs Gait Retraining	Mixed	VERY LOW	Study limitations; Indirectness
AF: Placebo vs Quadriceps	Mixed	VERY LOW	Study limitations; Imprecision
Strengthening			
AG: Placebo vs Variable-Stiffness	Mixed	VERY LOW	Study limitations; Indirectness;
Shoes			
AH: Placebo vs Hip Strengthening	Mixed	VERY LOW	Study limitations; Indirectness;
			Imprecision
AI: Placebo vs Lower Limb Exercise	Mixed	VERY LOW	Study limitations; Indirectness;
			Imprecision
AJ: Placebo vs Neuromuscular	Mixed	MODERATE	Study limitations
Exercise			
BC: LWI vs Knee Brace	Mixed	VERY LOW	Study limitations; Imprecision
BD: LWI <i>vs</i> LWI+Knee Brace	Mixed	VERY LOW	Study limitations; Imprecision


2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
32 33
34
35
36
37
38
39
40
41
42
43
44
45
46
40
48
48 49
50
51
52
53
54
55
56
57
58
59

BE: LWI vs Gait Retraining	Indirect	VERY LOW	Study limitations; Indirectness;
			Imprecision
BF: LWI vs Quadriceps Strengthening	Indirect	LOW	Study limitations; Imprecision
BG: LWI vs Variable-Stiffness Shoes	Indirect	LOW	Study limitations; Indirectness
BH: LWI vs Hip Strengthening	Indirect	VERY LOW	Study limitations; Indirectness;
			Imprecision
BI: LWI vs Lower Limb Exercise	Indirect	VERY LOW	Study limitations; Indirectness;
			Imprecision
BJ: LWI vs Neuromuscular Exercise	Indirect	MODERATE	Study limitations
CD: Knee Brace <i>vs</i> LWI+Knee Brace	Mixed	VERY LOW	Study limitations; Imprecision
CE: Knee Brace vs Gait Retraining	Indirect	VERY LOW	Study limitations; Indirectness;
			Imprecision
CF: Knee Brace vs Quadriceps	Indirect	LOW	Study limitations; Imprecision
Strengthening			
CG: Knee Brace vs Variable-Stiffness	Indirect	LOW	Study limitations; Indirectness
Shoes			
CH: Knee Brace vs Hip Strengthening	Indirect	VERY LOW	Study limitations; Indirectness;
			Imprecision
CI: Knee Brace vs Lower Limb	Indirect	VERY LOW	Study limitations; Indirectness;
Exercise			Imprecision
CJ: Knee Brace vs Neuromuscular	Indirect	MODERATE	Study limitations
Exercise			
DE: LWI+Knee Brace vs Gait	Indirect	VERY LOW	Study limitations; Indirectness;
Retraining			Imprecision
DF: LWI+Knee Brace vs Quadriceps	Indirect	LOW	Study limitations; Imprecision
Strengthening			
DG: LWI+Knee Brace vs Variable-	Indirect	VERY LOW	Study limitations; Indirectness
Stiffness Shoes			
DH: LWI+Knee Brace vs Hip	Indirect	LOW	Study limitations; Indirectness

2 3 4	Strengthening			
5 6	DI: LWI+Knee Brace vs Lower Limb	Indirect	VERY LOW	Study limitations; Indirectness;
7 8	Exercise			Imprecision
9 10	DJ: LWI+Knee Brace <i>vs</i>	Indirect	MODERATE	Study limitations
11 12	Neuromuscular Exercise			
13 14	EF: Gait Retraining vs Quadriceps	Indirect	VERY LOW	Study limitations; Indirectness
15 16	Strengthening			
17 18	EG: Gait Retraining vs Variable-	Indirect	VERY LOW	Study limitations; Indirectness
19 20	Stiffness Shoes			
21 22	EH: Gait Retraining vs Hip	Indirect	LOW	Study limitations; Indirectness
23 24	Strengthening			
25 26	EI: Gait Retraining vs Lower limb	Indirect	VERY LOW	Study limitations; Indirectness;
27 28	Exercise			Imprecision
29 30	EJ: Gait Retraining vs Neuromuscular	Indirect	LOW	Study limitations; Indirectness
31 32	Exercise			
33 34	FG: Quadriceps Strengthening vs	Indirect	• VERY LOW	Study limitations; Indirectness
35 36	Variable-Stiffness Shoes			
37 38	FH: Quadriceps Strengthening vs Hip	Indirect	VERY LOW	Study limitations; Indirectness;
39	Strengthening			Imprecision
40 41	FI: Quadriceps Strengthening vs	Indirect	VERY LOW	Study limitations; Indirectness;
42 43	Lower Limb Exercise			Imprecision
44 45	FJ: Quadriceps Strengthening vs	Mixed	LOW	Study limitations; Imprecision
46 47	Neuromuscular Exercise			
48 49	GH: Variable-Stiffness Shoes vs Hip	Indirect	LOW	Study limitations; Indirectness
50 51	Strengthening			
52 53	GI: Variable-Stiffness Shoes vs Lower	Indirect	VERY LOW	Study limitations; Indirectness
54 55	Limb Exercise			
56 57	GJ: Variable-Stiffness Shoes vs	Indirect	LOW	Study limitations; Indirectness
58 59 60	Neuromuscular Exercise			

Indirect	VERY LOW	Study limitations; Indirectness;
		Imprecision
Indirect	VERY LOW	Study limitations; Indirectness;
		Imprecision
Indirect	VERY LOW	Study limitations; Indirectness;
		Imprecision
	Indirect	Indirect VERY LOW

Appendix 7 Results of re-analysis

eFigure 5. Structure of network formed by interventions and their direct comparisons on First peak KAM (re-analysis). A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

œ

œ.

4

2

C

œ

ø.

4

Ņ

0

1

C(SUCRA=71.3%)

2 3 4 5 6 7 8 9 10

G(SUCRA=2.3%)

1 2 3 4 5 6 7 8 9 10

D(SUCRA=90.2%)

1 2 3 4 5 6 7 8 9 10

H(SUCRA=26.4%)

1 2 3 4 5 6 7 8 9 10

~

ø

œ.

4

Ņ

0

œ

ø.

4

2

0

B(SUCRA=64.2%)

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

J(SUCRA=25.8%)

2345678

9 10

Rank

F(SUCRA=51.0%)

œ

œ.

4

2

œ

<u>9</u>

4

Ņ

0

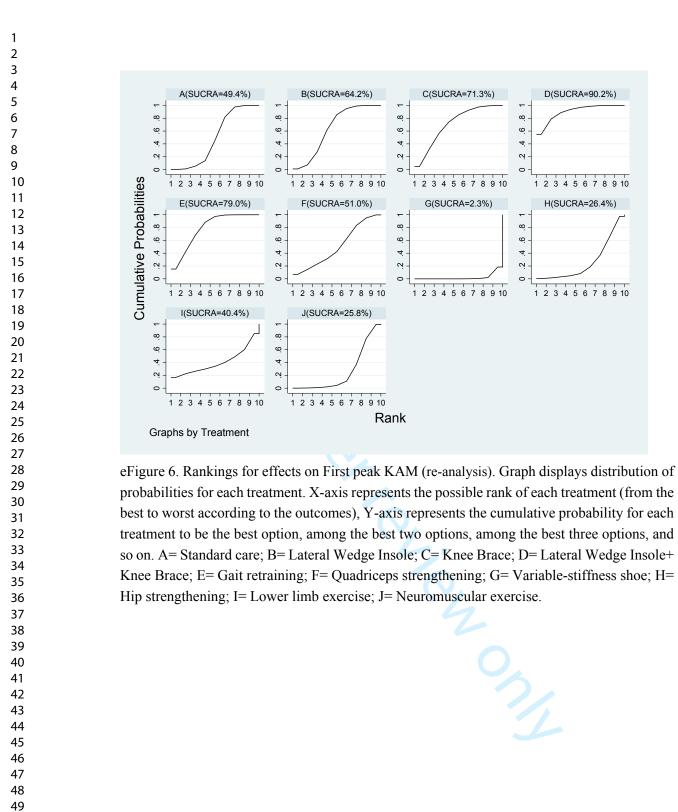
.

œ

œ

4

Ņ


0

1

5

678910

1

PRISMA 2009 Checklist

Section/Topic	#	Checklist Item	Reported on Page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Title page
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Abstract
Rationale	3	Describe the rationale for the review in the context of what is already known.	Introduction, paragraph 1-4
) Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Introduction, paragraph 5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	METHODS, paragraph1
5 7 8 Eligibility criteria 9	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	METHODS, Identification and selection of studies
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	METHODS, Identification and selection of studies, paragraph 1
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Appendix 1 Search strategies
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Results, figure 1
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators bout/guidelines.xhtml	METHODS, Identification

Page 69 of 72

PRISMA 2009 Checklist

3						
4 5 6 7				and selection of studies, paragraph 2		
7 8 9 10 11 12 13 14 15 16 17		11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	METHODS, Identification and selection of studies, paragraph 2, 3 & Data Collection and Quality assessment		
18 19 20 21 22 23 24 25 26	Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	METHODS, Assessment of characteristics of studies & Results, Figure 4		
27	Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	METHODS, Statistical analysis		
31 32 33	Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	METHODS, Statistical analysis		
35	34 Page 1 of 2					
36	Section/Topic	#	Checklist Item	Reported on Page #		
39 40 41 42 43	Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	METHODS, Assessment of characteristics of studies		
44 45	Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were preaspeoified tp://bmjopen.bmj.com/site/about/guidelines.xhtml	METHODS, Statistical		
46 47						

PRISMA 2009 Checklist

			Analysis		
RESULTS					
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Results, Characteristic s of included studies & Figure 1		
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Results, Characteristic s of included studies & Table 1, 2		
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Results, Risk of bias & Figure 4		
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Results, KAM & KAAI & Appendix 4		
Synthesis of results	21	Present the main results of the review. If meta-analyses done, include for each, confidence intervals and measures of consistency.	Results, KAM & KAAI (Table 3 & Figure 2, 3)		
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Results, Risk of bias & Appendix 5 & 6		
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Appendix 2 & 5 & 6		
DISCUSSION					
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers). For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Discussion, paragraph 1 & Conclusion		

Page 71 of 72

BMJ Open

PRISMA 2009 Checklist

3		1		
4 5 6	Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Discussion, paragraph 4
0 7 8 9 1(Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Conclusion & Discussion, paragraph 8 & 9
12	FUNDING			
13 14	E un allia ai	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Funding
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 <i>From:</i> Moher D, Liberati A, Tetzlaff doi:10.1371/journal.pmed1000097	J, Altm	an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLo For more information, visit: <u>www.prisma-statement.org</u> . Page 2 of 2	S Med 6(6): e1000097.
4: 46 47	5		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Dear Editors,

We would like to submit the enclosed Original Article entitled "Non-surgical Treatment-induced Reduction in the Biomechanical Risk Factors Related to Knee Osteoarthritis: A systematic review and Bayesian network meta-analysis of randomized controlled trials", which we wish to be considered for publication in "*BMJ Open*". No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. All authors contributed to the creation of this manuscript for important intellectual content. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

This study aims to evaluate the effects of non-surgical treatment in reducing the biomechanical risk factors related to knee osteoarthritis (KOA) and this Bayesian network meta-analysis is the first review on effect of physical therapy on the biomechanical parameters (KAM & KAAI) of the knee OA. The review observes a null statistical reduction in KAM and KAAI for most therapies, using these non-surgical treatments clinically could improve symptoms and physical activity level without increasing the biomechanical magnitude; thus, improving the quality of life of patients with KOA. I hope this paper is suitable for "*BMJ Open*".

We deeply appreciate your consideration of our manuscript, and we look forward to receiving comments from the reviewers. If you have any queries, please don't hesitate to contact me at the address below.

Thank you and best regards.

information is as follows,

E-mail: yujiakuo@126.com

Laboratory of Sports Injuries, Beijing, 100191, China

Jia-Kuo Yu, MD&PhD, is the corresponding author and his address and other

Address: Institute of Sports Medicine, Peking University Third Hospital, Beijing Key

Yours sincerely,

Dr. Huang

. s Mei.

1		
2		
3 4		
4		
5		
6 7		
8		
9		
10		
11		
12		
13		
14		
15 16		
17		
18		
19		
20 21		
21		
22 23		
23		
24 25		
26		
26 27		
28		
29		
30		
31 32		
33		
34		
35		
36		
37		
38		
39 40		
40 41		
42		
43		
44		
45		
46		
47 48		
49		
50		
51		
52		
53		
54 55		
55 56		
57		
58		
59		

60

BMJ Open

Physical Therapy and Orthopedic Equipment-induced Reduction in the Biomechanical Risk Factors Related to Knee Osteoarthritis: A systematic review and Bayesian network meta-analysis of randomized controlled trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051608.R1
Article Type:	Original research
Date Submitted by the Author:	15-Nov-2021
Complete List of Authors:	Huang, XiMeng; Peking University Third Hospital Yuan, Fu-Zhen; Peking University Third Hospital Chen, You-Rong; Peking University Third Hospital Huang, Ying; Peking Union Medical College Hospital Yang, Ze-Xi; Peking University Third Hospital Lin, Lin; Peking University Third Hospital Yu, Jia-Kuo; Peking University Third Hospital
Primary Subject Heading :	Sports and exercise medicine
Secondary Subject Heading:	Evidence based practice, Rehabilitation medicine
Keywords:	Biophysics < NATURAL SCIENCE DISCIPLINES, Adult orthopaedics < ORTHOPAEDIC & TRAUMA SURGERY, Knee < ORTHOPAEDIC & TRAUMA SURGERY, REHABILITATION MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	and Bayesian	I Risk Factors Related to Knee Osteoarthritis: A systematic review		
	-			
4		and Bayesian network meta-analysis of randomized controlled trials		
	Authors: Xi-M	Ieng Huang ^{1*} , MD; Fu-Zhen Yuan ^{1*} , MD; You-Rong Chen ¹ , MD; Ying		
5	Huang ² , MD; Z	Ze-Xi Yang ³ , MD; Lin Lin ¹ , MD; Jia-Kuo Yu ¹ , MD&PhD		
6	1. Institute of	Sports Medicine, Peking University Third Hospital, Beijing Key		
7		Sports Injuries, Beijing, 100191, China		
	-	on Medical College, Plastic Surgery Hospital, Chinese Academy of		
	C	ces, Beijing, China.		
10	1	of Orthopedic, Peking University Third Hospital, Beijing, 100191,		
11	China			
12	Xi-Meng Huan	g: <u>1510301201@pku.edu.cn</u>		
13	Fu-Zhen Yuan: yuanfuzhen2009@sina.com			
14	You-Rong Chen: <u>chenyourong1990@qq.com</u>			
15	Ying Huang: <u>1510122916@pku.edu.cn</u>			
16	Ze-Xi Yang: <u>15101301202@pku.edu.cn</u>			
17	Lin Lin: simon.lin2003@163.com			
18	Jia-Kuo Yu: <u>yujiakuo@126.com;</u> Tel: 86-10-1861290798			
19	First author: Xi-Meng Huang and Fu-Zhen Yuan			
20	Corresponding author: Lin Lin and Jia-Kuo Yu			
21	Full correspor	idence details (for review) for contact purposes only:		
	Name	Jia-Kuo Yu		
	Institution	Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries		
	Country	China		
	Tel	86-10-1861290798		
	Mob	Nil		
	Fax	Nil		
Email yujiakuo@126.com		yujiakuo@126.com		
Full correspondence (for publication) for contact purposes only:		idence (for publication) for contact purposes only:		
	Name	Jia-Kuo Yu		

1 2				
3		Institution	Inst	itute of Sports Medicine, Peking University Third Hospital,
4		institution		ing Key Laboratory of Sports Injuries
5 6		Country	Chi	
7		Email	+	akuo@126.com
8	22	Abbreviated ti		
9 10	23	Abbreviated ti	ue.	Biomechanical Phenomena, Osteoarthritis, Knee, Physical and Rehabilitation Medicine
10	24	Vou words:		
12	25	Key words:		Physical Therapy; Orthopedic Equipment; Knee Osteoarthritis;
13	26			KAM; KAAI; Bayesian Network Meta-analysis.
14 15	27	Word Count:		303words (Abstract)
16	28	D.f		3953words (Introduction, Method, Results, Discussion)
17	29	References:		68
18 19	30	Tables:		3
20	31	Figures:		4
21	32	eAddenda:		
22	33	Ethics approv		Nil
23 24	34	Competing int		
25	35	Source(s) of su	ippor	t: This work was supported by the National Key R&D Program of
26	36			China (No.2017YFB1303000) and the Construction of a Basic
27	37			Public Service Platform for Industrial Technology in the Field
28 29	38			of Advanced Medical Equipment (0714-EMTC-02-00897).
30	39	Corresponden	ce: Jia	a-Kuo Yu, Institute of Sports Medicine, Peking University Third
31	40			Hospital, Beijing Key Laboratory of Sports Injuries, China,
32 33	41			yujiakuo@126.com
33 34	42			
35	43			
36	44			
37 38	45			
39	46			
40	47			
41 42	48			
42 43	49			
44	50			
45	51			
46 47	52			
47 48	53			
49	54			
50 51	55			
51 52	56			
53	57			
54	58			
55 56	59			
50 57	60			
58	61			
59 60	62			
60				

63 64 65	
66	ABSTRACT
67	Objective: Are physical therapy and orthopedic equipment efficacious in reducing the
68	biomechanical risk factors in people with tibiofemoral OA? Is there a better treatment
69	than others to improve these outcomes?
70	Design: Systematic review with network meta-analysis of randomised trials.
71	Data sources: PubMed, Web of Science, Cochrane Library, Embase, and MEDLINE
72	were searched through January 2021.
73	Eligibility criteria for selecting studies: We included randomised controlled trials
74	exploring the benefits of using physical therapy and orthopedic equipment in reducing
75	the biomechanical risk factors which included the KAM and the KAAI in patients with
76	tibiofemoral OA.
77	Data extraction and synthesis: Two authors extracted data independently and assessed
78	risk of bias. We conducted a network meta-analysis to compare multiple interventions,
79	including both direct evidences and indirect evidences. Heterogeneity was assessed
80	(sensitivity analysis) and quantified (I ² statistic). GRADE assessed the certainty of the
81	evidence.
82	Results: Eighteen randomized controlled trials, including 944 participants, met the
83	inclusion criteria. Based on the collective probability of being the overall best therapy
84	for reducing the first peak KAM, lateral wedge insoles (LWI) plus knee brace was
85	closely followed by gait retraining, and knee brace only. Although no significant
86	difference was observed among the eight interventions, variable-stiffness shoe and
	Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

BMJ Open

neuromuscular exercise exhibited an increase in the first peak KAM compared to the
standard care group. And based on the collective probability of being the overall best
therapy for reducing KAAI, gait retraining was followed by LWI only, and lower limb
exercise.

Conclusion: The ranking statistics like surface under the cumulative ranking curve
92 values of our Bayesian network meta-analysis support the use of LWI plus knee brace
93 for reducing the first peak KAM. We found gait retraining to be the most efficacious
94 intervention as it could reduce the values for KAM and KAAI at the same time based
95 on cumulative ranking and relative effect estimates.

96 Strengths and limitations

97 ① This Bayesian network meta-analysis is the first review on efficacy of physical
98 therapy and orthopedic equipment on the biomechanical parameters (KAM &
99 KAAI) of the knee OA.

100 (2) the Bayesian method provided the probability estimates regarding the superior
101 efficacy of specific interventions, even though the standard methods described the
102 absence of a significant difference between them.

103 ③ Physical therapies and orthopedic equipment are complex interventions with a
104 small number of trials comparing the different types of interventions.

105 ④ Besides KAM and KAAI, we were temporarily unable to include other106 biomechanical risk factors, such as the external knee flexion moment to joint load.

1. INTRODUCTION

Knee osteoarthritis (KOA), a chronic progressive disease, affects approximately 3.8% of people worldwide, mainly middle-aged and older adults.^{1,2} The main clinical manifestation of KOA is knee pain and is often accompanied by radiographic degeneration of the intra-articular cartilage associated with hypertrophic bone changes.³ With the development of KOA, patients may also report stiffness, locking, instability and function loss. Though it is not fatal, the persistent pain and movement difficulties associated with this condition negatively impact the physical and mental health of the patients; thus, reducing their quality of life. $\frac{4}{3}$

These pathological changes of knee joint structure are the result of the break of biomechanical balance and the progression of the disease is now believed to be associated with malalignment of the lower limb.⁵ Of the three compartments of a knee joint, KOA mostly occurs in the medial tibiofemoral compartment as it bears 60-91% of the total body load, higher than the lateral one.⁶ The external knee adduction moment (KAM) results from the unequal distribution of the transmitted load on both sides in the normal gait of humans. It is defined as the cross product of the ground reaction force and the distance between the knee joint and the force line.⁷ Individuals with obesity,⁸ meniscal lesions,⁹ occupational load¹⁰ or other risk factors tend to have frontal plane knee malalignment, which alters the normal force line, forcing the medial knee joint to bear more load and increased KAM.^{11,12} The accumulation effect of the moment is determined by calculating the integral of the moment to time, which is also termed as knee adduction angular impulse (KAAI).

Page 7 of 79

BMJ Open

131It reflects the change in knee joint rotation state during a stance period of gait.13132Previous studies have revealed a strong correlation between the peak levels of KAM133and KAAI and the severity and progression of the disease, which was reflected and134calculated by the loss of medial tibial cartilage.14.15135parameters (KAM and KAAI) are commonly used to evaluate the medial knee load136and predict the long-term structural deterioration.

Recent advancements in healthcare have resulted in the development of several protocols for the intervention and treatment of KOA. KOA patients are primarily recommended physical therapy and orthopedic equipment with the intention of correcting the deviated force line and delaying the progressive pathological damage inside the knee joint.⁷ Both these modalities focus on relieving pain and improving patients' symptoms by changing the biomechanical state of the knee joint. The physical therapy mainly includes muscular strengthening, exercise therapy, electric stimulation therapy, extracorporeal shockwave therapy and gait modification, while orthopedic equipment mainly includes customized shoes/footwear, wedged insoles, and knee braces.

Previous studies have shown the positive impact of physical therapy and orthopedic
 equipment in KOA. The strengthening of related lower limb muscles, which play a
 vital role in disease progression, are known to reduce instability and abnormal
 stresses across the joint. Previous studies have shown that a lower knee joint loading
 rate in patients with stronger quadriceps and hamstring.¹⁶ Additionally, gait training
 presents a viable way to correct the patients' underlying gait pattern, which could

3 4 5	153	also reduce their knee load and pain. ^{17,18} Further, several kinds of orthotic devices
6 7 8	154	have been introduced for the treatment of KOA. The clinical use of lateral wedge
8 9 10	155	insoles (LWI) has gained immense popularity since its origin in 1987. ^{19,20} The
11 12 13	156	insoles work by shifting the lateral part of the foot more than the medial part by a
14 15	157	slope. Thus, a slope is created to increase the valgus tendency of lower extremities.
16 17 18	158	The center of the ground reaction force is shifted laterally, which induces a
19 20	159	reduction in force lever arm length and magnitude. Also, the valgus knee brace is a
21 22 23	160	commonly used device. It applies an external valgus force around the knee joint to
24 25 26	161	reduce the medial knee load.
27 28	162	In the past, several systematic reviews and meta-analysis have been published
29 30 31	163	featuring the medical effects of a single KOA treatment. However, only a few of
32 33	164	them have focused on multifaceted interventions. Also, only a few reviews have
34 35 36	165	reported the effects of these changes on the biomechanical parameters. The
37 38 39	166	mechanical changes in the body were not sufficiently investigated. Current reviews
40 41	167	on KAM and KAAI have also not compared these changes. Thus, we performed a
42 43 44	168	network meta-analysis (NMA) to appraise the benefits of physical treatments and
45 46	169	orthopedic equipment in reducing the biomechanical risk factors in KOA patients
47 48 49	170	to overcome these shortcomings, and to help achieve the goal of reducing pain and
50 51 52	171	improving function.
53 54	172	Therefore the research questions for this systematic review were:
55 56 57	173	1. Are physical therapy and orthopedic equipment efficacious in reducing the
58 59 60	174	biomechanical risk factors in people with KOA?
00		

2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

175 2. Is there a better treatment than others to improve these outcomes?

176 **2. METHODS**

All pooled analyses were derived from previous studies and, therefore, did notrequire ethical approval and informed consent.

179 **2.1 Identification and selection of studies.**

We searched the following databases for randomized controlled trials that were 180 published before January 2021, which explored the benefits of using physical 181 182 therapy and orthopedic equipment in reducing the biomechanical risk factors which 183 included the KAM and the KAAI in patients with tibiofemoral OA: PubMed, Web of Science, Cochrane Library, Embase, and MEDLINE. The search was not 184 restricted by date, publication type, or publication status (see Appendix 1). 185 Additionally, we performed manual analyses of the published references regarding 186 the use of physical therapy and orthopedic equipment for treating KOA. 187

The eligibility of searched publications was independently reviewed by HXM, YZX
following the Cochrane manual.²¹ Any additional inconsistencies were resolved
either by deliberation or by a senior expert (HY). First, the study titles and abstracts,
published in the English language, were screened. Next, complete articles were
reviewed against the following criteria in Box 1.

Eligible comparison subjects, including standard/conventional care or waiting list control (analgesic advice and education), were defined as "standard care." Standard care treatment also included placebo intervention, no intervention, and shamexercise. In this network meta-analysis, lower limb exercise was defined as the

2	
3	
4	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23 24	
25	
25 26	
20 27	
28	
29 30	
31	
32 33	
34 25	
35 26	
36 27	
37 38	
38 39	
40	
41	
42 43	
43 44	
44 45	
46 47	
47	
40 49	
49 50	
50 51	
51 52	
52 53	
53 54	
54 55	
55 56	
56 57	
57 58	
58 59	
59	

60

1 2

simultaneous exercise of multiple groups of muscles (including hip abductors,
quadriceps, and hamstrings). Since our research needed to maintain clinical and
statistical homogeneity and also focus on the left-over biomechanical effects after
intervention, we selected articles whose measurements were strictly obtained under
the condition of bare foot.

- The exclusion criteria included: (1) studies that were not consistent with the eligibility criteria; (2) studies that were in the form of the non-experimental papers, including abstracts, comments, letters, or reviews; (3) studies including participants who had received surgical treatment in the past; (4) studies that did not report suitable data which included the KAM or the KAAI.

207 **2.2 Data Collection and Quality assessment.**

KAM and KAAI were the preferred biomechanical measures used in this metaanalysis. The biomechanical indicators of the studies included in the Bayesian
network meta-analysis were measured on flat ground or treadmills. The number of
trials that focused on the second peak of KAM was insufficient to conduct an
independent network meta-analysis.

Two authors (HXM, YZX) extracted data independently and then cross-checked the data. A predefined information sheet was used to extract the data, which included the details of the first author (name), country, year of publication, population characteristics, intervention, and the time point. The authors of the original study were contacted if more data was required.

218 **2.3 Assessment of characteristics of studies.**

BMJ Open

1 2		
2 3 4 5	219	Risk of bias
6 7	220	In this network meta-analysis, we used the Cochrane Risk of Bias tool 2 (RoB2) to
8 9 10	221	assess the risk of bias in randomized controlled trials using the following evaluation
11 12 13	222	indicators: randomization process, deviations from intended interventions, missing
14 15	223	outcome data, measurement of the outcome, and selection of the reported result. ²¹
16 17 18	224	The judgment of the bias risk of this item was presented as "low," "high," and "
19 20 21	225	some concerns." Two authors independently evaluated the risk of bias of the
21 22 23	226	included studies. The authors discussed or referred to the opinion of a senior author
24 25 26	227	to resolve any disagreements. Additionally, we evaluated the certainty of evidence
27 28	228	which contributed to network estimates of the main outcomes with the Grading of
29 30 31	229	Recommendations Assessment, Development and Evaluation (GRADE)
32 33	230	framework.
34 35 36	231	Intervention
37 38 39	232	In order to describe the experimental intervention, we extracted the following
40 41	233	information: the method of training with relevant further details, the details and
42 43 44	234	characteristics of orthopedic equipment, the frequency and total duration of training
45 46	235	or wearing.
47 48 49	236	Outcome measures
50 51 52	237	Baseline biomechanical risk factors were extracted from walking test without any
53 54	238	orthopedic equipment before intervention, and post-intervention biomechanical risk
55 56 57	239	factors were extracted from walking test with orthopedic equipment. Biomechanical
58 59	240	risk factors included the first peak KAM, the second peak KAM and KAAI. KAM
60		

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

was normalized as %body weight times height, with conversion to Nm/kg where
necessary. KAAI was the accumulation effect of the moment which was determined
by calculating the integral of the moment to time.

2.4 Statistical Analysis.

We conducted a network meta-analysis to compare multiple interventions, including both direct evidences (where treatments were compared directly) and indirect evidences (where treatments were compared with a common control), maintaining randomization in each independent study.²²⁻²⁴ Interventions and demographic characteristics were either consistent or comparable across the included studies.²⁵⁻³⁰ At the same time, we did not include the studies that only reported the immediate effect into meta-analysis.

Due to different units, the continuous data used the standard mean difference (SMD) as the statistical indicator of the effect, and the Frequentist 95% confidence interval (CI) of each effect was calculated. Additionally, the I² statistic was used to analyze the overall heterogeneity of the two-arm study and the network. The fixed-effect model was used in case no statistical heterogeneity was found between the studies $(p > 0.05, I^2 < 50\%)$; given the heterogeneity between studies, a random-effects model for meta-analysis was used.³¹ A sensitivity analysis (see Appendix 2, eFigure 1 and 2) was conducted by omitting one study and investigating the influence of a single study on the overall pooled estimate to evaluate the source of heterogeneity. The Node-Split Model was used for testing consistency (see Appendix 3, eFigure 3). If p > 0.05, then the consistency model was used for analysis; else, the

Page 13 of 79

1

BMJ Open

1	
2	
3	
4	
5	
6	
7 8	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
26 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
58 59	
59 60	

60

inconsistency model was used for analysis.³² Normal likelihood distributions were 263 assumed, non-informative prior distributions were set, and three Markov chains 264 265 were run simultaneously. The number of update iterations was 50,000, a total of 5000 simulations were used for annealing, and the subsequent 45,000 iterations 266 267 were examined. The mean rank and surface under the cumulative ranking curve (SUCRA) were used for reporting the probability values. A SUCRA value of 100% 268 was considered best, whereas 0% indicated the worst treatment.³³ Besides. we also 269 made a conventional meta-analysis (see Appendix 4, eFigure 4a, 4b and 4c). 270

The data from eligible studies were combined using the Review Manager (RevMan)
software v5.3. The contribution of the effect sizes was dependent on the sample size
and their estimation accuracy. We performed the Bayesian analyses using
WinBUGs v1.4.3. Stata (StataCorp. 2015. Stata Statistical Software: Release 15.
College Station, TX: StataCorp LP) was used to conduct the frequentist NMA.

276 **3. RESULTS**

277

7 **3.1** Flow of studies through the review

Overall, the database search strategy found 4919 citation. After screening articles by title and abstract, and deleting duplicate articles, we identified 526 studies that might meet the criteria for inclusion, and then we searched and evaluated their full text. Figure 1 presents the study selection flow chart. Eighteen randomized controlled trials, including 944 participants, met the inclusion criteria.³⁴⁻⁵¹ Since the present network meta-analysis only considered trials comparing the nine treatments with usual care or each other (see Appendix 5, eFigure 5a and 5b), only fourteen

trials (792 participants) were included.

3.2 Characteristics of included studies

All studies included the radiologically confirmed tibiofemoral OA. The duration of treatment ranged from 2 weeks to 12 months, although most intervention times were administered over an 8-13-week period. The number of exercises varied from 2-5 times per week, depending on the preparation. 40,42,45,46 Both studies of gait training used the faded feedback paradigm, which meant gradual removal of the real-time biofeedback.^{36,41} Of the fourteen studies that were included in NMA, nine were classified as Kellgren/Lawrence grade 2 and above. All studies reported either the BMI or the values for height and weight, and in some studies recruiting a general population, the mean BMI was classified as overweight or obese. One study included in NMA had a randomized crossover design.³⁴ After referring to the manual and consulting a professional statistician, the mean and standard deviation of the experimental and the control groups were analyzed in this network meta-analysis.²¹ Tables 1 and 2 summarize the characteristics of the included studies and participants.

3.3 KAM.

A study reported that the VER-brace offers additional advantages on first peak KAM compared to V3P-brace and ACL-brace.⁵¹ No first peak KAM reduction was observed between proprioceptive neuromuscular facilitation group and control group,⁴⁹ and the result of the study of minimal footwear was the same.⁴⁸ On the other hand, after the electroacupuncture treatment, compared with the control group,

Page 15 of 79

1

57 58

59 60

BMJ Open

2		
3 4 5	307	the second peak KAM significantly increased immediately when the patient
6 7	308	ascended stairs. ⁵⁰ Table 3 shows the NMA results of a comparative analysis of the
8 9 10	309	reduction of the first peak KAM. We found insignificant differences in most of the
11 12 13	310	treatment modalities; however, variable-stiffness shoes showed a statistically
14 15	311	significant increase in the first peak KAM over the rest of the included interventions.
16 17 18	312	Neuromuscular exercise was better than variable-stiffness shoes, but was still
19 20	313	inferior to most other interventions. At the same time, lateral wedge insole plus knee
21 22 23	314	brace and gait retraining performed relatively well in reducing the first peak KAM
24 25 26	315	compared with standard care and other treatments. Based on the collective
27 28	316	probability of being the overall best therapy for reducing the first peak KAM, LWI
29 30 31	317	plus knee brace (93.4%) was closely followed by gait retraining (85.7%), and knee
32 33	318	brace only (79.3%) (Figure 2).
34 35 36	319	3.4 KAAI.
37 38 39	320	KAAI was reported in ten studies. ^{34,36,40,43-48,51} After wearing the three kinds of
40 41	321	brace separately, the KAAI measured without brace did not decrease significantly,
42 43 44	322	and there was no significant difference between the groups. ⁵¹ Table 3 shows the
45 46	323	NMA results of the reduction of KAAI. Most treatments were not statistically
47 48 49	324	different from each other, consistent with the results of the first peak KAM. Only
50 51 52	325	gait retraining has a statistical reduction compared with the standard care treatment.
53 54	326	The aggregated results suggested that gait retraining is efficient in reducing the
55 56 57	327	KAAI, while neuromuscular exercise will relatively increase the KAAI compared

328 with some treatment. Based on the collective probability of being the overall best

therapy for reducing KAAI, gait retraining (90.7%) was followed by LWI only (74.1%), and lower limb exercise (53.8%) (Figure 3). 3.5 Heterogeneity. We removed a study which had a short follow-up time and might cause heterogeneity,³⁴ and performed another network meta-analysis. There is no difference between the results of the reanalysis and the current ranking (see Appendix 2, eFigure 1 and 2). **3.6 GRADE assessment** According to the GRADE framework (see Appendix 6), the quality of the most comparisons was assessed as low or very low. Only neuromuscular exercise compared with standard care, neuromuscular exercise compared with LWI, neuromuscular exercise compared with knee brace, and neuromuscular exercise compared with LWI plus knee brace were evaluated as a moderate-grade comparison. 3.7 Risk of bias. Figure 4 depicts a summary of the risk-of-bias scores for the included RCTs in this analysis. Nine studies presented a clear description of generating a randomization sequence. 38-40,42,45-48,50 The study by Hinman et al. was the only double-blinded study, while other studies were either single-blinded or did not clearly describe their blind design. All trials provided follow-up data on their outcomes. Six studies did not report the number or the reason for lost visits due to the length of follow-

 $up.\frac{34,38,39,41,42,45}{2}$ Consequently, all studies were included in the synthesis evaluation

and qualified for literature assessment. And we prepared comparison-adjusted
funnel plots that represented different comparisons with different colors. The funnel
plots were symmetrically distributed based on a visual inspection, which suggested
the absence of small-sample effects for our outcomes (see Appendix 7, eFigure 6a
and 6b).

356 4. DISCUSSION

Our results did not show significant differences regarding the superiority of intervention among different types of physical therapies and orthopedic equipment. This lack of difference was attributed to the fact that the number of studies for several pairwise comparisons was small. However, some of these therapies were still worth recommending. Due to the small number of studies studying the outcome of the KAAI, we found gait retraining to be the relatively more convincing intervention as it could reduce the values for KAM and KAAI at the same time based on cumulative ranking and relative effect estimates. Due to the lack of significant differences among the interventions, we were not able to conclusively accept the cumulative ranking obtained by the network meta-analysis. For example, gait retraining, which occupied the first rank position (90.7%) for reducing the KAAI, was only superior to the neuromuscular exercise interventions.

This study had several strengths and limitations. This network meta-analysis is the first report on the effects of physical therapy and orthopedic equipment on the parameters of knee load (KAM, KAAI). Since physical therapies and orthopedic equipment are complex interventions with a small number of trials comparing the

2	
3 4	
5	
4 5 6 7 8	
8	
9 10	
11	
12	
14 15	
15 16	
17 18	
12 13 14 15 16 17 18 19	
20 21	
20 21 22 23 24 25	
23 24	
25	
26 27	
28 29	
29 30	
30 31 32 33 34	
32 33	
34 35	
35 36 37	
37 38	
30 39	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	
51	
52 53	
54	
55 56	
57	
58 59	
60	

1

373 different types of interventions, network meta-analysis appeared to be the most relevant form of analysis. The results of this meta-analysis would be more useful 374 375 for the decision-makers, service specialists, and caregivers to choose among the various available options, compared with multiple separate pairwise meta-376 analyses.⁵² Additionally, this network meta-analysis conducted each comparison 377 378 separately with both direct and indirect statistical effects, deriving statistical power from all included data.⁵² Also, the Bayesian method provided the probability 379 estimates regarding the superior efficacy of specific interventions, even though the 380 381 standard methods described the absence of a significant difference between them. In addition, we calculated alternative rankings (second, third best, etc), because in 382 some cases the best intervention might be unavailable, more costly, or 383 384 contraindicated in some patients. As with most meta-analyses on non-surgical therapies for osteoarthritis, one of the limitations of this network meta-analysis 385 includes the inclusion of trials that had variable periods of follow-up, which could 386 have introduced heterogeneity into the study analysis. There exist several methods 387 of analyzing and comparing trials with multiple durations of follow-up, as 388 389 recommended by the Cochrane handbook, such as performing individual patient data meta-analysis and evaluating at a particular time point. However, methods are 390 being developed that would include all time points in a network meta-analysis.²¹ 391 We were not able to evaluate the influence of population characteristics (such as 392 mean age, the severity of osteoarthritis), as the number of the included studies was 393 not large enough.⁵³⁻⁵⁵ Additionally, other parameters, such as the external knee 394

Page 19 of 79

BMJ Open

1	
2	
3 ∧	
5	
3 4 5 6 7	
7	
8	
8 9 10	
11	
12	
13	
14 15	
16	
11 12 13 14 15 16 17 18 19	
18	
19	
21	
22	
 20 21 22 23 24 25 26 27 28 29 	
24 25	
26	
27	
28	
29 30	
31	
32	
32 33	
34 35 36	
36	
37	
38	
39 40	
40 41	
42	
43	
44 45	
45 46	
47	
48	
49 50	
50 51	
52	
53	
54 55	
55 56	
57	
58	
59 60	
00	

flexion moment to joint load, should have been studied. However, due to the smallnumber of related articles, we were temporarily unable to include them.

397 A previous review showed that LWIs were able to reduce the KAM at baseline; $\frac{56}{56}$ however, the effect was no longer observed after a period. One study showed that a 398 399 1-month wear-in period was the longest time period studied where no reduction in biochemical risk factors was observed despite continued wear.⁵⁷ Besides, several 400 systematic reviews had concluded that exercise and gait retraining could reduce 401 pain and improve motor functioning in people with KOA, $\frac{58-60}{10}$ it was possible that 402 403 any clinical changes in previous studies may due to the increased physical activity levels, and not have been the results of altered loading environment within the knee 404 joint. Furthermore, another study revealed that an increase in the amount of 405 406 reduction in peak KAM in LWIs plus knee brace group was observed after 4 weeks.⁶¹ In this network meta-analysis, we focused on the studies of non-immediate 407 effect, removed the research with a follow-up time of less than one month in the 408 409 sensitivity analysis, and made the final rank. The results showed that only gait training produces a significant reduction in KAM and KAAI, indicating that the 410 411 biomechanical reduction effect of orthopedic equipment cannot be maintained for a long time when they are donned. Once the time of the treatment was extended, 412 the biomechanical reduction effect might lessen. The reason may be that orthopedic 413 equipment deform and render them less effective mechanically, although typically 414 415 made of high density materials.

416 On the other hand, physical therapies and orthopedic equipment also need to be

considered for relieving patients' pain, which has been the focus of several reviews in the past. As an important factor in kinetics and kinematics of gait, the joint pain can affect the kinetics and kinematics of walking.⁶² A meta-analysis reported that exercise therapy had a positive impact on knee pain and kinematic function, though this relief of pain subsided with time. After initiation, the efficiency of physical exercise over placebo reached maxima at 2 months.63 Cumulative loading is another significant parameter regarding knee load exposure in OA.⁶⁴ KAAI has been proposed as another indicator to evaluate the duration and intensity of KOA load, despite the association between KAM and disease progression. According to a 12-month study, the loss of medial tibiofemoral cartilage was not directly related to KAM but was related to KAAI.⁶⁵ Although the effect of physical therapy and orthopedic equipment on KAM may gradually disappears, it may have a huge cumulative effect on the knee during the early stages of treatment. This should be considered while interpreting the results of this network meta-analysis. The results presented in this study are both scientifically and clinically instructive. Despite observing a null statistical reduction in KAM and KAAI for most therapies, using these treatments clinically could improve symptoms and physical activity level without increasing the biomechanical magnitude; thus, improving the quality of life of patients with KOA. Although the results of this study suggested that wearing variable-stiffness shoes is not a good choice for long-term reduction of KAM, current study have pointed out that variable-stiffness shoe will have greater

Page 21 of 79

BMJ Open

benefits in reducing KAM for patients with increasing walking speed.⁶⁶ At the same
time, variable-stiffness shoes had relatively weaker discomfort than equipment such
as LWI. Since the studies included in this network meta-analysis mainly involves
patients with medial knee osteoarthritis, the results would be more useful for these
patients.

On the other hand, previous study reported that the increase in KAAI can explain the significant variation in the uCTX-II levels and the uCTX-II:sCPII ratio in patients with medial tibiofemoral KOA when additional variables are controlled.67 This showed that intervention in the biomechanical structure of the knee joint in patients with KOA is a potential beneficial role on cartilage structure. Maleki et al. pointed out that adopting a modified gait that reduces the KAM can decrease the pain in the medial compartment in KOA more than walking alone,⁶⁸ which suggests that the KAM and KAAI of patients under non-surgical treatment can be restricted to help reduce pain and improve joint function. More research is needed to further illustrate the impact of changes in knee biomechanics on the prognosis of patients. Additionally, some other therapies have been reported, such as Taiji, ultrasound, acoustic exercise, etc. However, due to the lack of RCT study design or the report of their biomechanical outcomes, we were not able to include these therapies in our review. Therefore, further studies would require more research articles in these areas to further explore the impact of various non-surgical therapies on OA patients. After accumulating evidence regarding the role of non-surgical therapy in KOA, we could conduct a similar network meta-analysis to understand the relative

461 effectiveness of various types of these interventions in relevant patients.

462 5. Conclusion

This network meta-analysis provides valuable insight regarding the alterations in
KAM and KAAI of OA patients after physical therapy and orthopedic equipment.
After integrating cumulative ranking and relative effect estimates, gait retraining
was the most recommended therapy for reducing the biomechanical risk factors. On
the contrary, variable-stiffness shoe and neuromuscular exercise needed to be used
with caution in clinical treatment. Taken together, these findings suggest that
clinicians should choose carefully when treating OA.

470 6. Authors' Contributions

HXM and YFZ conceived of the study, and participated in its design and
coordination and helped to draft the manuscript; YZX, HY and CRY contributed
significantly to analysis and manuscript preparation; YJK and LL helped perform
the analysis with constructive discussions and revised it critically for important
intellectual content.

- **7.** Competing interests
 - 477 There were no conflicts of interest.
 - 478 8. Funding

479 This work was supported by the National Key R&D Program of China
480 (No.2017YFB1303000) and the Construction of a Basic Public Service Platform
481 for Industrial Technology in the Field of Advanced Medical Equipment (0714482 EMTC-02-00897).

2		
3	400	
4 5	483	9. Ethics approval
6		
7	484	Not required.
8		
9	485	10. Data availability statement
10 11		
12	486	No data are available.
13		
14	487	11. Patient and public involvement
15		
16 17	488	Patients and/or the public were not involved in the design, or conduct, or reporting, or
18	400	i attents and/or the public were not involved in the design, or conduct, or reporting, or
19	400	
20	489	dissemination plans of this research.
21 22		
22	490	References:
24	491	1. Srikanth VK, Fryer JL, Zhai G et al. A meta-analysis of sex differences prevalence, incidence and
25	492	severity of osteoarthritis. Osteoarthr Cartilage. 2005;13(9):769-81
26	493	2. Cross M, Smith E, Hoy D et al. The global burden of hip and knee osteoarthritis: estimates from the
27 28	494	
28 29		global burden of disease 2010 study. <i>Ann Rheum Dis.</i> 2014;73(7):1323-30
30	495	3. Turpin KM, De Vincenzo A, Apps AM et al. Biomechanical and clinical outcomes with shock-
31	496	absorbing insoles in patients with knee osteoarthritis: immediate effects and changes after 1 month
32	497	of wear. Arch Phys Med Rehab. 2012;93(3):503-8
33 34	498	4. Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr Cartilage.
35	499	2013;21(9):1145-53
36	500	5. Tanamas S, Hanna FS, Cicuttini FM et al. Does knee malalignment increase the risk of development
37	501	and progression of knee osteoarthritis? A systematic review. Arthritis and rheumatism.
38	502	2009;61(4):459-67
39 40	503	6. Xing F, Lu B, Kuang M et al. A systematic review and meta-analysis into the effect of lateral wedge
41	504	arch support insoles for reducing knee joint load in patients with medial knee osteoarthritis. <i>Medicine</i> .
42	505	2017;96(24):e7168
43	506	7. Reeves ND, Bowling FL. Conservative biomechanical strategies for knee osteoarthritis. <i>Nature</i>
44 45	507	reviews. Rheumatology. 2011;7(2):113-22
43 46		
47	508	8. Sharma L, Lou C, Cahue S, Dunlop DD. The mechanism of the effect of obesity in knee osteoarthritis:
48	509	the mediating role of malalignment. Arthritis and rheumatism. 2000;43(3):568-75
49	510	9. Rytter S, Jensen LK, Bonde JP, Jurik AG, Egund N. Occupational kneeling and meniscal tears: a
50 51	511	magnetic resonance imaging study in floor layers. The Journal of rheumatology. 2009;36(7):1512-9
52	512	10. Jensen LK, Mikkelsen S, Loft IP et al. Radiographic knee osteoarthritis in floorlayers and carpenters.
53	513	Scandinavian journal of work, environment & health. 2000;26(3):257-62
54	514	11. Block JA, Shakoor N. Lower limb osteoarthritis: biomechanical alterations and implications for
55	515	therapy. Curr Opin Rheumatol. 2010;22(5):544-50
56 57	516	12. Englund M. The role of biomechanics in the initiation and progression of OA of the knee. Best
58	517	practice & research. Clinical rheumatology. 2010;24(1):39-46
59	518	13. Arnold JB, Wong DX, Jones RK, Hill CL, Thewlis D. Lateral Wedge Insoles for Reducing
60	0.0	The man and the set, the set, the set, means b. batter were insoles for reducing

1 2

3	519	Biomechanical Risk Factors for Medial Knee Osteoarthritis Progression: A Systematic Review and
4 5	520	Meta-Analysis. Arthrit Care Res. 2016;68(7):936-51
6	521	14. Brisson NM, Wiebenga EG, Stratford PW et al. Baseline knee adduction moment interacts with body
7	522	mass index to predict loss of medial tibial cartilage volume over 2.5 years in knee Osteoarthritis.
8 9	523	Journal of orthopaedic research : official publication of the Orthopaedic Research Society.
9 10	524	2017;35(11):2476-2483
11	525	15. Bennell KL, Bowles K, Wang Y et al. Higher dynamic medial knee load predicts greater cartilage
12	526	loss over 12 months in medial knee osteoarthritis. Ann Rheum Dis. 2011;70(10):1770-4
13 14	527	16. Mikesky AE, Meyer A, Thompson KL. Relationship between quadriceps strength and rate of loading
15	528	during gait in women. Journal of orthopaedic research : official publication of the Orthopaedic
16	529	Research Society. 2000;18(2):171-5
17	530	17. Cheung RTH, Ho KKW, Au IPH et al. Immediate and short-term effects of gait retraining on the
18 19	531	knee joint moments and symptoms in patients with early tibiofemoral joint osteoarthritis: a
20	532	randomized controlled trial. Osteoarthr Cartilage. 2018;26(11):1479-1486
21	533	18. Shull PB, Jirattigalachote W, Hunt MA, Cutkosky MR, Delp SL. Quantified self and human
22 23	534	movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and
24	535	intervention. <i>Gait Posture</i> . 2014;40(1):11-9
25	536	19. Sasaki T, Yasuda K. Clinical evaluation of the treatment of osteoarthritic knees using a newly
26	537	designed wedged insole. <i>Clin Orthop Relat R.</i> 1987;(221):181-7
27 28	538	20. Yasuda K, Sasaki T. The mechanics of treatment of the osteoarthritic knee with a wedged insole.
29	539	<i>Clin Orthop Relat R.</i> 1987;(215):162-72
30	540	21. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane
31 32	541	Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). Cochrane,
33	542	2021. Available from www.training.cochrane.org/handbook.
34		22. Smith TC, Spiegelhalter DJ, Thomas A. Bayesian approaches to random-effects meta-analysis: a
35	544	comparative study. <i>Stat Med.</i> 1995;14(24):2685-99
36 37		23. Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. <i>Stat</i>
38	546	Med. 2004;23(20):3105-24
39	547	
40 41	548	24. Lu G, Ades AE, Sutton AJ et al. Meta-analysis of mixed treatment comparisons at multiple follow- up times. <i>Stat Med</i> . 2007;26(20):3681-99
42	549	25. Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison
43	550	meta-analysis. <i>Stat Med</i> . 2010;29(7-8):932-44
44	551	26. Cooper NJ, Sutton AJ, Morris D, Ades AE, Welton NJ. Addressing between-study heterogeneity and
45 46	552	inconsistency in mixed treatment comparisons: Application to stroke prevention treatments in
47	553	individuals with non-rheumatic atrial fibrillation. <i>Stat Med.</i> 2009;28(14):1861-81
48		
49 50		27. Welton NJ, Caldwell DM, Adamopoulos E, Vedhara K. Mixed treatment comparison meta-analysis
51	555 556	of complex interventions: psychological interventions in coronary heart disease. <i>Am J Epidemiol.</i>
52	556	2009;169(9):1158-65
53	557	28. Salanti G, Higgins JPT, Ades AE, Ioannidis JPA. Evaluation of networks of randomized trials. <i>Stat</i>
54 55	558 550	Methods Med Res. 2008;17(3):279-301
56	559	29. Caldwell DM, Ades AE, Higgins JPT. Simultaneous comparison of multiple treatments: combining
57	560	direct and indirect evidence. <i>BMJ (Clinical research ed.</i>). 2005;331(7521):897-900
58 59	561	30. Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. <i>Stat</i>
60	562	Med. 2004;23(20):3105-24

BMJ Open

3	563	31. Turner RM, Jackson D, Wei Y, Thompson SG, Higgins JPT. Predictive distributions for between-
4 5	564	study heterogeneity and simple methods for their application in Bayesian meta-analysis. Stat Med.
6	565	2015;34(6):984-98
7	566	32. Dias S, Welton NJ, Sutton AJ et al. Evidence synthesis for decision making 4: inconsistency in
8	567	networks of evidence based on randomized controlled trials. Medical decision making : an
9 10	568	international journal of the Society for Medical Decision Making. 2013;33(5):641-56
10	569	33. Dias S, Welton NJ, Sutton AJ, Ades A. NICE DSU Technical Support Document 2: A Generalised
12	570	Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled
13	571	Trials. National Institute for Health and Care Excellence (NICE), London. 2014;
14 15	572	
16		34. Jones RK, Nester CJ, Richards JD et al. A comparison of the biomechanical effects of valgus knee
17	573	braces and lateral wedged insoles in patients with knee osteoarthritis. <i>Gait Posture</i> . 2013;37(3):368-
18	574	372
19 20	575	35. Khosravi M, Arazpour M, Sharafat Vaziri A. An evaluation of the use of a lateral wedged insole and
20 21	576	a valgus knee brace in combination in subjects with medial compartment knee osteoarthritis (OA).
22	577	Assistive technology : the official journal of RESNA. 2019:1-8
23	578	36. Hunt MA, Charlton JM, Krowchuk NM, Tse CTF, Hatfield GL. Clinical and biomechanical changes
24	579	following a 4-month toe-out gait modification program for people with medial knee osteoarthritis: a
25 26	580	randomized controlled trial. Osteoarthr Cartilage. 2018;26(7):903-911
20	581	37. Arazpour M, Bani MA, Maleki M et al. Comparison of the efficacy of laterally wedged insoles and
28	582	bespoke unloader knee orthoses in treating medial compartment knee osteoarthritis. Prosthet Orthot
29	583	Int. 2012;37(1):50-57
30 31	584	38. Lim BW, Hinman RS, Wrigley TV, Sharma L, Bennell KL. Does knee malalignment mediate the
32	585	effects of quadriceps strengthening on knee adduction moment, pain, and function in medial knee
33	586	osteoarthritis? A randomized controlled trial. <i>Arthritis & Rheumatism</i> . 2008;59(7):943-951
34	587	39. Erhart-Hledik JC, Elspas B, Giori NJ, Andriacchi TP. Effect of variable-stiffness walking shoes on
35	588	knee adduction moment, pain, and function in subjects with medial compartment knee osteoarthritis
36 37	589	after 1 year. J Orthop Res. 2012;30(4):514-521
38		
39	590	40. Bennell KL, Hunt MA, Wrigley TV et al. Hip strengthening reduces symptoms but not knee load in
40	591	people with medial knee osteoarthritis and varus malalignment: a randomised controlled trial.
41 42	592	Osteoarthr Cartilage. 2010;18(5):621-628
43	593	41. Cheung RTH, Ho KKW, Au IPH et al. Immediate and short-term effects of gait retraining on the
44	594	knee joint moments and symptoms in patients with early tibiofemoral joint osteoarthritis: a
45	595	randomized controlled trial. Osteoarthr Cartilage. 2018;26(11):1479-1486
46 47	596	42. Foroughi N, Smith RM, Lange AK et al. Lower limb muscle strengthening does not change frontal
47	597	plane moments in women with knee osteoarthritis: A randomized controlled trial. Clin Biomech.
49	598	2011;26(2):167-174
50	599	43. Barrios JA, Butler RJ, Crenshaw JR, Royer TD, Davis IS. Mechanical effectiveness of lateral foot
51 52	600	wedging in medial knee osteoarthritis after 1 year of wear. J Orthop Res. 2013;31(5):659-664
52 53	601	44. Paterson KL, Kasza J, Bennell KL et al. Moderators and mediators of effects of unloading shoes on
54	602	knee pain in people with knee osteoarthritis: an exploratory analysis of the SHARK randomised
55	603	controlled trial. Osteoarthr Cartilage. 2018;26(2):227-235
56 57	604	45. Bennell KL, Kyriakides M, Metcalf B et al. Neuromuscular Versus Quadriceps Strengthening
57 58	605	Exercise in Patients With Medial Knee Osteoarthritis and Varus Malalignment: A Randomized
59	606	Controlled Trial. <i>Arthritis Rheumatol.</i> 2014;66(4):950-959
60		

3	607	46. Hunt MA, Pollock CL, Kraus VB et al. Relationships amongst osteoarthritis biomarkers, dynamic
4 5	608	knee joint load, and exercise: results from a randomized controlled pilot study. BMC Musculoskelet
6	609	Disord. 2013;14:115
7	610	47. Holsgaard-Larsen A, Clausen B, Søndergaard J et al. The effect of instruction in analgesic use
8 9	611	compared with neuromuscular exercise on knee-joint load in patients with knee osteoarthritis: a
10	612	randomized, single-blind, controlled trial. Osteoarthr Cartilage. 2017;25(4):470-480
11	613	48. Trombini-Souza F, Matias AB, Yokota M et al. Long-term use of minimal footwear on pain, self-
12 13	614	reported function, analgesic intake, and joint loading in elderly women with knee osteoarthritis: A
13 14	615	randomized controlled trial. Clin Biomech. 2015;30(10):1194-1201
15	616	49. Song Q, Shen P, Mao M et al. Proprioceptive neuromuscular facilitation improves pain and
16	617	descending mechanics among alderly with knee acteoarthritis Second I Med Sci Spor

- descending mechanics among elderly with knee osteoarthritis. Scand J Med Sci Spor. 2020;30(9):1655-1663 50. Wang X, Xie X, Hou M et al. Kinetic mechanism of electroacupuncture for stair climbing in knee
- osteoarthritis patients. Zhongguo zhen jiu = Chinese acupuncture & moxibustion. 2017;37(10):1027-
- 51. Robert-Lachaine X, Dessery Y, Belzile ÉL, Turmel S, Corbeil P. Three-month efficacy of three knee braces in the treatment of medial knee osteoarthritis in a randomized crossover trial. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2020;38(10):2262-
 - 52. Cooper NJ, Kendrick D, Achana F et al. Network meta-analysis to evaluate the effectiveness of interventions to increase the uptake of smoke alarms. Epidemiol Rev. 2012;34:32-45
- 53. Schmid CH, Stark PC, Berlin JA, Landais P, Lau J. Meta-regression detected associations between heterogeneous treatment effects and study-level, but not patient-level, factors. J Clin Epidemiol. 2004;57(7):683-97
 - 54. Thompson SG, Higgins JPT. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002;21(11):1559-73
 - 55. Lambert PC, Sutton AJ, Abrams KR, Jones DR. A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis. J Clin Epidemiol. 2002;55(1):86-94
- 56. Arnold JB, Wong DX, Jones RK, Hill CL, Thewlis D. Lateral Wedge Insoles for Reducing Biomechanical Risk Factors for Medial Knee Osteoarthritis Progression: A Systematic Review and Meta-Analysis. Arthrit Care Res. 2016;68(7):936-951
 - 57. Hinman RS, Bowles KA, Bennell KL. Laterally wedged insoles in knee osteoarthritis: do biomechanical effects declineafter one month of wear? Bmc Musculoskel Dis. 2009;10:146
 - 58. Bennell KL, Hinman RS. A review of the clinical evidence for exercise in osteoarthritis of the hip and knee. J Sci Med Sport. 2011;14(1):4-9
 - 59. Fransen M, McConnell S, Hernandez-Molina G, Reichenbach S. Exercise for osteoarthritis of the hip. The Cochrane database of systematic reviews. 2009;(3):CD007912
 - 60. Fransen M, McConnell S. Exercise for osteoarthritis of the knee. The Cochrane database of systematic reviews. 2008;(4):CD004376
- 61. Fu HCH, Lie CWH, Ng TP et al. Prospective study on the effects of orthotic treatment for medial knee osteoarthritis in Chinese patients: clinical outcome and gait analysis. Hong Kong medical *journal = Xianggang yi xue za zhi*. 2015;21(2):98
- 62. Divine JG, Hewett TE. Valgus Bracing for Degenerative Knee Osteoarthritis. The Physician and Sportsmedicine. 2005;33(2):40-46

BMJ Open

1 2		
3	651	63. Goh S, Persson MSM, Stocks J et al. Efficacy and potential determinants of exercise therapy in knee
4 5	652	and hip osteoarthritis: A systematic review and meta-analysis. Annals of Physical and Rehabilitation
6	653	Medicine. 2019;62(5):356-365
7	654	64. Maly MR. Abnormal and cumulative loading in knee osteoarthritis. Curr Opin Rheumatol.
8	655	2008;20(5):547-52
9 10	656	65. Bennell KL, Bowles K, Wang Y et al. Higher dynamic medial knee load predicts greater cartilage
11	657	loss over 12 months inmedial knee osteoarthritis. <i>Ann Rheum Dis.</i> 2011;70(10):1770-4
12	658	66. Erhart-Hledik JC, Mahtani GB, Asay JL et al. Changes in knee adduction moment wearing a variable-
13	659	stiffness shoe correlate with changes in pain and mechanically stimulated cartilage oligomeric matrix
14 15	660	levels. Journal of orthopaedic research : official publication of the Orthopaedic Research Society.
16	661	2021;39(3):619-627
17	662	67. Hunt MA, Pollock CL, Kraus VB et al. Relationships amongst osteoarthritis biomarkers, dynamic
18 10	663	knee joint load, and exercise: results from a randomized controlled pilot study. <i>Bmc Musculoskel</i>
19 20	664	
21		Dis. 2013;14:115
22	665	68. Maleki M, Arazpour M, Joghtaei M et al. The effect of knee orthoses on gait parameters in medial
23 24	666	knee compartment osteoarthritis: A literature review. Prosthet Orthot Int. 2016;40(2):193-201
24 25	667	
26		
27		
28 29		
29 30		
31		
32		
33 34		
34 35		knee compartment osteoarthritis: A literature review. <i>Prosthet Orthot Int</i> . 2016;40(2):193-201
36		
37		
38		
39 40		
41		
42		
43		
44 45		
46		
47		
48 40		
49 50		
51		
52		
53		
54 55		

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
33 34
35
36
37
38
39
40
41
42
43
44
44 45
45

1

Table 1. Characteristics of included studies (1) *

Authors	Country	Clinical criteria†	Radiographic features	Intervention	Comparisons	Follow up
Barrios 2013 ^{<u>43</u>}	US	Medial compartment knee OA; Pain VAS (≥3 of 10 upon walking)	K/L grade ≥2, medial tibiofemoral compartment	bespoke full-length LWI	Placebo	12 months
Hinman 2016 ⁴⁴	Australia	Medial compartment knee OA; Pain NRS (> 4 of 11 upon walking) over the previous week	K/L grade ≥2, medial tibiofemoral compartment	5° full-length LWI	Placebo	6 months
Arazpour 2012 ³⁷	Iran	Medial compartment knee OA	K/L grade 1 and 2, medial tibiofemoral compartment	6° full-length LWI	bespoke unloader knee braces	6 weeks
Jones 2013 <u>³⁴</u>	UK	Medial compartment knee OA	K/L grade 2 and 3, medial JSN	LWI: The heel was inclined at 5° with the inclination reduced to 0° at the 5th metatarsal head with a contoured arch profile	6° valgus knee brace	2 weeks
Khosravi 2019 <u>35</u>	Iran	Medial compartment knee OA	K/L grade 2 and 3	Full length custom-made LWI; LWI+ knee brace	three-point valgus knee brace	6 weeks
ínee osteoarthritis (Ki	OA); Knee adductio	n moment (KAM); Knee adduction an	gular impulse (KAAI)			
		For peer review only	- http://bmjopen.bmj.com/site	e/about/guidelines.xhtml		

BMJ Open

_	* OA=osteoarthritis; LWI=lateral wedged insoles; VAS=visual analog scale; NRS=numerical rating scale; K/L=Kellgren/Lawrence; NR=not reported; JSN=joint space narrowing;
]	Tables
L	
r	Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2 3	
4	
5 6	
7	
8 9	
8 9 10 11	
11 12	
13	
14	
15 16	
17	
19	
19 20 21	
22 23	
23 24	
25	
26 27	
28	
29 30	
31	
32 33	
34 35	
35 36	
30 37	
38 39	
40	
41 42	
42 43	
44	
45 46	

Table 1. Characteristics of included studies (2) *

Authors	Country	Clinical criteria†	Radiographic features	Intervention	Comparisons	Follow up
Hunt 2018 ³⁶	US	Medial compartment knee OA; Pain (≥3 of 10) longer than 6 months	K/L grade ≥2, medial tibiofemoral compartment	Toe-out gait modification	Walking without any guidance	4 months
Lim 2008 <u>38</u>	Australia	Medial compartment knee OA; Medial knee pain	K/L grade ≥2, medial JSN	Quadriceps strengthening	No intervention	12 weeks
Erhart-Hledik 2012 ³⁹	US	Medial compartment knee OA; Medial knee pain	K/L grade ≥1	Variable-stiffness shoe with stiffer soles on the lateral side	Constant-stiffness control shoe	12 months
Bennell 2010 ^{<u>40</u>}	Australia	Medial compartment knee OA; Varus malalignment; Pain (> 3 of 11 upon walking)	K/L grade ≥2, medial JSN	Hip strengthening	No intervention	13 weeks
Cheung 2018 <u>41</u>	China	Medial compartment knee OA; Knee pain occurred at least one day a week during each of the 8 weeks prior	K/L grade 1 and 2	Gait retraining for KAM reduction	Walking without any guidance	6 weeks

Authors	Country	Clinical criteria†	Radiographic features	Intervention	Comparisons	Follow up
Foroughi 201142	Australia	Primary knee OA	K/L grade ≥1	Lower limb exercise	Sham-exercise	6 months
Bennell 2014 <u>45</u>	Australia	Medial compartment knee OA; Pain VAS (≥25 of 100) over the past week	K/L grade ≥2, medial tibiofemoral compartment	Neuromuscular exercise	Quadriceps strengthening	12 weeks
Hunt 2013 ⁴⁶	Canada	Medial compartment knee OA; Knee pain >3/10 on most days of the previous month	-	Lower limb exercise	No intervention	11 weeks
Holsgaard-Larsen 2017 ^{<u>47</u>}	Denmark	Primary knee OA Pain KOOS(< 80 of 100, at least mild pain)	K/L grade ≤3	Neuromuscular exercise	Analgesic advice	8 weeks
* OA=osteoarthritis;	; LWI=lateral wedge	ed insoles; VAS=visual analog scale;	NRS=numerical rating scale;	K/L=Kellgren/Lawrence; NI	R=not reported; JSN=join	t space narrowing
	OA); Knee adductio	n moment (KAM); Knee adduction an	gular impulse (KAAI)			
Knee osteoarthritis (K	<i>,,</i>					

Table 1. Characteristics of included studies (3)*

Page	32	of	79
------	----	----	----

	Country	Clinical criteria†	Radiographic features	Intervention	Comparisons	Follow up
Song 2020 ⁴⁹	China	Medial compartment knee OA in one or both legs.	K/L grade ≤3	PNF (one-hour sessions three times a week)	Watch television or read magazines at the same time	12 weeks
Wang 2017 <u>50</u>	China	Medial compartment knee OA	K/L grade 2 and 3	Acupuncture with 2 Hz continuous wave in Neixiyan (EX-LE 4), Dubi (ST 35), Yanglingquan (GB 34), Yinlingquan (SP 9), Xuehai (SP 10), Liangqiu (ST 34) and Zusanli (ST 36)	2 cm next to the same acupoints with shallow acupuncture and no current	Immediate
Robert-Lachaine 2020 ⁵¹	Canada	Medial compartment knee OA; Pain > $31/100$ on WOMAC; Varus knee alignment $\ge 2^{\circ}$	K/L grade 2 and 3	V3P-brace; VER-brace; ACL-brace (wear the brace as often as possible)	/	3 months
Trombini-Souza 2015 ⁴⁸	Brazil	Medial compartment knee OA; Knee pain between 3 and 8 on VAS	K/L grade 2 and 3	Minimalist footwear (Moleca®)	Standard, neutral tennis shoe	6 months

Page 33 of 79

1

45 46
 Table 2.
 Characteristics of participants in included studies (1) *

BMJ Open

Authors	No.	Sex, M:F	Age, years	Height, meters	Body mass, kg	BMI, kg/m ²	Bilateral knee		K/L gra	ide, no.		Main
							OA included	1	2	3	4	outcomes
Barrios 201343	38	NR	61.90±8.37	NR	NR	32.00±7.43	NR	0	17	14	7	1 st KAM;
												KAAI
Hinman 2016 <u>44</u>	164	20:21	64.30±7.45	1.67 ± 0.10	82.95±14.76	29.70±3.64	NR	0	49	52	63	1 st KAM;
												KAAI
Arazpour 2012 ³⁷	24	3:4	59.29±2.37	NR	NR	27.01±1.71	Yes	9	15	0	0	1 st KAM
Jones 2013 <u>34</u>	28	4:3	66.30±8.20	1.75±0.13	88.7±15.10	NR	No	0	10	18	0	1^{st} and 2^{nc}
												KAM; KAA
Khosravi 2019 ³⁵	21	13:8	58.97±6.80	1.62±0.11	79.11±9.35	NR	NR	0	9	12	0	1 st KAM
* Values are the me	an±SD un	less indicated of	otherwise. BMI=bo	dy mass index; K/I	L=Kellgren/Lawrence	e; NR=not repor	ted; JSN=joint spac	e narro	owing; K	AM=kn	ee addi	uction mome
KAAI=knee adductio	on angular	impulse.										
Table 2. Characte	ristics of p	participants in i	included studies (2	2) *								
Knee osteoarthritis (K	OA); Knee	adduction morr	ient (KAM); Khee a	dduction angular imp	buise (KAAI)							

BMJ Open

Authors	No.	Sex, M:F	Age, years	Height, meters	Body mass, kg	BMI, kg/m ²	Bilateral knee		K/L gra	ide, no.		Main
							OA included	1	2	3	4	outcomes
Hunt 2018 ³⁶	79	24:55	64.99±8.60	1.65±0.10	74.59±13.15	27.35±3.48	Yes	0	37	31	11	1^{st} and 2^{nd}
												KAM; KAA
Lim 2008 ³⁸	107	48:59	64.60±8.51	1.65±0.10	79.41±15.32	28.96±4.85	Yes	0	34	29	44	1 st KAM
Erhart-Hledik	79	41:38	61.70±9.43	1.69±0.08	79.50±15.07	27.51±4.87	Yes	NR	NR	NR	NR	1 st KAM
2012 <u>³⁹</u>												
Bennell 2010 ⁴⁰	89	46:43	64.55±8.34	NR	NR	27.94±4.41	Yes	0	30	29	30	1 st KAM;
												KAAI
Cheung 2018 <u>41</u>	20	1:1	61.95±6.11	1.63±0.09	65.85±6.64	27.35±3.48	NR	5	15	0	0	1 st KAM
* Values are the me			otherwise. BMI=bc	dy mass index; K/L	.=Kellgren/Lawrenc	ce; NR=not report	ted; JSN=joint spa	ce narro	wing; K	AM=kn	ee addı	uction mome
KAAI=knee adductio	on angular	impulse.										
Table 2. Characte	visting of	auticinante in	included studies (2) *								
			included studies (.									
Knee osteoarthritis (K	(OA); Knee	adduction mon	nent (KAM); Knee a	dduction angular imp	oulse (KAAI)							

Page 35 of 79

BMJ Open

	No.	Sex, M:F	Age, years	Height, meters	Body mass, kg	BMI, kg/m ²	Bilateral knee		K/L gra	ade, no.		Maiı
							OA included	1	2	3	4	outcor
Foroughi 201142	54	0:54	65.48±7.44	NR	82.87±18.43	32.07±7.08	Yes	20	7	20	1	1 st and
												KAN
Bennell 2014 ⁴⁵	100	48:52	62.45±7.32	1.67±0.10	82.70±14.29	29.65±4.08	Yes	0	22	43	35	1 st KA
												KAA
Hunt 2013 <u>46</u>	17	8:9	66.10±11.3	NR	NR	27.00±4.50	Yes	0	10	5	2	1 st KA
												KAA
Holsgaard-Larsen	93	39:54	58.10±7.96	NR	79.64±12.49	26.90±3.09	NR	45	31	17	0	1 st KA
2017 <u>47</u>												KAA
* Values are the m	ean±SD un	nless indicated of	otherwise. BMI=bc	ody mass index; K/I	.=Kellgren/Lawrenc	e; NR=not repor	ted; JSN=joint space	ce narro	wing; k	CAM=kn	ee addu	ction mo
KAAI=knee adducti	on angular	impulse.										

BMJ Open

Authors	No.	Sex, M:F	Age, years	Height, meters	Body mass, kg	BMI, kg/m ²	Bilateral knee		K/L gr	ide, no.		Main
							– OA included	1	2	3	4	- outcomes
Song 2020 ⁴⁹	36	1:1	68.01±3.91	1.62±0.07	68.16±6.77	NR	Yes	9	20	7	0	1 st KAM
Wang 2017 ^{<u>50</u>}	36	1:5	63.50±7.95	NR	NR	23.75±2.66	Yes	0	19	17	0	1^{st} and 2^n
												KAM
Robert-Lachaine	24	7:5	57.20±8.60	1.68±0.09	89.30±18.70	31.40±5.00	NR	0	15	8	0	1^{st} and 2^n
2020 ⁵¹												KAM; KA
Trombini-Souza	56	NR	66.00±5.00	1.60±0.10	73.40±13.10	NR	NR	0	NR	NR	0	1 st KAM
2015 <u>48</u>												KAAI
* Values are the me KAAI=knee adductio			therwise. BMI=bc	ody mass index; K/I	.=Kellgren/Lawrenc		ed; JSN=joint space	e narro	owing; K	AM=kn	ee add	uction mome

21 22	0.37	0.09	0.30	1.06	0.13	-0.53	-0.92	-0.41	-0.19	
20	(0.10,1.02)	(-0.30,0.87)	(-0.05,1.04)	(0.61,1.90)	(-0.13,0.77)	(-0.85,0.19)	(-1.70,0.25)	(-0.71,0.27)	В	(-0.52,0.08)
19	0.56	0.29	0.49	1.26	0.32	-0.33	-0.72	-0.22		-0.22
17 18	(0.11,1.45)	(-0.26,1.27)	(-0.02,1.44)	(0.66,2.29)	(-0.12,1.20)	(-0.83,0.60)	(-1.46,0.46)	С	(-0.50,0.99)	(-0.77,0.83)
16 17	0.78	0.50	0.71	1.47	0.54	-0.11	-0.50		0.25	0.03
15	(0.21,2.36)	(-0.13,2.14)	(0.10,2.33)	(0.81,3.15)	(-0.03,2.11)	(-0.71,1.49)	D	-	-	-
13 14	1.28	1.01	1.22	1.98	1.04	0.39				
12	(0.35,1.44)	(-0.04,1.28)	(0.20,1.45)	(0.87,2.30)	(0.11,1.19)	E		(-1.45,0.42)	(-0.83,0.30)	(-0.96,-0.01)
11	0.89	0.62	0.83	1.59	0.65			-0.51	-0.27	-0.48
9 10	(-0.11,0.59)	(-0.64,0.57)	(-0.39,0.74)	(0.27,1.60)	F	(-0.17,1.38)	-	(-0.91,1.10)	(-0.34,1.02)	(-0.49,0.73)
8 9	0.24	-0.04	0.17	0.93		0.61		0.09	0.34	0.12
7	(-1.36,-0.02)	(-1.73,-0.21)	(-1.49,-0.03)	G	-	-	-	-	-	-
6	-0.69	-0.97	-0.76							
4 5	(-0.50,0.64)	(-0.89,0.47)	н	-	(-0.72,0.80)	(-0.01,1.30)	-	(-0.79,1.05)	(-0.16,0.92)	(-0.29,0.61)
3	0.07	-0.21			0.04	0.64		0.13	0.38	0.16
2	(-0.34,0.89)	I	(-1.33,0.84)	-	(-1.37,0.95)	(-0.70,1.49)	-	(-1.39,1.16)	(-0.90,1.16)	(-1.08,0.90)
1	0.28		-0.25		-0.21	0.40		-0.12	0.13	-0.09

Table 3. Detailed results of network meta-analysis for the First peak KAM (grey) and KAAI (white). Data are SMDs (from the top left to the bottom right, higher comparator versus lower comparator) and their related 95%CI. Bold texts in the table mean SMDs are statistically significant.

A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

BMJ Open

Design • Randomised controlled trial Participants • People with radiologically confirmed knee osteoarthritis Intervention • Manual therapy

1 2

3

4 5

6

7

8

9 10

11

12

13 14

15

16

17

18 19

20

21

22 23

24

25

26 27

28

29

30

31 32

33

34

35 36

37

38

39 40

41

42 43

44 45 46 • Aerobic exercise

Box 1. Inclusion criteria

- Pulsed electrical stimulation (PES)
- Acupuncture
- Knee braces
- Ice/cooling treatment
- Pulsed electromagnetic fields (PEMF)
- Balneotherapy
- Interferential therapy
- Transcutaneous electric Nerve stimulation (TENS)
- Heat treatment
- Foot orthoses
- Laser/light therapy
- Muscle-strengthening exercise
- Static magnets
- Tai Chi
- Athletic tape
- Neuromuscular electrical stimulation (NMES)

Comparator

- Per review only • Control group (standard/conventional care, placebo intervention, no
- intervention, sham-exercise, analgesic advice and education)
- Outcome measures
- KAM and KAAI.
- Comparisons
- All interventions compared to the comparator and to each other

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Figure Legends

Figure 1. Flow chart of the study selection

Figure 2. Rankings for effects on First peak KAM. Graph displays distribution of probabilities for each treatment. X-axis represents the possible rank of each treatment (from the best to worst according to the outcomes), Y-axis represents the cumulative probability for each treatment to be the best option, among the best two options, among the best three options, and so on. A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

. Brace, ., J.= Neuromusc. .on of probabilities for eac. .e probability for each treatment to .ee Brace; E= Gait retraining; F= Quadriceps. Figure 3. Rankings for effects on KAAI. Graph displays distribution of probabilities for each treatment. X-axis represents the possible rank of each treatment (from the best to worst according to the outcomes), Y-axis represents the cumulative probability for each treatment to be the best option, among the best two options, among the best three options, and so on. A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; E= Gait retraining; F= Quadriceps strengthening; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Figure 4. Risk of bias summary

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

Initial citations retrieved from database search (n=4919)

 \rightarrow Duplicates (n=1350)

Title and abstracts screened (n= 3569)

Studies were excluded based on titles/abstracts (n=3043)

Studies were obtained for full-text evaluation (n= 526)

Full-text articles were excluded for the following reasons(n=508)

- Not randomized controlled trial (n=256)
- ♦ No suitable control group (n=35)
- Not OA study (n=8)
- No suitable data(n=119)
- Surgical intervention(n=51)
- ◆ Duplicates (n=39)

Not eligible for NMA but included in systematic review(n=4)

Included in final NMA(n=14)

For peer review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

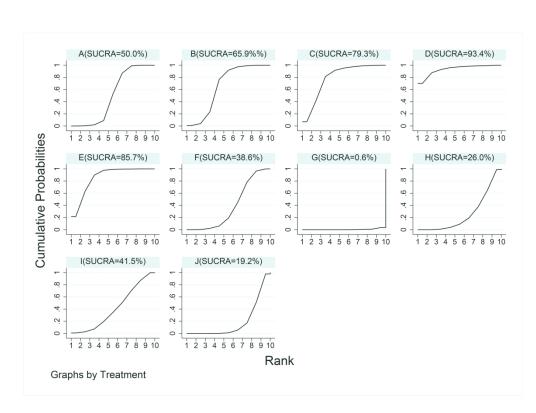
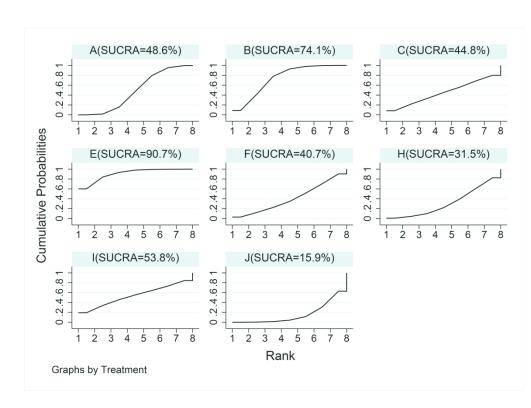
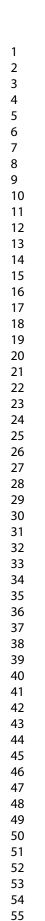
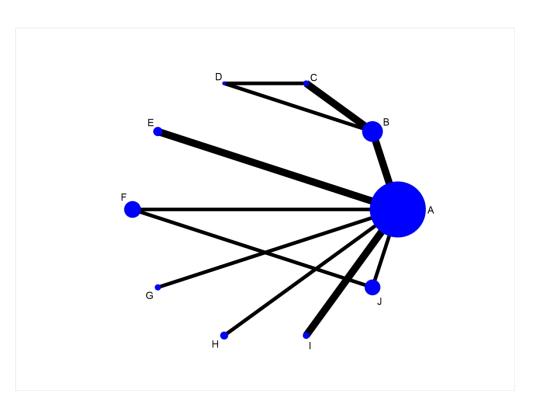
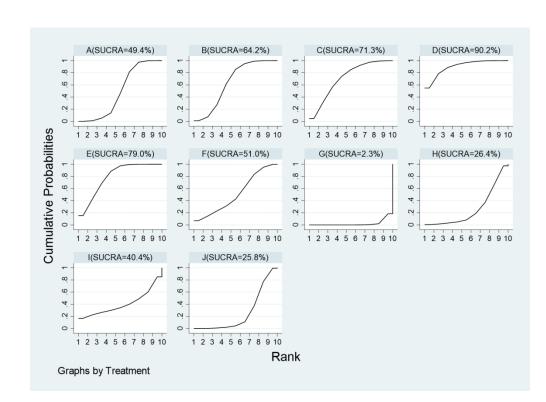


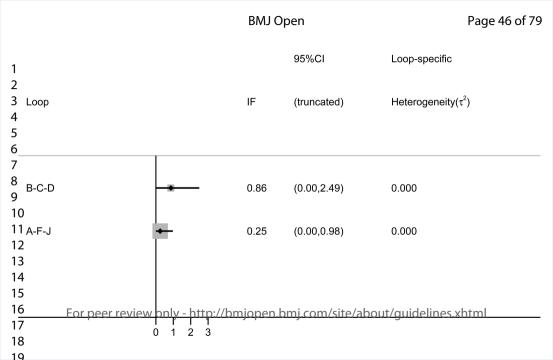
Figure 2

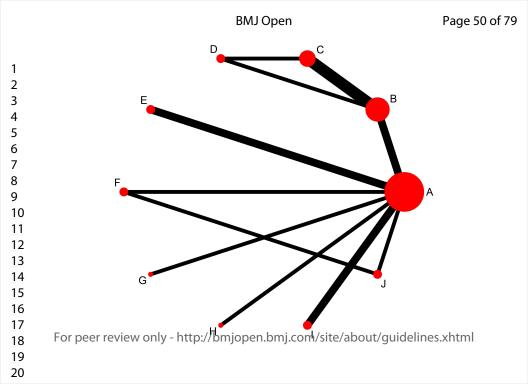

Figure 3

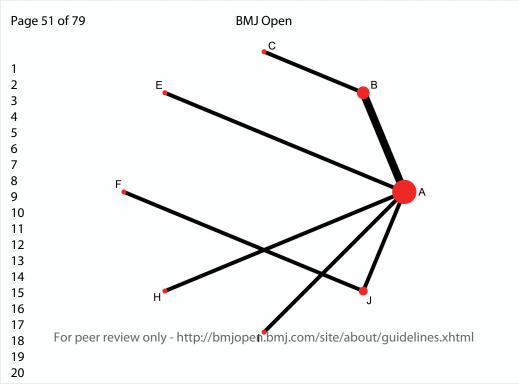
ge 43 of 79			I	BMJ Ope	en			
Stu	dy ID	Randomization process	Deviations from intended i	Missing outcome data	Measurement of the outcome	Selection of the reported	0veral1	
Arazpour	2012	?	•	?	+	+	!	
Barrios			+	+	+	+	!	
Bennell			+	+	+	+	+	
Benne11	2014	+	+	?	+	+	~	
Cheung	2018	?	?	?	+	?	~	
Erhart-Hledik	2012	?	+	?	+	?	?	
Foroughi	2011	?	+	?	+	+	?	
Hinman	2016	?	+	?	+	+	!	
Holsgaard-Larsen	2017	+	+	+	+	+	+	
Hunt	2013	+	+	+	+	?	!	
Hunt	2018	?	?	+	+	?	?	
Jones	2013	?	?	?	+	?	?	
Khosravi	2019	?	?	?	?	?	!	
Lim	2008	+	?	?	+	?	?	
Robert-Lachaine	2020	?	?	+	+	+	?	
Song	2020	?	?	?	+	?	?	
Trombini-Souza	2015	?	+	•	+	+	!	
Wang	2017	+	?	+	+	?	?	

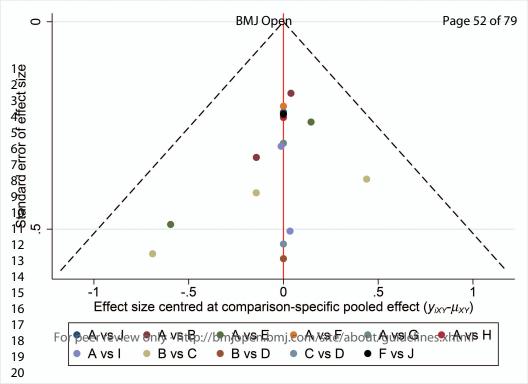

Page 43 of 79

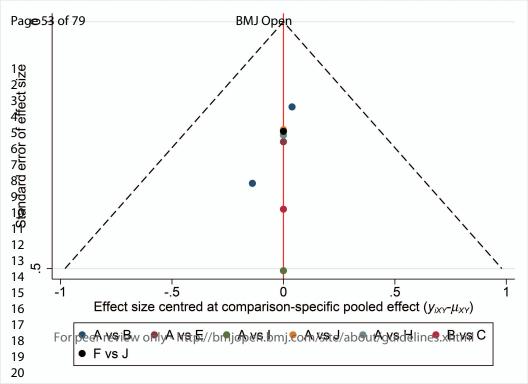

60

349x254mm (120 x 120 DPI)


349x254mm (120 x 120 DPI)




BMJ Open


Study or Subgroup	Mean SD To	otal	viean	50	Total	Weight	IV, Random, 95% CI	IV, Random, 95%
1.1.1 Gait retraining vs 5 Cheung 2018 Hunt 2018 Subtotal (95% CI)	-0.078 0.0839 -0.01 0.3599	37 47	0.13	0.0547 0.3666	10 33 43	33.5% 66.5% 100.0%	-1.12 [-2.08, -0.16] -0.38 [-0.86, 0.09] -0.63 [-1.32, 0.06]	
Heterogeneity: Tau ² = 0.1 Test for overall effect: Z =		(P =)).17); ŀ	= 46%				
1.1.2 LWI vs Standard C Barrios 2013		40	0.000	0.1133	19	21.7%	0.0410.000.0.001	
Hinman 2016 Subtotal (95% CI)	-0.011 0.1351 0.26 1.3295	19 68 87	0.46	1.234	67 86	78.3% 100.0%	-0.34 [-0.98, 0.30] -0.16 [-0.49, 0.18] - 0.19 [-0.49, 0.10]	
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =).62); l [:]	^e = 0%	80	100.0%	-0.19 [-0.49, 0.10]	
1.1.3 Quadriceps streng	. ,	d Car	•					
Lim 2008 Subtotal (95% CI)	0.1 0.9685	49 - 49	0.087	0.8962		100.0% 100.0%	0.20 [-0.20, 0.60] 0.20 [-0.20, 0.60]	
Heterogeneity: Not application Test for overall effect: Z =								
1.1.4 Variable-stiffness		Care						
Erhart-Hledik 2012 Subtotal (95% CI)	0.338 0.3763	32 - 32	0.072	0.3878		100.0% 100.0%	1.06 [0.49, 1.63] 1.06 [0.49, 1.63]	-
Heterogeneity: Not applic Test for overall effect: Z =								
1.1.5 Hip strengthening	vs Standard Care							
Bennell 2010 Subtotal (95% CI)	0.15 0.4371	39 39	0.02	0.4258		100.0% 100.0%	0.30 [-0.15, 0.75] 0.30 [-0.15, 0.75]	
Heterogeneity: Not application Test for overall effect: Z =								
1.1.6 Lower limb exercis		•						
Foroughi 2011 Hunt 2013	-0.02 1.26 -0.05 0.91			1.0223 0.9044	25 7	73.9% 26.1%	0.08 [-0.51, 0.67] 0.13 [-0.86, 1.11]	
Subtotal (95% CI) Heterogeneity: Tau ² = 0.0		29			32		0.09 [-0.42, 0.60]	-
Test for overall effect: Z =		(r -)	J.54), I	- 0 78				
1.1.7 Neuromuscular ex			0.02	0.0460	44	100.0%	0.001.0.14.0.741	
Holsgaard-Larsen 2017 Subtotal (95% CI)	0.12 0.3125	44 44	0.03	0.3168		100.0% 100.0%	0.28 [-0.14, 0.71] 0.28 [-0.14, 0.71]	-
Heterogeneity: Not application Test for overall effect: Z =								
1.1.8 LWI vs Knee Brace								
Arazpour 2012 Jones 2013	-0.07 0.0324 -0.075 0.1296	14 -		0.019 0.1346	12 14	36.6% 41.3%	0.36 [-0.44, 1.17] -0.22 [-0.96, 0.52]	
Khosravi 2019 Subtotal (95% CI)	-0.08 0.1752	7 33	-0.22	0.1442	7 33	22.1% 100.0%	0.82 [-0.29, 1.92] 0.22 [-0.34, 0.79]	
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =		? (P =)).28); l [:]	= 22%				
1.1.9 LWI vs LWI+Knee I	Brace							
Khosravi 2019 Subtotal (95% CI)	-0.08 0.1752	7 - 7	0.251	0.1153		100.0% 100.0%	1.08 [-0.07, 2.23] 1.08 [-0.07, 2.23]	
Heterogeneity: Not application Test for overall effect: Z =								
1.1.10 Knee Brace vs LV								
Khosravi 2019 Subtotal (95% CI)	-0.22 0.1442	7 - 7	0.251	0.1153		100.0% 100.0%	0.22 [-0.83, 1.27] 0.22 [-0.83, 1.27]	
Heterogeneity: Not application Test for overall effect: Z =								
1.1.11 Quadriceps stren		nuscı	lar exe	ercise				
Bennell 2014 Subtotal (95% CI)	-0.04 0.4605	44 44		0.502		100.0% 100.0%	-0.33 [-0.77, 0.11] -0.33 [-0.77, 0.11]	
Heterogeneity: Not application Test for overall effect: Z =								
1.1.12 PNF vs Standard	, ,							
Song 2020 Subtotal (95% CI)	0.01 0.13	13 13	0.01	0.13		100.0% 100.0%	0.00 [-0.73, 0.73] 0.00 [-0.73, 0.73]	
Heterogeneity: Not applic Test for overall effect: Z =								T
1.1.13 Electroacupunctu	. ,	ncture						
Wang 2017 Subtotal (95% CI)	0.019 0.095			0.094		100.0% 100.0%	0.57 [-0.10, 1.24] 0.57 [-0.10, 1.24]	
Heterogeneity: Not application of the terogeneity in the terogeneity is the terogeneity i					.0	//	5.5. [-0.10, 1.24]	
1.1.14 Minimalist footwe		utral +	nnie -	hoe				
Trombini-Souza 2015 Subtotal (95% CI)	-0.23 0.84	28 28 28	0.18	noe 1.15		100.0% 100.0%	-0.40 [-0.93, 0.13] -0.40 [-0.93, 0.13]	
Heterogeneity: Not applic		20			20	100.0%	-0.40 [-0.83, 0.13]	
Test for overall effect: Z =	, ,							
1.1.15 ACL-brace vs V3F Robert-Lachaine 2020	0.005 0.0991	21	-0.01	0.0967		100.0%	0.15 [-0.46, 0.76]	
Subtotal (95% CI) Heterogeneity: Not applic		21			21	100.0%	0.15 [-0.46, 0.76]	
Test for overall effect: Z =								
1.1.16 ACL-brace vs VEI Robert-Lachaine 2020	R-brace 0.005 0.0991		0.018	0.1043		100.0%	0.22 [-0.39, 0.83]	
Subtotal (95% CI) Heterogeneity: Not application	able	21			21	100.0%	0.22 [-0.39, 0.83]	
Test for overall effect: Z =								
1.1.17 V3P-brace vs VEF Robert-Lachaine 2020	-0.01 0.0967	21 -	0.018	0.1043	21	100.0%	0.08 [-0.53, 0.68]	
Subtotal (95% CI)		21	-			100.0%	0.08 [-0.53, 0.68]	-
Heterogeneity: Not applic	able							

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Appendix

Appendix 1 Search strategies	2
Appendix 2 Results of re-analysis	4
Appendix 3 Results of Inconsistency	
Appendix 4 Conventional meta-analyses results	7
Appendix 5 Network Diagram	. 15
Appendix 6 Table of GRADE	11
Appendix 7 Comparison-adjusted funnel plot for each outcome from the network meta-analysis	

7 Comparison-adjusted funnel plot for each outcome from the networ

Appendix 1 Search strategies

Search strategies for randomized controlled trials Pubmed

- (((((("Osteoarthritis, Knee"[Mesh]) OR Knee Osteoarthritides[Title/Abstract]) OR Knee 1. Osteoarthritis[Title/Abstract]) OR Osteoarthritis of Knee[Title/Abstract]) OR Osteoarthritis of the Knee[Title/Abstract])))) AND (((((((((("Physical Therapy Modalities"[Mesh]) OR (Modalities, Physical Therapy[Title/Abstract])) OR (Modality, Physical Therapy[Title/Abstract])) OR (Physical Therapy Modality[Title/Abstract])) OR (Physiotherapy (Techniques)[Title/Abstract])) OR (Physiotherapies (Techniques)[Title/Abstract])) OR (Physical Therapy Techniques[Title/Abstract])) OR (Physical Therapy Technique[Title/Abstract])) OR (Techniques, Physical Therapy[Title/Abstract])) OR (Group Physiotherapy[Title/Abstract])) OR (Group Physiotherapies[Title/Abstract])) OR (Physiotherapies, Group[Title/Abstract])) OR (Physiotherapy, Group[Title/Abstract])) OR (Neurological Physiotherapy[Title/Abstract])) (Physiotherapy, OR Neurological[Title/Abstract])) OR (Neurophysiotherapy[Title/Abstract])
- ((((((("Osteoarthritis, Knee"[Mesh]) OR Knee Osteoarthritides[Title/Abstract]) OR Knee Osteoarthritis[Title/Abstract]) OR Osteoarthritis of Knee[Title/Abstract]) OR Osteoarthritis of the Knee[Title/Abstract]))))) AND ((((("Orthopedic Equipment"[Mesh]) OR (Equipment, Orthopedic[Title/Abstract])) OR (Equipments, Orthopedic[Title/Abstract])) OR (Orthopedic Equipments[Title/Abstract]))

Embase

- ('physiotherapy'/exp OR 'physical therapy':ab,ti OR 'physical therapy (speciality)':ab,ti OR 'physical therapy (specialty)':ab,ti OR 'physical therapy modalities ':ab,ti OR 'physical therapy service':ab,ti OR 'physical therapy speciality':ab,ti OR 'physical therapy specialty ':ab,ti OR 'physical treatment':ab,ti OR ' physio therapy ':ab,ti OR 'physical therapy techniques':ab,ti OR 'physical treatment':ab,ti OR 'physiotherapy department':ab,ti OR 'therapy, physical':ab,ti) AND ('knee osteoarthritis'/exp OR 'arthrosis, knee':ab,ti OR 'femorotibial arthrosis':ab,ti OR 'gonarthrosis':ab,ti OR 'knee arthrosis':ab,ti OR 'knee joint arthrosis':ab,ti OR 'knee joint osteoarthritis':ab,ti OR 'knee osteo-arthritis':ab,ti OR 'knee osteo-arthrosis':ab,ti OR 'knee osteoarthritis, knee':ab,ti OR 'osteoarthrosis, knee':ab,ti)
- 2. ('orthosis'/exp OR 'device, orthotic':ab,ti OR 'devices, orthotic':ab,ti OR 'orthesis':ab,ti OR 'orthopeadic support device':ab,ti OR 'orthopedic support device':ab,ti OR 'orthoses':ab,ti OR 'orthotic device (physical object)':ab,ti OR 'orthotic devices':ab,ti) AND ('knee osteoarthritis'/exp OR 'arthrosis, knee':ab,ti OR 'femorotibial arthrosis':ab,ti OR 'gonarthrosis':ab,ti OR 'knee arthrosis':ab,ti OR 'knee joint arthrosis':ab,ti OR 'knee joint osteoarthritis':ab,ti OR 'knee osteo-arthritis':ab,ti OR 'knee osteo-arthritis':ab,ti OR 'knee osteo-arthrosis':ab,ti OR 'knee osteo-arthrosis':ab,ti

Web of Science

1. AB=(physical

1 2 3

4

5

6 7

8

9

10 11

12

13

14 15

16

17

18 19

20

21

22

23 24

25

26

27 28

29

30

31 32

33

34

35

36 37

38

39

40 41

42

43

44

45 46

47

48

49 50

51

52

53 54

55

56

57

58 59

60

therapy OR physiotherapy OR physio therapy OR physical treatment OR physioth erapy department OR physical therapy techniques)

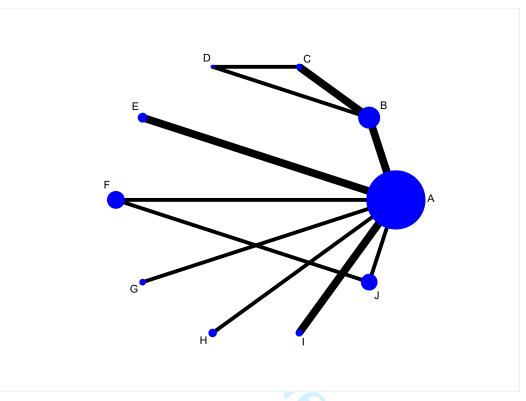
- 2. TI=(physical therapy OR physiotherapy OR physio therapy OR physical treatment OR physiotherapy department OR physical therapy techniques)
- 3. AB=(orthosis OR device OR orthosis OR orthoses OR orthopeadic support device OR orthotic device)
- 4. TI=(orthosis OR device OR orthesis OR orthoses OR orthopeadic support device OR orthotic device)
- 5. #4 OR #3 OR #2 OR #1
- 6. AB=(knee osteoarthritis OR femorotibial arthrosis OR gonarthrosis OR knee arthrosis OR knee osteo-arthritis OR knee osteoarthrosis OR osteoarthrosis)
- 7. TI=(knee osteoarthritis OR femorotibial arthrosis OR gonarthrosis OR knee arthrosis OR knee osteo-arthritis OR knee osteoarthrosis OR osteoarthrosis)
- 8. #6 OR #7
- 9. #8 AND #5

Cochrane Library

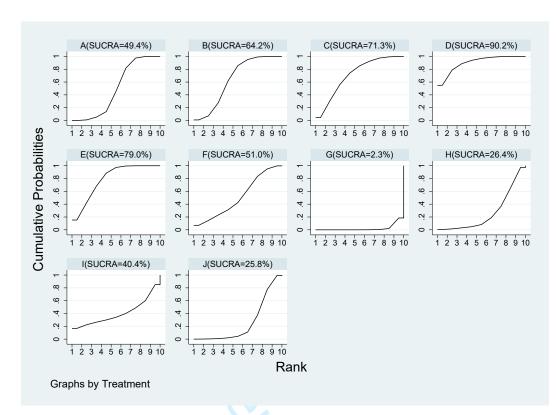
- (MeSH descriptor: [Physical Therapy Modalities] explode all trees OR (Neurological 1. (Physiotherapy, Physiotherapy):ti,ab,kw OR Neurological):ti,ab,kw OR (Neurophysiotherapy):ti,ab,kw OR (Techniques, Physical Therapy):ti,ab,kw OR (Physiotherapies (Techniques)):ti,ab,kw OR (Physical Therapy Techniques):ti,ab,kw OR (Physiotherapy (Techniques)):ti,ab,kw OR (Modality, Physical Therapy):ti,ab,kw OR (Physical Therapy Modality):ti,ab,kw OR (Physical Therapy Technique):ti,ab,kw OR (Modalities, Physical Therapy):ti,ab,kw OR (Group Physiotherapies):ti,ab,kw OR (Physiotherapy, Group):ti,ab,kw OR (Group Physiotherapy):ti,ab,kw OR (Physiotherapies, Group):ti,ab,kw) ((Osteoarthritis of (Knee AND Knee):ti,ab,kw OR Osteoarthritides):ti,ab,kw OR (Knee Osteoarthritis):ti,ab,kw OR (Osteoarthritis of the Knee):ti,ab,kw) OR MeSH descriptor: [Osteoarthritis, Knee] explode all trees)
- 2. (MeSH descriptor: [Orthopedic Equipment] explode all trees OR (Orthopedic Orthopedic):ti,ab,kw OR Equipments):ti,ab,kw OR (Equipment, (Equipments, AND ((Osteoarthritis of Knee):ti,ab,kw Orthopedic):ti,ab,kw) OR (Knee Osteoarthritides):ti,ab,kw OR (Knee Osteoarthritis):ti,ab,kw OR (Osteoarthritis of the Knee):ti,ab,kw) OR MeSH descriptor: [Osteoarthritis, Knee] explode all trees)

MEDLINE

1. (knee osteoarthritis) OR (femorotibial arthrosis) OR (gonarthrosis) OR (knee arthrosis) OR (knee osteo-arthritis) OR (knee osteoarthrosis) OR (osteoarthrosis)

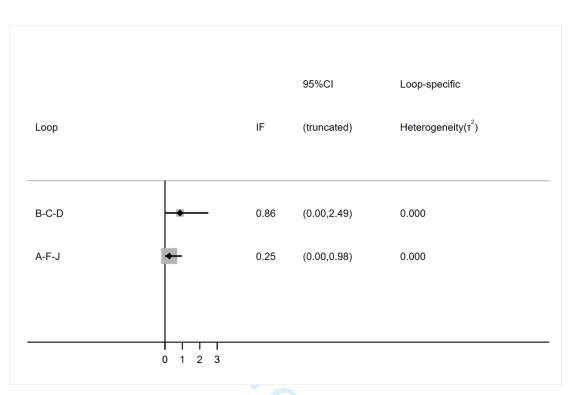

2. (physical

therapy) OR (physiotherapy) OR (physio therapy) OR (physical treatment) OR (physioth erapy department) OR (physical therapy techniques)


- 3. (orthotic devices) OR (Orthopedic Equipment) OR (orthosis) OR (device) OR (orthesis) OR (orthoses) OR (orthopeadic support device)
- 4. #2 OR #3

5. #1 AND #4

Appendix 2 Results of re-analysis



eFigure 1. Structure of network formed by interventions and their direct comparisons on First peak KAM (re-analysis). A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

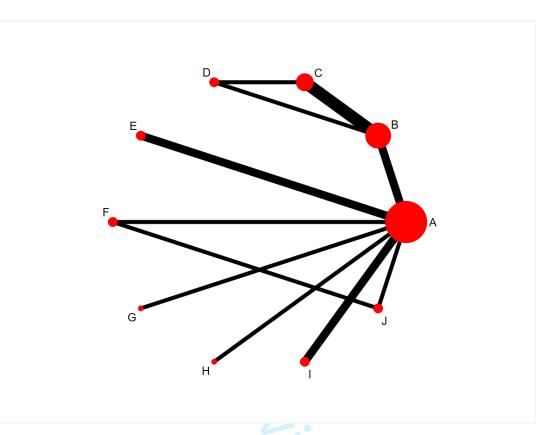
eFigure 2. Rankings for effects on First peak KAM (re-analysis). Graph displays distribution of probabilities for each treatment. X-axis represents the possible rank of each treatment (from the best to worst according to the outcomes), Y-axis represents the cumulative probability for each treatment to be the best option, among the best two options, among the best three options, and so on. A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

eFigure 3. Inconsistency for triangular loops in First peak KAM.

Appendix 4 Conventional meta-analyses results

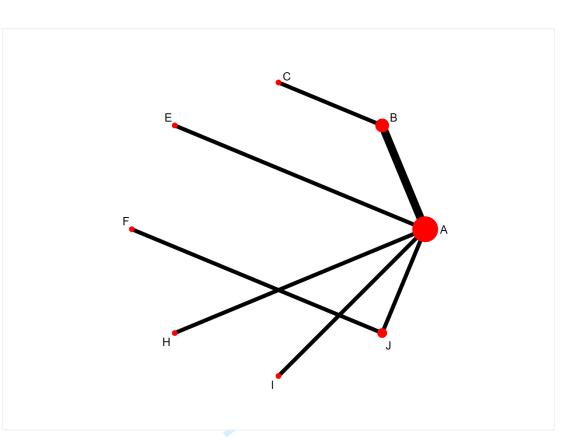
Study or Subgroup 1.1.1 Gait retraining vs Sl	andard Care			SD Total	Weight	Std. Mean Difference IV, Random, 95% Cl	Std. Mean Difference IV, Random, 95% Cl
Cheung 2018 Hunt 2018 Subtotal (95% CI)	-0.078 0.0839 -0.01 0.3599		005 0.05).13 0.36		33.5% 66.5% 100.0 %	-1.12 [-2.08, -0.16] -0.38 [-0.86, 0.09] - 0.63 [-1.32, 0.06]	
Heterogeneity: Tau ² = 0.1: Test for overall effect: Z =); I² = 46%				
1.1.2 LWI vs Standard Ca Barrios 2013	-0.011 0.1351	19 0.	032 0.11	33 19	21.7%	-0.34 [-0.98, 0.30]	_
Hinman 2016 Subtotal (95% CI)	0.26 1.3295	68 0 87).46 1.2	34 67 86	78.3% 100.0%	-0.16 [-0.49, 0.18] - 0.19 [-0.49, 0.10]	
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =		(P = 0.62); I² = 0%				
1.1.3 Quadriceps strengt Lim 2008	hening vs Standard 0.1 0.9685	49 -0.	087 0.89		100.0%	0.20 [-0.20, 0.60]	
Subtotal (95% Cl) Heterogeneity: Not applic: Test for overall effect: Z =		49		48	100.0%	0.20 [-0.20, 0.60]	
1.1.4 Variable-stiffness s Erhart-Hledik 2012	hoes vs Standard (0.338 0.3763		072 0.38	70 22	100.0%	1.06 [0.49, 1.63]	
Subtotal (95% CI) Heterogeneity: Not applic: Test for overall effect: Z =	able	32	072 0.30	23	100.0%	1.06 [0.49, 1.63]	•
1.1.5 Hip strengthening v Bennell 2010	s Standard Care 0.15 0.4371	39 (0.02 0.42	58 37	100.0%	0.30 [-0.15, 0.75]	_
Subtotal (95% Cl) Heterogeneity: Not applic: Test for overall effect: Z =		39		37	100.0%	0.30 [-0.15, 0.75]	
1.1.6 Lower limb exercis Foroughi 2011	e vs Standard Care -0.02 1.26		0.11 1.02	23 25	73.9%	0.08 [-0.51, 0.67]	
Hunt 2013 Subtotal (95% CI)	-0.05 0.91		0.17 0.90		26.1% 100.0%	0.13 [-0.86, 1.11] 0.09 [-0.42, 0.60]	
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	0.35 (P = 0.73)); I² = 0%				
1.1.7 Neuromuscular exe Holsgaard-Larsen 2017	0.12 0.3125	44 (0.03 0.31		100.0%	0.28 [-0.14, 0.71]	
Subtotal (95% Cl) Heterogeneity: Not applic: Test for overall effect: Z =	able 1.30 (P = 0.19)	44		41	100.0%	0.28 [-0.14, 0.71]	
1.1.8 LWI vs Knee Brace Arazpour 2012	-0.07 0.0324	12 -(0.08 0.0	19 12	36.6%	0.36 [-0.44, 1.17]	
Jones 2013 Khosravi 2019	-0.075 0.1296 -0.08 0.1752	14 -0.	045 0.13 0.22 0.14	46 14	41.3% 22.1%	-0.22 [-0.96, 0.52] 0.82 [-0.29, 1.92]	
Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	i; Chi≇= 2.58, df= 2	33		33	100.0%	0.22 [-0.34, 0.79]	
1.1.9 LWI vs LWI+Knee B Khosravi 2019	race -0.08 0.1752	7-0.	251 0.11	53 7	100.0%	1.08 [-0.07, 2.23]	
Subtotal (95% CI) Heterogeneity: Not applic: Test for overall effect: Z =	ible	7	231 0.11	7	100.0%	1.08 [-0.07, 2.23]	
1.1.10 Knee Brace vs LW Khosravi 2019	I+Knee Brace -0.22 0.1442	7 -0	251 0.11	53 7	100.0%	0.22 [-0.83, 1.27]	
Subtotal (95% Cl) Heterogeneity: Not applic: Test for overall effect: Z =	ible	7	201 0.11		100.0%	0.22 [-0.83, 1.27]	
1.1.11 Quadriceps streng Bennell 2014	thening vs Neuron -0.04 0.4605		exercise	07 38	100.0%	-0.33 [-0.77, 0.11]	
Subtotal (95% Cl) Heterogeneity: Not applic: Test for overall effect: Z =		44		38	100.0%	-0.33 [-0.77, 0.11]	
1.1.12 PNF vs Standard C Song 2020	are 0.01 0.13	13 ().01 0.	.13 16	100.0%	0.00 [-0.73, 0.73]	
Subtotal (95% Cl) Heterogeneity: Not applic: Test for overall effect: Z =	ible	13		16	100.0%	0.00 [-0.73, 0.73]	
1.1.13 Electroacupunctu Wang 2017	e vs Sham-acupun 0.019 0.095		036 0.0	94 18	100.0%	0.57 [-0.10, 1.24]	↓_∎
Subtotal (95% CI) Heterogeneity: Not applic: Test for overall effect: Z =	able	18	0.0		100.0%	0.57 [-0.10, 1.24]	
1.1.14 Minimalist footwea Trombini-Souza 2015	ar vs Standard, neu -0.23 0.84		s shoe).18 1.	.15 28	100.0%	-0.40 [-0.93, 0.13]	_ _
Subtotal (95% CI) Heterogeneity: Not applic: Test for overall effect: Z =	able	28			100.0%	-0.40 [-0.93, 0.13]	
1.1.15 ACL-brace vs V3P Robert-Lachaine 2020	brace 0.005 0.0991		0.01 0.09		100.0%	0.15 [-0.46, 0.76]	_
Subtotal (95% Cl) Heterogeneity: Not applic: Test for overall effect: Z =		21			100.0%	0.15 [-0.46, 0.76]	
1.1.16 ACL-brace vs VER Robert-Lachaine 2020	brace 0.005 0.0991	21 -0	018 0.10	43 21	100.0%	0.22 [-0.39, 0.83]	
Subtotal (95% CI) Heterogeneity: Not applic: Test for overall effect: Z =	able	21 -0.	210 0.10		100.0%	0.22 [-0.39, 0.83]	-
1.1.17 V3P-brace vs VER Robert-Lachaine 2020	brace -0.01 0.0967	21 -0	018 0.10	43 21	100.0%	0.08 [-0.53, 0.68]	
Subtotal (95% CI) Heterogeneity: Not applic:	able	21 -0.	510 0.10		100.0%	0.08 [-0.53, 0.68] 0.08 [-0.53, 0.68]	-
Test for overall effect: Z =	J.25 (P = 0.80)						

eFigure 4a. Conventional meta-analysis of treatment effects on First peak KAM.


	Exp	erimenta		(Control	9	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	IV, Random, 95% Cl	IV, Random, 95% Cl
1.2.1 Gait retraining vs S	Standard	Care						
Hunt 2018	-0.24	0.2699	37	0.02	0.2849	33	-0.93 [-1.42, -0.43]	
1.2.2 Lower limb exerci	se vs Sta	andard Ca	пе					
Foroughi 2011	0.14	1.311	20	0.06	0.9254	25	0.07 [-0.52, 0.66]	
1.2.3 LWI vs Knee Brace	е							
Jones 2013	-0.06	0.144	14	-0.05	0.12	14	-0.07 [-0.81, 0.67]	
1.2.4 Electroacupunctu	re vs Sha	m-acupu	ncture					
Wang 2017	-0.002	0.093	18	-0.046	0.012	18	0.65 [-0.02, 1.32]	++
1.2.5 ACL-brace vs V3P	-brace							
Robert-Lachaine 2020	-0.001	0.106	21	-0.002	0.0989	21	0.01 [-0.60, 0.61]	
1.2.6 ACL-brace vs VER	-brace							
Robert-Lachaine 2020	-0.001	0.106	21	-0.014	0.1043	21	0.12 [-0.48, 0.73]	
1.2.7 V3P-brace vs VER	-brace							
Robert-Lachaine 2020	-0.002	0.0989	21	-0.014	0.1043	21	0.12 [-0.49, 0.72]	
								-1 -0.5 Ó 0.5 1
								Favours [experimental] Favours [control]

eFigure 4b. Conventional meta-analysis of treatment effects on Second peak KAM.

Study or Subgroup	Mean	imental SD	Total	Mean	ontrol SD	Total	Weight	Std. Mean Difference IV, Random, 95% Cl	Std. Mean Difference IV, Random, 95% Cl
1.3.1 LWI vs Standard Car		30	. otur	mean	30	rotal	requit	.v, runuolli, 35% Cl	
Barrios 2013	-0.009 (1 0727	19	0.016	0.064	19	21.7%	-0.36 [-1.00, 0.28]	_
Hinman 2016		0.451	68	0.018	0.004	67	78.3%	-0.18 [-0.52, 0.16]	_ _
Subtotal (95% CI)	0.07	0.401	87	0.10	0.433	86	100.0%	-0.22 [-0.52, 0.08]	
				000.17 0	o/	00	100.0%	-0.22 [-0.52, 0.08]	
Heterogeneity: Tau² = 0.00 Test for overall effect: Z = 1			F = U.	63), F = 0	70				
1.3.2 Gait retraining vs Sta	andard Care	e							_
Hunt 2018	-0.04	0.105	37	0.01	0.0987	33	100.0%	-0.48 [-0.96, -0.01]	
Subtotal (95% Cl)			37			33	100.0%	-0.48 [-0.96, -0.01]	
Heterogeneity: Not applica Test for overall effect: Z = 1		5)							
1.3.3 Hip strengthening vs	Standard (Care							_
Bennell 2010	0.05 (0.1873	39	0.02	0.1825	37	100.0%	0.16 [-0.29, 0.61]	
Subtotal (95% Cl)			39			37	100.0%	0.16 [-0.29, 0.61]	
Heterogeneity: Not applica	ble								
Test for overall effect: Z = 0	.70 (P = 0.4	8)							
1.3.4 Lower limb exercise			~	0.00	0.4057	-	4.00.007	0.0014.00.0.00	
Hunt 2013 Subtatal (05% CD	-0.12 (J.3775	9	-0.08	0.4951		100.0%	-0.09 [-1.08, 0.90]	
Subtotal (95% CI)	h. 1		9			7	100.0%	-0.09 [-1.08, 0.90]	
Heterogeneity: Not applica Test for overall effect: Z = 0		6)							
1.3.5 Neuromuscular exe									
Holsgaard-Larsen 2017	0.05 (D.1316	44	0.01	0.1109		100.0%	0.32 [-0.10, 0.75]	
Subtotal (95% CI)			44			41	100.0%	0.32 [-0.10, 0.75]	
Heterogeneity: Not applica	ble								
Test for overall effect: Z = 1	.49 (P = 0.1	4)							
1.3.6 LWI vs Knee Brace									_
Jones 2013	-0.0395 (J.0687		-0.0215	0.0726		100.0%	-0.25 [-0.99, 0.50]	
Subtotal (95% CI)			14			14	100.0 %	-0.25 [-0.99, 0.50]	
Heterogeneity: Not applica Test for overall effect: Z = 0		1)							
1.3.7 Quadriceps strength	nening vs No	euromus	cular	exercise	•				
Bennell 2014	-0.02 (0.1809	44	0.02	0.213	38	100.0%	-0.20 [-0.64, 0.23]	
Subtotal (95% CI)			44			38	100.0%	-0.20 [-0.64, 0.23]	
Heterogeneity: Not applica	ble								
Test for overall effect: Z = 0		6)							
1.3.8 Minimalist footwear									_
Trombini-Souza 2015	-0.09 (0.3652	28	0.01	0.4803		100.0%	-0.23 [-0.76, 0.29]	
Subtotal (95% CI)			28			28	100.0%	-0.23 [-0.76, 0.29]	
Heterogeneity: Not applica									
Test for overall effect: Z = 0	.86 (P = 0.3	9)							
1.3.9 ACL-brace VS V3P-b				_			400.00		
Robert-Lachaine 2020	0.2 4	4.9428	21	0	4.8368		100.0%	0.04 [-0.56, 0.65]	
Subtotal (95% CI)			21			21	100.0%	0.04 [-0.56, 0.65]	
Heterogeneity: Not applica Test for overall effect: Z = 0		0)							
1.3.10 ACL-brace vs VER-	brace								
Robert-Lachaine 2020	0.2 4	4.9428	21	-0.4	4.9624	21	100.0%	0.12 [-0.49, 0.72]	
Subtotal (95% CI)			21			21	100.0%	0.12 [-0.49, 0.72]	
Heterogeneity: Not applica Test for overall effect: Z = 0		0)							
1.3.11 V3P-brace vs VER-	brace								
Robert-Lachaine 2020		4.8368	21	-0.4	4.9624	21	100.0%	0.08 [-0.53, 0.69]	
Subtotal (95% CI)	-		21				100.0%	0.08 [-0.53, 0.69]	
Heterogeneity: Not applica	ble							,	
Test for overall effect: Z = 0		0)							
		-/							
									-1 -0.5 0 0.5 1


eFigure 4c. Conventional meta-analysis of treatment effects on KAAI.

Appendix 5 Network Diagram

eFigure 5a. Structure of network formed by interventions and their direct comparisons (First peak KAM). A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Footnote: Width of the lines is proportional to the number of trials comparing every pair of treatments. Size of every circle is proportional to the number of randomly assigned participants (ie, sample size).

eFigure 5b. Structure of network formed by interventions and their direct comparisons (KAAI). A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; E= Gait retraining; F= Quadriceps strengthening; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Footnote: Width of the lines is proportional to the number of trials comparing every pair of treatments. Size of every circle is proportional to the number of randomly assigned participants (ie, sample size).

Appendix 6 Table of GRADE

Based on all the above information, we GRADEd each network estimate according to the following criteria:

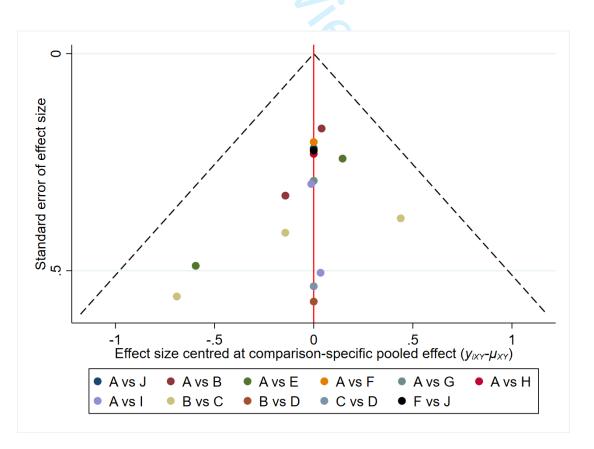
- Study limitations: We downgraded by one level when the contributions from low RoB comparisons were less than 30% and contributions from moderate RoB comparisons were 70% or greater. And we downgraded by two level when the contributions from low RoB comparisons were more than 30%.
- 2) Imprecision: We considered a clinically meaningful threshold for CI to be 0 and did not

BMJ Open

downgrade the estimate if the upper limit is below 0; or if the lower limit is above 0.

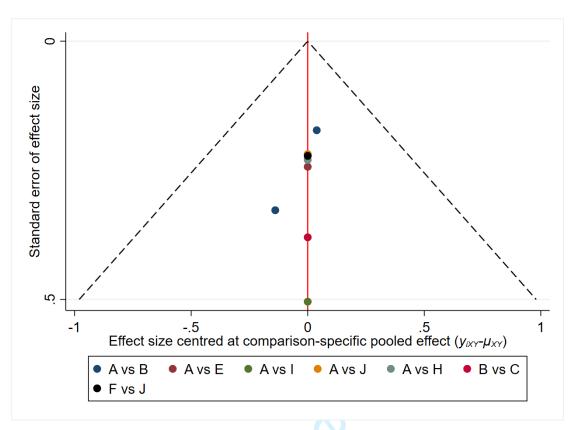
- 3) Inconsistency: We rated two concepts, heterogeneity and incoherence (inconsistency), in this domain. For heterogeneity, we did not downgrade any network estimate for heterogeneity, because we looked at the common tau and found that it is low. For inconsistency, we looked at the results of inconsistency (Appendix 2), where we have not downgraded for imprecision.
- 4) Indirectness: We have assured transitivity in our network by limiting the included studies to patients with knee osteoarthritis. Evaluation of transitivity for singly-connected nodes is unclear, so we downgraded such nodes for indirectness.
- 5) Publication bias: The comparison-adjusted funnel plot (Appendix 5) did not suggest presence of overall publication bias. We managed to retrieve supplementary and unpublished information included in the available systematic reviews and network meta-analyses, and we are confident that we have all available information that is possible to capture from clinical trial registries. Although we cannot completely rule out the possibility that some research is still missing, we still believe that the project does not need to be downgraded.

Comparison	Nature of the Evidence	GRADE	Downgarding due to
AB: Standard Care vs LWI	Mixed	LOW	Study limitations; Imprecision
AC: Standard Care vs Knee Brace	Indirect	LOW	Study limitations; Imprecision
AD: Standard Care <i>vs</i> LWI+Knee Brace	Indirect	LOW	Study limitations; Imprecision
AE: Standard Care vs Gait Retraining	Mixed	VERY LOW	Study limitations; Indirectness
AF: Standard Care <i>vs</i> Quadriceps Strengthening	Mixed	VERY LOW	Study limitations; Imprecision
AG: Standard Care <i>vs</i> Variable- Stiffness Shoes	Mixed	VERY LOW	Study limitations; Indirectness;
AH: Standard Care <i>vs</i> Hip Strengthening	Mixed	VERY LOW	Study limitations; Indirectness; Imprecision
AI: Standard Care vs Lower Limb	Mixed	VERY LOW	Study limitations; Indirectness;


Exercise			Imprecision
AJ: Standard Care vs Neuromuscular	Mixed	MODERATE	Study limitations
Exercise			
BC: LWI vs Knee Brace	Mixed	VERY LOW	Study limitations; Imprecisio
BD: LWI vs LWI+Knee Brace	Mixed	VERY LOW	Study limitations; Imprecisio
BE: LWI vs Gait Retraining	Indirect	VERY LOW	Study limitations; Indirectnes
			Imprecision
BF: LWI vs Quadriceps Strengthening	Indirect	LOW	Study limitations; Imprecisio
BG: LWI vs Variable-Stiffness Shoes	Indirect	LOW	Study limitations; Indirectne
BH: LWI vs Hip Strengthening	Indirect	VERY LOW	Study limitations; Indirectnes
			Imprecision
BI: LWI vs Lower Limb Exercise	Indirect	VERY LOW	Study limitations; Indirectnes
			Imprecision
BJ: LWI vs Neuromuscular Exercise	Indirect	MODERATE	Study limitations
CD: Knee Brace vs LWI+Knee Brace	Mixed	VERY LOW	Study limitations; Imprecisio
CE: Knee Brace vs Gait Retraining	Indirect	VERY LOW	Study limitations; Indirectnes
			Imprecision
CF: Knee Brace vs Quadriceps	Indirect	LOW	Study limitations; Imprecisio
Strengthening			
CG: Knee Brace vs Variable-Stiffness	Indirect	LOW	Study limitations; Indirectnes
Shoes			
CH: Knee Brace vs Hip Strengthening	Indirect	VERY LOW	Study limitations; Indirectnes
			Imprecision
CI: Knee Brace vs Lower Limb	Indirect	VERY LOW	Study limitations; Indirectnes
Exercise			Imprecision
CJ: Knee Brace vs Neuromuscular	Indirect	MODERATE	Study limitations
Exercise			
DE: LWI+Knee Brace vs Gait	Indirect	VERY LOW	Study limitations; Indirectnes
Retraining			Imprecision

$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 45 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 546 \\ 47 \\ 48 \\ 9 \\ 50 \\ 51 \\ 52 \\ 54 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \\ \end{bmatrix}$	DF: LWI+Knee Brace <i>vs</i> Quadriceps Strengthening	Indirect	LOW	Study limitations; Imprecision
	DG: LWI+Knee Brace <i>vs</i> Variable- Stiffness Shoes	Indirect	VERY LOW	Study limitations; Indirectness
	DH: LWI+Knee Brace <i>vs</i> Hip Strengthening	Indirect	LOW	Study limitations; Indirectness
	DI: LWI+Knee Brace <i>vs</i> Lower Limb Exercise	Indirect	VERY LOW	Study limitations; Indirectness; Imprecision
	DJ: LWI+Knee Brace vs Neuromuscular Exercise	Indirect	MODERATE	Study limitations
	EF: Gait Retraining vs Quadriceps Strengthening	Indirect	VERY LOW	Study limitations; Indirectness
	EG: Gait Retraining <i>vs</i> Variable- Stiffness Shoes	Indirect	VERY LOW	Study limitations; Indirectness
	EH: Gait Retraining vs Hip Strengthening	Indirect	LOW	Study limitations; Indirectness
	EI: Gait Retraining <i>vs</i> Lower limb Exercise	Indirect	VERY LOW	Study limitations; Indirectness; Imprecision
	EJ: Gait Retraining <i>vs</i> Neuromuscular Exercise	Indirect	LOW	Study limitations; Indirectness
	FG: Quadriceps Strengthening <i>vs</i> Variable-Stiffness Shoes	Indirect	VERY LOW	Study limitations; Indirectness
	FH: Quadriceps Strengthening vs Hip Strengthening	Indirect	VERY LOW	Study limitations; Indirectness; Imprecision
	FI: Quadriceps Strengthening vs Lower Limb Exercise	Indirect	VERY LOW	Study limitations; Indirectness; Imprecision
	FJ: Quadriceps Strengthening <i>vs</i> Neuromuscular Exercise	Mixed	LOW	Study limitations; Imprecision
	GH: Variable-Stiffness Shoes vs Hip	Indirect	LOW	Study limitations; Indirectness

Strengthening			
GI: Variable-Stiffness Shoes vs Lower	Indirect	VERY LOW	Study limitations; Indirectness
Limb Exercise			
GJ: Variable-Stiffness Shoes vs	Indirect	LOW	Study limitations; Indirectness
Neuromuscular Exercise			
HI: Hip Strengthening vs Lower Limb	Indirect	VERY LOW	Study limitations; Indirectness;
Exercise			Imprecision
HJ: Hip Strengthening vs	Indirect	VERY LOW	Study limitations; Indirectness;
Neuromuscular Exercise			Imprecision
IJ: Lower Limb Exercise vs	Indirect	VERY LOW	Study limitations; Indirectness;
Neuromuscular Exercise			Imprecision


Appendix 7 Comparison-adjusted funnel plot for each outcome from

eFigure 6a. Comparison-adjusted funnel plot for First peak KAM.

A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

eFigure 6b. Comparison-adjusted funnel plot for KAAI.

A= Standard care; B= Lateral Wedge Insole; C= Knee Brace; E= Gait retraining; F= Quadriceps strengthening; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

PRISMA 2009 Checklist

Section/Topic	#	Checklist Item	Reported on Page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Title page
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Abstract
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	Introduction, paragraph 1-4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Introduction, paragraph 5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	METHODS, paragraph1
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	METHODS, Identification and selection of studies
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	METHODS, Identification and selection of studies, paragraph 1
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Appendix 1 Search strategies
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Results, figure 1
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	METHODS, Identification

PRISMA 2009 Checklist

3 4 5 6				and selection of studies, paragraph 2
7 8 9 10 11 12 13 14 14 14 14 15) 2 Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	METHODS, Identification and selection of studies, paragraph 2, 3 & Data Collection and Quality assessment
18 19 20 21 21 21 22 24 24	Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	METHODS, Assessment of characteristics of studies & Results, Figure 4
26 27 28 29	Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	METHODS, Statistical analysis
30 31 32 33	Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	METHODS, Statistical analysis
34	1		Page 1 of 2	·
35 36 37	Section/Topic	#	Checklist Item	Reported on Page #
38 39 4(4 ⁷ 42	Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	METHODS, Assessment of characteristics of studies
43 44 45	Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified. For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml	METHODS, Statistical
46 47	5			

PRISMA 2009 Checklist

			Analysis		
RESULTS	RESULTS				
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Results, Characteristics of included studies & Figure 1		
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Results, Characteristics of included studies & Table 1, 2		
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Results, Risk of bias & Figure 4		
Results of individual studie	es 20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Results, KAM & KAAI & Appendix 4		
Synthesis of results	21	Present the main results of the review. If meta-analyses done, include for each, confidence intervals and measures of consistency.	Results, KAM & KAAI (Table 3 & Figure 2, 3)		
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Results, Risk of bias & Appendix 6		
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Appendix 2 & 3 & 7		
DISCUSSION					
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Discussion, paragraph 1 & Conclusion		

Page 73 of 79

BMJ Open

PRISMA 2009 Checklist

3 4 5	Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Discussion, paragraph 4
6 7 8 9 10	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Conclusion & Discussion, paragraph 8 & 9
11	FUNDING			
13 14	Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Funding
15	5			

16 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 17 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

Page 2 of 2

List of Responses

Dear Editors and Reviewer:

Thank you very much for your kind advice and valuable comments in helping us improve our manuscript. We have substantially modified the manuscript, according to the questions raised by the Editor and Reviewers. All the modified words, sentences and paragraphs were labeled with red fonts. A point-to-point response to highlight how we have addressed each of the comments is listed below.

Comments and Suggestions for Authors:

-Please remove the "significance and Innovations' section, and replace it with a 'Strengths and limitations' section (after the abstract). This section should contain up to five short bullet points, no longer than one sentence each, that relate specifically to the methods. The results of the study should not be summarised here.

-Please remove any references to your INPLASY registration from your manuscript.

Response 1: Thank you for your thoughtful suggestion. We re-written this part as required. (Line 70-80, 95-105).

Reviewer: 1

Dr. Erin Macri, Erasmus MC, The University of British Columbia Comments to the Author:

This study is a systematic review and network meta-analysis comparing the efficacy of physical therapy and orthopaedic equipment on KAM and KAII in individuals with predominantly medial tibiofemoral joint osteoarthritis. The research question is clinically relevant given that biomechanics are believed to be a key cause of OA and OA-related symptoms.

Overall, the analysis appears to be sound but the interpretation needs more clinical perspective and the writing is difficult to follow in some sections. Below I provide some suggestions that I hope the authors will find useful.

Abstract.

Please reword the research question for grammar and accuracy. Instead of efficiency, I think the authors mean efficacy. Please be specific with which biomechanical risk factors (i.e. only KAM and KAII). Also, I believe the authors have only included studies of tibiofemoral joint osteoarthritis, so they may wish to consider being more specific. These changes should be done throughout the text. Response 2: Yes, your opinion is very rigorous. We carefully considered the wording according to the purpose of the article and revised them to be more specific. (Line 1, 66-68, 92, 139, 147-148, 169, 181-182, 183, 187, 353, 366-367, 457)

Line 81 - please clarify that variable stiffness shoes made the KAM worse (lower rate of KAM reduction is misleading).

Response 3: The statements have been corrected. We will be happy to edit the text further, based on helpful comments from the reviewers.

Methods (e.g. Bayesion NMA) are provided in the conclusion section instead of Methods section. Please report results and conclusions in a way that balances statistical significance and clinical relevance. Further comments regarding this are provided below.

Introduction.

In general the Introduction wanders around the topic but needs more focus to guide the reader to the research question. More original references are required to justify some of the comments. For example, first sentence 3.8% OA prevalence - where did this number come from? What evidence has shown that obesity is associated with frontal plane knee alignment? What specific other risk factors have evidence showing that they are associated with knee alignment?

Response 4: We agree, we have deleted some redundant sentences in this part to make it read closer to the core of this article. At the same time, we also added more original references as evidence. (Line 109-110, 125-127)

Please provide a rationale why the authors think that exercises might alter knee alignment. Please also be sure to introduce the concept of physical therapy into the introduction, and again provide a rationale as to why the authors think that modalities such as ultrasound and so forth might affect biomechanics? Provide references to justify this. If such a rationale does not exist, then consider limiting this study to gait retraining and orthopaedic devices which have a rationale and evidence to support a link to biomechanics.

Response 5: We thank the reviewer for the suggestion. Previous studies have shown that a lower knee joint loading rate in patients with stronger quadriceps and hamstring. And the strengthening of related lower limb muscles may play a vital role in disease progression ⁴ (Line 147-150). Although the effects of gait retraining and orthopedic devices on biomechanics are more direct than the effects of modalities such as ultrasound and Taiji, some studies have shown that the joint pain can affect the kinetics and kinematics of walking ². These modalities such as ultrasound and Taiji had a certain effect on pain relief ⁵, so we didn't want to miss any treatment which can affect biomechanics when we set the topic. Besides, we introduce the concept of physical therapy and orthopedic equipment into the introduction (Line 141-145).

Avoid the term 'non-surgical' since this is not accurate for this paper. Non-surgical treatments would also include medications, injections and other treatments not included under physical therapy and orthopaedic devices. Please be specific.

Response 6: We replaced this word with "physical treatments and orthopedic equipment".

Please reword research questions so that they are grammatically correct and accurate and specific to the present study.

Response 7: We apologize for our carelessness. Thank you for your thoughtful suggestion. We have corrected it. (Line 172-174)

Methods

Line 180 and 187: Please clarify if the eligible studies were in English language only or not and be consistent here.

Response 8: We apologize for our carelessness. We normalized the language to make it clear that the eligible studies were in English language only (Line 184, 190).

Clarify if eligible studies were limited to tibiofemoral OA only. There don't appear to be any studies on patellofemoral OA included in this study.

Response 9: We thank this reviewer for pointing out this critical point. The eligible studies were indeed limited to tibiofemoral OA only. We changed this section in the method and abstract.

Line 189. Placebo, no intervention, and sham are not standard care and should therefore not be

> labelled as such. Box 1 is worded in a way that suggests that actual standard care was not included. Please reword and clarify.

> Response 10: We thank the reviewer for pointing out this issue. In fact, we named standard care as a summative name for a variety of control interventions with high homogeneity such as placebo, no intervention, sham, standard / conventional care or waiting list control (analytical advice and education). We also considered whether this word fully fit each treatment it contains. Although these treatments were roughly the same, there were still some differences. Using standard care to summarize these treatments may not completely and accurately describe each included intervention, but we consider that it is a more appropriate description and a more understandable description. At the same time, we also replaced the description in box 1 with a more comprehensive description.

Line 199. "non-trail papers" – do the authors mean papers that were not peer-reviewed? Please clarify.

Response 11: We replaced this word with "non-experimental".

Line 201. What constitutes "studies that did not report suitable data". Please be concrete about what this means.

Response 12: The "studies that did not report suitable data" corresponds to "studies that did not report KAM or KAAI" (this is now clarified in the text) (Line 205).

Line 214. Please justify why Cochrane ROB version 1 was used, or consider updating to use the current ROB version 2 which is currently recommended by Cochrane.

Response 13: We agree, and we have used ROB version 2 to replace the previous version.

Line 229. Please be specific about the conditions and time of assessments of the outcomes. Some RCTs only measure biomechanics as immediate effects with and without the knee brace on, for example, and they do so prior to the actual clinical trial. For all studies in which devices were worn (braces, insoles, etc), be sure to report whether the outcomes were measured before or after treatment, and whether the device was worn or not at the time of evaluation.

Response 14: We apologize for our carelessness. We have already described the conditions and time of assessments of the outcomes in more detail. "Baseline biomechanical risk factors were extracted from walking test without any orthopedic equipment before intervention, and biomechanical risk factors after intervention were extracted from walking test with orthopedic equipment." (Line 236-238).

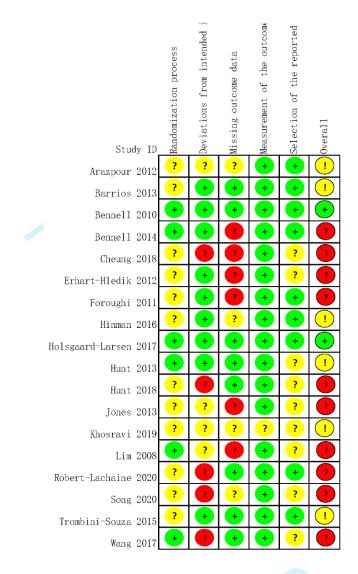
Statistical analyses.

Please include references for all statistical tests and methods employed.

Response 15: Revised.

Line 247. What methods were employed to evaluate the source of heterogeneity? Also, remember to report in the results with a result was based on FE or RE, and the results of these additional analyses to evaluate source of heterogeneity.

Response 16: We used a random-effects model for meta-analysis, and a sensitivity analysis to evaluate the source of heterogeneity (this is now added in the text). (Line 254-259). At the same time, we added heterogeneity evaluation to the results (Line 328-332).


Figure 1. Using the PRISMA guidelines, it is not required to report reasons for exclusion at the title/abstract screen. Please update Figure 1 to adhere to PRISMA guidelines.

Response 17: We agree with the reviewer's assessment and have implemented their suggestion. Results.

For orthopaedic interventions, please remember to discuss whether biomechanical effects were pre-

BMJ Open

1	
2	
3	and post-intervention, or if they were done at a single time point with orthopaedic device off and
4	then on.
5 6	Response 18: We have added a detailed description of this (Line 236-238).
7	
8	Section 3.3 KAM, 3.4 KAII
9	Please rewrite this section to provide a narrative synthesis/summary of the results in a way that is
10	understandable to the reader. Effect sizes do not need to be repeated in the text since they are already
11	in Table 3, so use this space to help the reader understand the results. Please make sure to emphasize
12	that despite the rankings at the end of each section, they are not significant and therefore not
13	
14	clinically relevant. For any results that are statistically significant, be sure to also consider their
15	clinical interpretation – are any of the results clinically important?
16 17	Response 19: We have made correction according to the Reviewer's comments. We have re-written
18	the result section to help readers understand the final clinically significance of our study. At the
19	same time, we have increased the clinical interpretation of the results (Line 403-411).
20	Line 307. This sentence should be removed regarding stair ambulation. Stairs was not included in
21	
22	the eligibility criteria of this analysis.
23	Response 20: We are very sorry for the misunderstanding of our previous description. This article
24	met our eligibility criteria. However, considering that its inclusion in meta-analysis will lead to
25	excessive heterogeneity, we excluded it from the network meta-analysis. Our intention is that the
26 27	biomechanical indicators of the studies included in the Bayesian network meta-analysis were
28	measured on flat ground or treadmills. Other studies that cannot be included in the network meta-
29	
30	analysis were included in the systematic review. We have corrected this imprecise sentence (Line
31	208-209).
32	Risk of Bias.
33	Figure 4 seems to be missing – the only Figure 4 I can see if the funnel plot, not the ROB table.
34 35	ROB is not the same thing as quality. Be sure to use accurate and consistent language.
36	Response 21: We apologize for our carelessness. We uploaded the Figure 4 according to ROB 2.0.
37	
38	At the same time, we have refined the language (Line 341-342).
39	
40	
41	
42	
43	
44 45	
45 46	
40	
48	
49	
50	
51	
52	

Figure 4

Be sure to include the GRADE results in the Results section. Response 22: We have added the grade section (Line 333-339). Discussion.

The authors have used up more than 2 pages of writing to discuss "strengths and limitations". This should be reduced to 1 paragraph maximum, and should focus on limitations more so than strengths. Much of this writing could be moved to the methods section to justify choices of methods.

Response 23: Yes, your opinion is very rigorous. We carefully deleted some sentences according to the purpose of the article and revised them to be more specific.

Line 369. "there was no study that reported the immediate effect" – what about Wang 2017? Table reports these were immediate effects.

Response 24: We thank the reviewer for pointing out this issue. Our intention was that immediate effect were not included in this network meta-analysis. We have deleted this sentence to avoid ambiguity.

Line 375. Sensitivity analyses should be reported in the methods and results section, no in the Discussion section.

1	
2 3	
4	Response 25: We have moved this section to the results section (Line 329-332).
5	Please include some discussion as to whether the condition of device wear during biomechanics
6	testing might influence the results. Do the authors think that LWI and braces only work if they are
7	donned, or would a period of wear result in changes to biomechanics even after the devices are
8	removed?
9	
10	Response 26: We have added this part to the discussion (Line 394-396, 403-411). The results of
11 12	current study showed that there is no statistically significant reduction in biomechanics after taking
13	off the LWI after one year of treatment, which is contrary to the results of donning it ¹ . Therefore, as
14	the reviewer said, we believe that once the LWI and braces are removed, they do not work anymore.
15	This is the reason that we recommend gait training - it not only has better long-term effect, but also
16	is more comfortable than wearing equipment for OA patients who need a long-term therapy.
17	Line 424. Mazzoli references is Maleki.
18	
19 20	Response 27: We apologize for our carelessness, and we have corrected it.
21	Line 430. Please justify why the authors think that Taiji, ultrasound and acoustic exercises might
22	alter biomechanics. Are these studies really necessary?
23	Response 28: As mentioned earlier, we still believe that Taiji and ultrasound have some effects on
24	pain relief and muscle strength, which can affect the kinetics and kinematics of walking. So we
25	didn't want to miss any treatment that can affect biomechanics when we set the topic.
26	Variable-stiffness shoes appear to make KAM worse. Would the authors recommend against use of
27 28	these as a treatment for OA? Is there other evidence showing efficacy for other outcomes like pain
29	
30	or OA structural features that might still support the use of this intervention?
31	Response 29: It is really true as Reviewer suggested that variable-stiffness shoes may make KAM
32	worse. We have expressed our attitude of recommending against use of these in the discussion and
33	conclusion. As Reviewer suggested that we have added other evidence which still support the use
34 35	of this intervention (Line 432-437). Although the results of this study suggested that wearing
36	variable-stiffness shoes is not a good choice for long-term reduction of KAM, current study have
37	pointed out that variable-stiffness shoe will have greater benefits in reducing KAM for patients with
38	
39	increasing walking speed. At the same time, variable-stiffness shoes had relatively weaker
40	discomfort than equipment such as LWI ³ . Perhaps with the increase of the number of participants
41	and the gradual rigor of the study process, the results of variable-stiffness shoes may be completely
42 43	different in the future.
44	Conclusion. Please provide concrete conclusions. "The best" therapy according to NMA ranking
45	does not necessarily mean effective. Integrate statistical significant, clinical importance of effect
46	size, and rankings and provide the reader with concrete recommendations.
47	Response 30: We have re-written this part according to the Reviewer's suggestion (Line 458-462).
48	
49	Thank you for the opportunity to review this work.
50 51	Special thanks to you for your good comments.
52	DEEEDENCES
53	REFERENCES
54	1. Barrios JA, Butler RJ, Crenshaw JR, Royer TD, Davis IS. Mechanical effectiveness of lateral foot
55	wedging in medial knee osteoarthritis after 1 year of wear. J Orthop Res. 2013;31(5):659-664.
56	2. Briem K, Snyder-Mackler L. Proximal gait adaptations in medial knee OA. <i>Journal of orthopaedic</i>
57 58	research : official publication of the Orthopaedic Research Society. 2009;27(1):78-83.
59	 Erhart-Hledik JC, Mahtani GB, Asay JL, et al. Changes in knee adduction moment wearing a
	J. Emart-mould JO, Mantain OD, Asay JE, et al. Changes in Kiet auduction mollient wearing a

variable-stiffness shoe correlate with changes in pain and mechanically stimulated cartilage oligomeric matrix levels. *Journal of orthopaedic research : official publication of the Orthopaedic Research Society*. 2021;39(3):619-627.

- 4. Mikesky AE, Meyer A, Thompson KL. Relationship between quadriceps strength and rate of loading during gait in women. *Journal of orthopaedic research : official publication of the Orthopaedic Research Society*. 2000;18(2):171-175.
- 5. Yang F, Liu W. Knee joint biomechanics of simplified 24 Tai Chi forms and association with pain in individuals with knee osteoarthritis: A pilot study. *Osteoarthritis and cartilage open*. 2021;3(2).

tor per terier only

BMJ Open

Physical Therapy and Orthopedic Equipment-induced Reduction in the Biomechanical Risk Factors Related to Knee Osteoarthritis: A systematic review and Bayesian network meta-analysis of randomized controlled trials

Manuscript ID b Article Type: 0	BMJ Open bmjopen-2021-051608.R2 Original research
Article Type: 0	
	Original research
Data Submitted by the	
Date Submitted by the Author:	05-Jan-2022
Y C H Y L	Huang, XiMeng; Peking University Third Hospital Yuan, Fu-Zhen; Peking University Third Hospital Chen, You-Rong; Peking University Third Hospital Huang, Ying; Peking Union Medical College Hospital Yang, Ze-Xi; Peking University Third Hospital Lin, Lin; Peking University Third Hospital Yu, Jia-Kuo; Peking University Third Hospital
Primary Subject Heading :	Sports and exercise medicine
Secondary Subject Heading: E	Evidence based practice, Rehabilitation medicine
Keywords: C	Biophysics < NATURAL SCIENCE DISCIPLINES, Adult orthopaedics < ORTHOPAEDIC & TRAUMA SURGERY, Knee < ORTHOPAEDIC & TRAUMA SURGERY, REHABILITATION MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Title: Physical Therapy and Orthopedic Equipment-induced Reduction in the			
2	Biomechanica	Biomechanical Risk Factors Related to Knee Osteoarthritis: A systematic review		
3	and Bayesian network meta-analysis of randomized controlled trials			
4	Authors: Xi-N	Authors: Xi-Meng Huang ^{1*} , MD; Fu-Zhen Yuan ^{1*} , MD; You-Rong Chen ¹ , MD; Ying		
5	Huang ² , MD;	Ze-Xi Yang ³ , MD; Lin Lin ¹ , MD; Jia-Kuo Yu ¹ , MD&PhD		
6	1. Institute o	f Sports Medicine, Peking University Third Hospital, Beijing Key		
7	Laboratory of	Sports Injuries, Beijing, 100191, China		
8	2	ion Medical College, Plastic Surgery Hospital, Chinese Academy of		
	C			
9	Medical Scien	ces, Beijing, China.		
10	3. Departmen	3. Department of Orthopedic, Peking University Third Hospital, Beijing, 100191,		
11	China			
12	Xi-Meng Huang: <u>1510301201@pku.edu.cn</u>			
13	Fu-Zhen Yuan: <u>yuanfuzhen2009@sina.com</u>			
14	You-Rong Ch	You-Rong Chen: <u>chenyourong1990@qq.com</u>		
15	Ying Huang: <u>1510122916@pku.edu.cn</u>			
16	Ze-Xi Yang: <u>15101301202@pku.edu.cn</u>			
17	Lin Lin: <u>simo</u> i	Lin Lin: <u>simon.lin2003@163.com</u>		
18	Jia-Kuo Yu: <u>y</u>	<u>ujiakuo@126.com;</u> Tel: 86-10-1861290798		
19	First author: X	Ci-Meng Huang and Fu-Zhen Yuan		
20	Corresponding	g author: Lin Lin and Jia-Kuo Yu		
21	Full correspo	ndence details (for review) for contact purposes only:		
	Name	Jia-Kuo Yu		
	Institution	Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries		
	Country	China		
	Tel	86-10-1861290798		
	Mob	Nil		
	Fax	Nil		
	Email	yujiakuo@126.com		
22		ndence (for publication) for contact purposes only:		
	Name	Jia-Kuo Yu		
	Institution	Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries		
	Country	China		
	Country	Cinna		

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

	Email yuj	iakuo@126.com
00	Abbreviated title:	
23 24	Abbreviated title:	Biomechanical Phenomena, Osteoarthritis, Knee, Physical and Rehabilitation Medicine
25 26	Key words:	Physical Therapy; Orthopedic Equipment; Knee Osteoarthritis; KAM; KAAI; Bayesian Network Meta-analysis.
	Ward Count:	
27 28	Word Count:	295words (Abstract) 4094words (Introduction, Method, Results, Discussion)
29	References:	69
30	Tables:	3
31	Figures:	4
32	eAddenda:	1
33	Ethics approval:	Nil
34	Competing interest	
35	Source(s) of suppor	t: This work was supported by the National Key R&D Program o
36		China (No.2017YFB1303000) and the Construction of a Basic
37		Public Service Platform for Industrial Technology in the Field
38		of Advanced Medical Equipment (0714-EMTC-02-00897).
39	Correspondence: Ji	a-Kuo Yu, Institute of Sports Medicine, Peking University Third
40		Hospital, Beijing Key Laboratory of Sports Injuries, China,
41		yujiakuo@126.com
42		- •
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
53 54		
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		
65		

66 ABSTRACT

Objective: Are physical therapy or orthopedic equipment efficacious in reducing the

68 biomechanical risk factors in people with tibiofemoral OA? Is there a better therapeutic

69 intervention than others to improve these outcomes?

Design: Systematic review with network meta-analysis of randomized trials.

Data sources: PubMed, Web of Science, Cochrane Library, Embase, and MEDLINE
72 were searched through January 2021.

Eligibility criteria for selecting studies: We included randomized controlled trials
exploring the benefits of using physical therapy or orthopedic equipment in reducing
the biomechanical risk factors which included KAM and KAAI in individuals with
tibiofemoral OA.

Data extraction and synthesis: Two authors extracted data independently and assessed
78 risk of bias. We conducted a network meta-analysis to compare multiple interventions,

79 including both direct and indirect evidences. Heterogeneity was assessed (sensitivity

analysis) and quantified (I² statistic). GRADE assessed the certainty of the evidence.

Results: Eighteen randomized controlled trials, including 944 participants, met the inclusion criteria, of which 14 trials could be included in the NMA. Based on the collective probability of being the overall best therapy for reducing the first peak KAM, lateral wedge insoles (LWI) plus knee brace was closely followed by gait retraining, and knee brace only. Although no significant difference was observed among the eight interventions, variable-stiffness shoes and neuromuscular exercise exhibited an increase in the first peak KAM compared to the control condition group. And based on

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

Page 5 of 73

BMJ Open

88	the collective probability of being the overall best therapy for reducing KAAI, gait		
89	retraining was followed by LWI only, and lower limb exercise.		
90	Conclusion: The results of our study support the use of LWI plus knee brace for		
91	reducing the first peak KAM. Gait retraining did not rank highest but it influenced both		
92	KAM and KAAI and therefore it was the most recommended therapy for reducing the		
93	biomechanical risk factors.		
94	Strengths and limitations		
95	① The Bayesian method provided the probability estimates regarding the relative		
96	efficacy of specific interventions, even though standard methods found no		
97	significant differences among them.		
98	② Physical therapies and orthopedic equipment are complex interventions with a		
99	small number of trials comparing the different types of interventions.		
100	③ Besides KAM and KAAI, we were unable to include other biomechanical risk		
101	factors, such as the external knee flexion moment to joint load, because the number		
102	of these studies was not enough to form a complete NMA.		
103	④ Heterogeneity in NMA may reduce the validity of the results.		
104			
105			
106	1. INTRODUCTION		
107	Knee osteoarthritis (KOA), an chronic progressive disease, affects approximately		
108	3.8% of people worldwide and frequently occurs in the middle-aged and the elderly		
109	population. ¹ The main clinical manifestation of KOA is knee pain and is often		

2	
3	
5 4 5 6 7 8	
6	
7	
8	
9 10	
11	
12	
13 14	
14	
16	
15 16 17 18	
18	
19 20	
21 22	
22	
23 24	
25	
26	
27	
28 29	
30	
31	
32 33	
34	
35	
36 37	
37 38	
39	
40	
41 42	
43	
44	
45 46	
40 47	
48	
49 50	
50 51	
52	
53	
54 55	
56	
57	
58 59	
59 60	

1

accompanied by radiographic degeneration of the intra-articular cartilage associated
with hypertrophic bone changes.² Furthermore, the KOA development often leads
to knee stiffness, joint locking, and instability, along with functional loss. Though
it is not fatal, the persistent pain and movement restrictions associated with this
condition negatively impact the physical and mental health of the patients, thus,
reducing their quality of life.³

These pathological changes in knee joints are a cumulative result of various 116 117 biomechanical imbalances leading to the progression of the disease and are now 118 believed to be associated with malalignment of the lower limb.⁴ Tibiofemoral OA most commonly occurs in the medial compartment, since several studies have stated 119 that patellofemoral compartment is as prevalent as medial tibiofemoral joint. 5.6 The 120 121 external knee adduction moment (KAM) results from the unequal distribution of the transmitted load on both sides in the normal gait of humans. It is defined as the 122 cross product of the ground reaction force and the distance between the knee joint 123 and the force line.⁷ Individuals with obesity,⁸ meniscal lesions,⁹ occupational 124 loads, 10 or other associated risk factors tend to have a frontal plane knee 125 126 malalignment, which alters the normal force line and forces the medial knee joint to bear more load and thus, leads to increased KAM.^{11,12} The accumulation effect 127 of the moment is determined by calculating the integral of the moment to time, 128 which is also called knee adduction angular impulse (KAAI). It reflects the change 129 in knee joint rotation state during a stance period of gait.¹³ Previous studies have 130 revealed a strong correlation between the peak levels of KAM and KAAI and the 131

Page 7 of 73

BMJ Open

1	
2	
3	
4	
5	
5 6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
8 9 10 11 12 13 14 15 16	
15	
16	
17	
18	
19	
20	
20	
20 21 22 23 24	
22	
23	
24 25	
25	
26	
25 26 27 28	
28	
29	
29	
30	
31	
32	
33	
25	
36	
35 36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
59 60	

severity and progression of the disease, which was reflected and calculated by the
loss of medial tibial cartilage.^{14,15} Both these biomechanical parameters (KAM and
KAAI) are commonly utilized to evaluate the medial knee load and predict the longterm structural deterioration of the knee.

136 Recent advancements in healthcare have resulted in the development of several protocols for the intervention and treatment of KOA. KOA patients are primarily 137 recommended physical therapy or orthopedic equipment with the intention of 138 139 correcting the deviated force line and delaying the progressive pathological damage 140 inside the knee joint.⁷ Some other modalities, such as ultrasound and Taiji programs, primarily focus on relieving the pain, and therefore, this might improve the 141 biomechanical state of the knee joint. $\frac{16,17}{10}$ The physical therapy mainly includes 142 143 muscular strengthening, exercise therapy, electric stimulation therapy, extracorporeal shockwave therapy and gait modification, while orthopedic 144 equipment mainly incorporates customized shoes/footwear, wedged insoles, and 145 146 knee braces.

Several literary insights have shown the positive impact of physical therapy or
orthopedic equipment in KOA patients.^{13,18,19} The strengthening of related lower
limb muscles, which play a vital role in disease progression, are known to reduce
instability and abnormal stresses across the joint.^{20,21} Another study displayed a
lower knee joint loading rate in patients with stronger quadriceps and hamstrings.²²
Additionally, gait training presents a viable way for correcting the patients'
underlying gait pattern, thus, further reducing their knee load and pain.^{23,24}

י ר	
2	
3 4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
12 13 14 15 16 17	
15	
16	
1/ 10	
18 19	
20	
21	
22	
23	
24	
25	
24 25 26	
27	
28	
29	
30	
30 31 32 33 34	
32	
33	
34	
35 36	
36	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55 56	
56 57	
57 58	
50 59	
60	
50	

1

Furthermore, various kinds of orthotic devices have been introduced for the 154 treatment of KOA. The clinical use of lateral wedge insoles (LWI) has gained 155 immense popularity since its origin in $1987.\frac{25,26}{25}$ The insoles tends to shift the lateral 156 part of the foot more than the medial part by a slope that increases the valgus 157 158 tendency of lower extremities. The center of the ground reaction force is shifted laterally, which induces a reduction in force lever arm length and magnitude.²⁷ Also, 159 the valgus knee brace is a commonly used device. It applies an external valgus force 160 161 around the knee joint to reduce the medial knee load.

162 In the past, several systematic reviews and meta-analyses have been published featuring the medical effects of a single KOA treatment. However, only a few of 163 them have focused on multifaceted interventions. Also, only a few reviews have 164 165 reported the effects on biomechanical parameters. The mechanical changes in the body were not sufficiently investigated. Current reviews on KAM and KAAI have 166 also not compared these changes. Thus, a network meta-analysis (NMA) was 167 168 performed to appraise the benefits of physical treatments or orthopedic equipment in reducing biomechanical risk factors in KOA patients. 169

170 Therefore, the research questions for this systematic review were:

171 1. Are physical therapies or orthopedic equipment efficacious in reducing thebiomechanical risk factors in people with KOA?

173 2. Is there a better therapeutic intervention than others to improve these outcomes?

174 **2. METHODS**

175 All pooled analyses were derived from previous studies and, therefore, did not

Page 9 of 73

BMJ Open

176 require ethical approval and informed consent.

2.1 Identification and selection of studies.

The following databases were searched for listed randomized controlled trials that were published before January 2021: PubMed, Web of Science, Cochrane Library, Embase, and MEDLINE. These studies explored the benefits of using physical therapy or orthopedic equipment in reducing the biomechanical risk factors including KAM and KAAI in patients with tibiofemoral OA. The search was not restricted by date, publication type, or status (see Appendix 1). Additionally, we performed manual analyses of the published references regarding the use of physical therapy or orthopedic equipment for treating KOA.

The eligibility of searched publications was independently reviewed by HXM and YZX following the Cochrane manual directives.²⁸ Any additional inconsistencies were resolved either by deliberation or by a senior expert (HY). Firstly, the study titles and abstracts, published in English literature, were screened. Next, the complete articles were reviewed against the directed criteria described in box 1. Eligible comparison subjects, including standard/conventional care or waiting list control (analgesic advice and education), were defined as "control condition." Control condition also included placebo intervention, no intervention, and sham-exercise. This NMA defined lower limb exercise as the simultaneous exercise of multiple muscle groups that included hip abductors, quadriceps, and hamstrings. Since our research needed to maintain clinical and statistical homogeneity and focus

197 on the residual biomechanical effects after the intervention, only those articles were

198 selected whose measurements were strictly obtained under the condition of going199 barefoot.

The exclusion criteria included: (1) studies that were not consistent with the eligibility criteria; (2) experimental peer-reviewed studies; (3) studies that included participants who had received surgical treatment in the past; (4) studies that did not report KAM or KAAI.

2.2 Data Collection and Quality assessment.

KAM and KAAI were the preferred biomechanical measures used in this metaanalysis. The biomechanical outcomes of the studies included in the Bayesian
network meta-analysis were measured on flat ground or treadmills. Additionally,
the number of trials focusing on the second peak of KAM was insufficient to
conduct an independent NMA.

The data were extracted independently by two authors (HXM, YZX) and were cross-checked. A predefined information sheet was used for data extraction, which included the details of the first author (name), country, the year of publication, population characteristics, intervention, and the time points. The authors of the original study were contacted in the cases requiring more data.

2.3 Assessment of characteristics of studies.

216 Risk of bias

This NMA utilized the Cochrane Risk of Bias 2 (RoB2) to assess the risk of bias in
 randomized controlled trials using the following evaluation indicators:
 randomization process, deviations from the intended interventions, missing

outcome data, outcome measurement, and selection of the reported results.²¹ The judgment of the bias risk of this item was presented as "low," "high," and "some concerns." Two authors independently evaluated the risk of bias in all the included studies. The authors discussed or referred to the opinion of a senior author to resolve any disagreements. Additionally, the certainty of evidence the evidence was also evaluated, which contributed to network estimates of the main outcomes with the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework.29

228 Intervention

In order to describe the experimental interventions, the following information was extracted: the training method with further relevant details, the details and characteristics of orthopedic equipment, and the frequency as well as the total duration of training or wearing.

Outcome measures

Baseline biomechanical risk factors were extracted from the walking trials without any orthopedic equipment before the intervention, while post-intervention biomechanical risk factors were extracted from walking trials that incorporated orthopedic equipment. Biomechanical risk factors included in the study were the first peak KAM, the second peak KAM and KAAI. KAM was normalized as %body weight times height, with conversion to Nm/kg wherever necessary. KAAI was designated as the moment accumulation rate, which was determined by calculating the integral of the moment to time.

242 2.4 Statistical Analysis.

A network meta-analysis was carried out for comparing multiple interventions, including both direct (direct comparison of treatment modalities) and indirect evidence (indirect comparison of various treatments with a common control), maintaining randomization in each independent study.³⁰⁻³² Interventions, as well as different demographic characteristics were either consistent or comparable in all included studies,^{30,33-37} while those studies were excluded that reported immediate treatment effects.

Due to different units, the continuous data used the standard mean difference (SMD) as the statistical indicator of the effect, and the Frequentist 95% confidence interval (CI) of each effect was calculated. Additionally, the I² statistic was utilized to analyze the overall heterogeneity of the two-arm study and the network. The fixedeffect model was suggested to be used in cases of the absence of statistical heterogeneity (p > 0.05, $I^2 < 50\%$); however, given the heterogeneity among the studies, a random-effects model for meta-analysis was used.³⁸ A sensitivity analysis (see Appendix 2, eFigure 1 and 2) was conducted by omitting one study and investigating the influence of the single study on the overall pooled estimate to evaluate the source of heterogeneity. The node-split model was used for evaluating the testing consistency (see Appendix 3, eFigure 3). If p > 0.05, then the consistency model was used for analysis; otherwise, the inconsistency model was utilized.³⁹ Normal likelihood distributions were assumed, non-informative prior distributions were set, and three Markov chains were run simultaneously. Since the number of

Page 13 of 73

BMJ Open

1			
2			
3			
4			
5			
6			
/			
8			
9 1	0		
1 1	1		
1 1			
י 1	2 3 4		
1	4		
1	5		
1	6		
1	7		
	8		
1	9		
	0		
2	1		
2	2		
	3		
	4		
2			
	6		
2			
	8		
	9		
	0		
3 3	1 ר		
	2 3		
	3 4		
3			
	6		
3			
	, 8		
3			
	0		
4			
4	2		
4	3		
	4		
4	5		
	6		
4	7		
	8		
4			
	0		
5			
5			
5	3 4		
5 5			
	5 6		
5			
	, 8		
5			
5 6			

60

update iterations was 50,000, a total of 5000 simulations were used for annealing, 264 and the subsequent 45,000 iterations were examined. The mean rank and surface 265 266 under the cumulative ranking curve (SUCRA) were used for reporting the probability values. A SUCRA value of 100% was considered best, whereas 0% 267 indicated the worst treatment.⁴⁰ Besides, a conventional meta-analysis was also 268 carried out (see Appendix 4, eFigure 4a, b, and c). Comparison-adjusted funnel 269 plots were prepared that represented different comparisons with different colors. 270 The data from the eligible studies were combined using the Review Manager 271 272 (RevMan) software v5.3. The contribution of the effect sizes was dependent on the

sample size and their estimation accuracy. The Bayesian analyses were carried out
using WinBUGs v1.4.3. Stata (StataCorp. 2015. Stata Statistical Software: Release
15. College Station, TX: StataCorp LP) was employed to conduct the frequentist

276 NMA.

277 **2.5 Patient and Public Involvement.**

No patients were directly involved in the development of the study question,
selection of the outcome measures, design and implementation of the study, or
explanation of the results.

281 3. RESULTS

282 **3.1 Flow of studies through the review**

A comprehensive investigation of databases retrieved 4919 citations. After screening articles by title and abstract, and deleting duplicate articles, we identified 526 studies that might meet the criteria for inclusion, and then we searched and

evaluated their full text. Figure 1 presents the study selection flow chart. Eighteen
randomized controlled trials, including 944 participants, met the inclusion
criteria.^{23,41-57} Since the present NMA only considered trials comparing the nine
treatments with control condition or each other (see Appendix 5, eFigure 5a and b),
only fourteen trials (792 participants) were included. Furthermore, four trials were
excluded from the NMA considering their excessive heterogeneity and inability to
form NMA with other studies.⁵⁴⁻⁵⁷

3.2 Characteristics of included studies

All studies included tibiofemoral OA cases, which were radiologically confirmed. Although most interventions were administered over an 8-13week period, the treatment duration ranged from 2 weeks to 12 months. The number of exercises varied from 2-5 times per week, depending on the initial preparation. $\frac{43,44,46,49}{10}$ Both gait training studies used the faded feedback paradigm, which meant gradual removal of the real-time biofeedback.^{23,48} As NMA included fourteen studies, nine were classified as Kellgren/Lawrence grade 2 and above. All studies reported either the values for BMI or height and weight, while the studies recruiting a general population classified the mean BMI as overweight or obese. Additionally, one NMA study had a randomized crossover design.⁵⁰ After consulting a reference manual along with a professional statistician, the mean and standard deviation of the experimental and the control groups were analyzed in this network meta-analysis.²⁸ Tables 1 and 2 summarize the characteristics of the included studies and their participants.

3.3 KAM.

BMJ Open

1 2 3	
4 5 6 7	
8 9 10 11	
12 13 14 15	
16 17 18 19	
20 21 22 23	
 20 21 22 23 24 25 26 27 28 29 	
30	
31 32 33 34	
34 35 36 37 38	
39 40 41 42	
43 44 45 46	
47 48 49 50	
51 52 53	
54 55 56 57	
58 59 60	

300	5.5 KAM.
309	According to the collective probability of being the overall best therapy for reducing
310	the first peak KAM, LWI plus knee brace (93.4%) was closely followed by gait
311	retraining (85.7%), and knee brace only (79.3%) (Figure 2). A study reported that
312	the VER-brace offers additional advantages on first peak KAM compared to V3P-
313	brace and ACL-brace.54 No first peak KAM reduction was observed between
314	proprioceptive neuromuscular facilitation group and controls, $\frac{55}{5}$ and the result of the
315	study of minimal footwear was the same. ⁵⁶ On the other hand, after the
316	electroacupuncture treatment, compared with the control group, the second peak
317	KAM significantly increased immediately when the patient ascended stairs. ⁵⁷ Table
318	3 shows the NMA results of a comparative analysis of the reduction of the first peak
319	KAM. We found no differences in most of the treatment modalities; however,
320	variable-stiffness shoes showed a statistically significant increase in the first peak
321	KAM over the rest of the included interventions. Neuromuscular exercise was better
322	than variable-stiffness shoes, but was still inferior to most other interventions. At
323	the same time, lateral wedge insole plus knee brace and gait retraining performed
324	relatively well in reducing the first peak KAM compared with control condition and
325	other treatments.
326	3.4 KAAI.
327	Based on the collective probability of being the overall best therapy for reducing

Based on the collective probability of being the overall best therapy for reducing KAAI, gait retraining (90.7%) was followed by LWI only (74.1%), and lower limb exercise (53.8%) (Figure 3). KAAI was reported in ten studies.^{42-44,47-50,53,54,56} After

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
3 4 5 6 7 8 9 10 11 2 13 14 15 16 7 8 9 10 11 2 13 14 15 16 7 22 23 24 25 26 27 28 9 30 1 32 33 34 35 6 37 38	
22	
23	
24	
25	
26	
20	
27 28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50 51	
53	
54	
55	
56	
57	
58	
59	
~~	

1

wearing the three kinds of brace separately, the KAAI measured without brace did 330 not decrease significantly, and there was no significant difference between the 331 groups.⁵⁴ Table 3 shows the NMA results of the reduction of KAAI. Most 332 treatments were not statistically different from each other, consistent with the 333 334 results of the first peak KAM. Only gait retraining had a statistical reduction compared with control condition. The aggregated results suggested that gait 335 retraining is efficacious in reducing the KAAI, while neuromuscular exercise 336 increased the KAAI compared with gait retraining and knee brace. 337

338 **3.5** Heterogeneity.

We removed a study which had a short follow-up time and might cause heterogeneity,⁵⁰ and performed another network meta-analysis. There was no difference between the results of the reanalysis and the current ranking (see Appendix 2, eFigure 1 and 2).

343 **3.6 GRADE assessment**

According to the GRADE framework (see Appendix 6), the quality of most comparisons was assessed as low or very low. Only neuromuscular exercise compared with control condition, neuromuscular exercise compared with LWI, neuromuscular exercise compared with knee brace, and neuromuscular exercise compared with LWI plus knee brace were evaluated as a moderate-grade comparison.

- **350 3.7 Risk of bias**.
- 351 Figure 4 depicts a summary of the risk-of-bias scores for the included RCTs in this

analysis. Nine studies presented a clear description of generating a randomization sequence.43-47,49,52,56,57 The study by Hinman et al. was the only double-blinded study, while other studies were either single-blinded or did not clearly describe their blind design. All trials provided follow-up data on their outcomes. Six studies did not report the patient number or the reason for lost visits due to the length of followup.23,44-46,50,52 All studies were included in the synthesis evaluation. The comparison-adjusted funnel plots were symmetrically distributed based on a visual inspection, which suggested the absence of small-sample effects for our study outcomes (see Appendix 7, eFigure 6a and 6b).

361 4. DISCUSSION

Our study results did not show any significant difference regarding the relative efficacy of intervention among different types of physical therapies or orthopedic equipment. This lack of difference might be attributed to the fact that the number of studies for several pairwise comparisons was small. However, some of these therapies were still worth recommending. Due to a small number of studies studying the outcome of the KAAI, we found gait retraining to be the relatively more convincing intervention as it could simultaneously reduce the values for KAM and KAAI values based on cumulative ranking and relative effect estimates. Due to the lack of significant differences among the interventions, the cumulative ranking obtained by the network meta-analysis could not be conclusively accepted. For example, gait retraining, which was employed as the foremost intervention (90.7%) for KAAI reduction, was only superior to the neuromuscular exercise interventions.

2	
3 4 5	374
6 7	375
8 9 10	376
11 12 13	377
14 15	378
16 17 18	379
19 20	380
21 22 23	381
24 25 26	382
27 28	383
29 30 31	384
32 33	385
34 35 36	386
37 38	387
39 40 41	388
42 43 44	389
45 46	390
47 48 49	391
50 51	392
52 53 54	393
55 56 57	394
57 58 59	395
60	

1

374	This study had several strengths and limitations. This NMA is the first report on the
375	effects of physical therapy or orthopedic equipment on the parameters of knee load
376	(KAM, KAAI). Since physical therapies and orthopedic equipment are complex
377	interventions with a small number of trials comparing the different types of
378	interventions, network meta-analysis was deemed as the most relevant form of
379	analysis. The results of this meta-analysis could be more useful for the decision-
380	makers and primary service providers for choosing wisely among the various
381	available options, as compared to the multiple separate pairwise meta-analyses. ⁵⁸
382	Additionally, this NMA conducted each comparison distinctly with both direct and
383	indirect statistical effects, deriving statistical power from all included data.58 Also,
384	the Bayesian method provided the probability estimates regarding the relative
385	efficacy of specific interventions, even though the standard methods described the
386	absence of a significant difference between them. Furthermore, alternative rankings
387	(second, third best, etc.) were calculated to provide overall feasibility due to
388	unavailability of the best-suited interventions, more expensive therapies, or
389	contraindications in some cases. As with most meta-analyses based on non-surgical
390	therapies for osteoarthritis, one of the limitations of this NMA was the inclusion of
391	trials that had variable periods of follow-up, which might have introduced
392	heterogeneity into the study analyses. The Cochrane handbook recommends several
393	methods for analyzing and comparing trials with multiple durations of follow-up,
394	as recommended by the Cochrane handbook, such as performing individual patient
395	data meta-analysis and a precise evaluation at a particular time point. However,

Page 19 of 73

BMJ Open

newer approaches are now being developed that would include all the time points in a NMA.28 Our study was unable to evaluate the influence of population characteristics (such as mean age, the severity of osteoarthritis), as the number of the included studies was not large enough.⁵⁹⁻⁶¹ Additionally, other parameters, such as the external knee flexion moment to joint load, should have been studied in detail. However, due to lesser available literature, our study was unable to include them. Finally, standard/conventional care, placebo intervention, no intervention, sham-exercise, analgesic advice and education were all considered as the same parameter in defining the 'control condition'. Therefore, the relative rankings in our study might not represent the true factual rankings as compared to actual standard care due to lack of consideration of bias introduced by heterogeneity and lack of blinding. A previous review reported that LWIs were able to reduce the KAM at the baseline; 13 however, the effect was no longer observed after a specific period. Another study displayed that a month wear-in period was the longest study time in which no reduction in biochemical risk factors was observed despite continued wear.¹⁸ Besides, several other systematic reviews stated that exercise and gait retraining could further reduce pain and improve motor functioning in people with KOA.⁶²⁻⁶⁴ There is a high probability that any clinical changes occurring in previous studies might be due to increased physical activity levels, and not owing to the altered loading environment within the knee joint. Furthermore, another study revealed that an increase in the amount of reduction in peak KAM in LWIs plus knee brace group was observed after four weeks.⁶⁵ In our NMA, we focused on the

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2

2		
3 4	418	studies of non-immediate effect, removed the research with a follow-up time of less
5	10	studies of non-initial criter, removed the research with a follow-up time of less
6 7	419	than one month in the sensitivity analysis, and made the final rank. Our results
8		
9	420	showed that only gait training produces a significant reduction in KAM and KAAI
10 11		
12	421	when compared with control condition, indicating that the biomechanical reduction
13		
14	422	effect of orthopedic equipment cannot be maintained for a long time when they are
15 16		
17	423	donned. It was evident that an extension of the treatment time led to a decrease in
18		
19 20	424	the biomechanical reduction effect, which might be due to the gradual deformation
20 21		
22	425	of the orthopedic equipment that renders them ineffective, despite being made from
23	.20	of the oftenopeute equipment that follows them menteen (e, despite cering made nom
24 25	426	high-density materials.
26	720	high density materials.
27	427	On the other hand, various physical therapies and orthopedic equipment also should
28	421	On the other hand, various physical therapies and orthopedic equipment also should
29 30	400	he considered for reliaving nations, which has been the feave of general next
31	428	be considered for relieving patients' pain, which has been the focus of several past
32	400	
33	429	reviews. As an important gait parameter, the joint pain can affect the kinetics and
34 35		
36	430	kinematics of walking. ¹⁹ A meta-analysis reported that exercise therapy had a
37		
38	431	positive impact on knee pain and kinematic function, though this relief of pain
39 40		
41	432	subsided with time. After proper initiation, the efficiency of physical exercise over
42		
43	433	placebo reached a maximum level at two months. ⁶⁶
44 45		
46	434	Cumulative loading is another significant parameter regarding knee load exposure
47		
48	435	in OA. ⁶⁷ KAAI has been proposed as another indicator for evaluating the duration
49 50		
51	436	and intensity of KOA load, despite the association between KAM and disease
52		
53	437	progression. According to a study lasting for a year, the loss of medial tibiofemoral
54 55		
56	438	cartilage was not directly linked to KAM but was promptly related to KAAI. ¹⁴
57		
58	439	Although the effect of physical therapy or orthopedic equipment on KAM are short-
59 60	100	The sub-
00		

Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction angular impulse (KAAI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 73

BMJ Open

1	
2	
3 ⊿	
4 5	
6	
6 7	
8	
9 10	
11	
12	
13	
14 15	
16	
16 17	
18	
19 20	
20	
22	
23	
24 25	
26	
27	
28	
29 30	
31	
32	
33	
34 35	
36	
37	
38	
39 40	
41	
42	
43 44	
44 45	
46	
47	
48 49	
50	
51	
52	
53 54	
55	
56	
57	
58 59	
60	

440 lived, it might have a huge cumulative effect on the knee during the early stages of441 treatment and should be considered while interpreting our NMA results.

442 Our study results are both scientifically and clinically instructive. Despite a majority of therapies displaying a null statistical KAM and KAAI reduction, the clinical 443 usage of these treatment modalities could significantly improve the presenting 444 symptoms and physical activity level without increasing the biomechanical 445 magnitude; thus, improving the quality of life of patients with KOA. Although the 446 results of this study suggested that wearing variable-stiffness shoes is not preferable 447 448 for long-term KAM reduction, our current study explained that variable-stiffness shoes displayed a major advantage in reducing KAM for patients with increasing 449 walking speed.⁶⁸ At the same time, variable-stiffness shoes had relatively less 450 451 discomfort than equipment such as LWI. Since the studies included in this network meta-analysis mainly involves patients with medial KOA, the consolidated results 452 would be more useful for such patients. 453

On the other hand, a previous study reported that an increase in KAAI can explain 454 the significant variation in the uCTX-II levels as well as the uCTX-II:sCPII ratio in 455 medial tibiofemoral KOA patients after controlling additional variables.⁴⁹ It was 456 evident that appropriate intervention in the biomechanical structure of the knee joint 457 in KOA patients exert a potential beneficial role on cartilage structure. Maleki et al. 458 reported that adopting a modified gait for reducing the KAM can decrease the pain 459 in the medial compartment in KOA more than walking alone,⁶⁹ which suggests that 460 the KAM and KAAI of patients undergoing non-surgical approaches could be 461

restricted to reduce pain and improve the joint function. More research is further
needed to promptly illustrate the impact of changes in knee biomechanics on the
prognosis of such patients.

Additionally, some other therapies have also been reported, such as Taiji, ultrasound, acoustic exercises, etc. However, due to the lack of RCT study design or the report of their biomechanical outcomes, these therapies were not included in our review. Therefore, further studies would require more research articles in these areas for exploring the impact of various non-surgical therapies on OA patients. After accumulating evidence regarding the role of non-surgical therapy in KOA, another similar network meta-analysis to understand the relative effectiveness of various treatment in the relevant patients.

473 5. Conclusion

To conclude, this network meta-analysis provides valuable insights regarding the KAM and KAAI alterations in OA patients after the usage of physical therapy or orthopedic equipment. After integrating cumulative ranking and relative effect estimates, LWI plus knee brace was the highest-ranking intervention despite an absence of statistical significance. Although gait retraining did not score a higher rank, it remarkably influenced both KAM and KAAI values and, therefore, was the most recommended therapy for reducing the biomechanical risk factors. On the contrary, variable-stiffness shoe and neuromuscular exercise should be used with caution in clinical practice. Taken together, these findings suggest that clinicians should carefully consider all appropriate treatment modalities when treating OA

2		
3 4 5	484	patients.
6 7	485	6. Authors' Contributions
8 9 10	486	HXM and YFZ conceived of the study, and participated in its design and
11 12 13	487	coordination and helped to draft the manuscript; YZX, HY and CRY contributed
14 15	488	significantly to analysis and manuscript preparation; YJK and LL helped perform
16 17 18	489	the analysis with constructive discussions and revised it critically for important
19 20 21	490	intellectual content.
21 22 23	491	7. Competing interests
24 25 26	492	There were no conflicts of interest.
27 28	493	8. Funding
29 30 31	494	This work was supported by the National Key R&D Program of China
32 33	495	(No.2017YFB1303000) and the Construction of a Basic Public Service Platform
34 35 36	496	for Industrial Technology in the Field of Advanced Medical Equipment (0714-
37 38 39	497	EMTC-02-00897).
40 41	498	9. Ethics approval
42 43 44	499	9. Etnics approval Not required.
45 46	500	10. Data availability statement
47 48 49	501	No data are available.
50 51 52	502	11. Patient and public involvement
53 54	503	Patients and/or the public were not involved in the design, or conduct, or reporting, or
55 56 57	504	dissemination plans of this research.
58	505	References
59 60	506	1. Safiri S, Kolahi AA, Smith E, et al. Global, regional and national burden of osteoarthritis 1990-2017:
		Knee osteoarthritis (KOA): Knee adduction moment (KAM): Knee adduction angular impulse (KAAI)

1

1		
2 3		
4	507	a systematic analysis of the Global Burden of Disease Study 2017. Annals of the rheumatic
5	508	diseases. 2020;79(6):819-28.
6	509	2. Turpin KM, De Vincenzo A, Apps AM, et al. Biomechanical and clinical outcomes with shock-
7	510	absorbing insoles in patients with knee osteoarthritis: immediate effects and changes after 1
8 9	511	month of wear. Archives of physical medicine and rehabilitation. 2012;93(3):503-8.
9 10	512	3. Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthritis and cartilage.
11	513	2013;21(9):1145-53.
12	514	4. Tanamas S, Hanna FS, Cicuttini FM, et al. Does knee malalignment increase the risk of development
13	515	and progression of knee osteoarthritis? A systematic review. <i>Arthritis and rheumatism</i> .
14 15	516	
15		2009;61(4):459-67.
17	517	5. Duncan R, Peat G, Thomas E, et al. Incidence, progression and sequence of development of
18	518	radiographic knee osteoarthritis in a symptomatic population. Annals of the rheumatic
19	519	<i>diseases</i> . 2011;70(11):1944-8.
20 21	520	6. Lankhorst NE, Damen J, Oei EH, et al. Incidence, prevalence, natural course and prognosis of
21	521	patellofemoral osteoarthritis: the Cohort Hip and Cohort Knee study. Osteoarthritis and
23	522	cartilage. 2017;25(5):647-53.
24	523	7. Reeves ND, Bowling FL. Conservative biomechanical strategies for knee osteoarthritis. Nature
25	524	reviews Rheumatology. 2011;7(2):113-22.
26 27	525	8. Sharma L, Lou C, Cahue S, et al. The mechanism of the effect of obesity in knee osteoarthritis: the
27	526	mediating role of malalignment. <i>Arthritis and rheumatism</i> . 2000;43(3):568-75.
29	527	9. Rytter S, Jensen LK, Bonde JP, et al. Occupational kneeling and meniscal tears: a magnetic
30	528	
31		resonance imaging study in floor layers. <i>The Journal of rheumatology</i> . 2009;36(7):1512-9.
32 33	529	10. Jensen LK, Mikkelsen S, Loft IP, et al. Radiographic knee osteoarthritis in floorlayers and
34	530	carpenters. Scandinavian journal of work, environment & health. 2000;26(3):257-62.
35	531	11. Block JA, Shakoor N. Lower limb osteoarthritis: biomechanical alterations and implications for
36	532	therapy. Current opinion in rheumatology. 2010;22(5):544-50.
37	533	12. Englund M. The role of biomechanics in the initiation and progression of OA of the knee. Best
38 39	534	practice & research Clinical rheumatology. 2010;24(1):39-46.
40	535	13. Arnold JB, Wong DX, Jones RK, et al. Lateral Wedge Insoles for Reducing Biomechanical Risk
41	536	Factors for Medial Knee Osteoarthritis Progression: A Systematic Review and Meta-Analysis.
42	537	Arthritis care & research. 2016;68(7):936-51.
43 44	538	14. Bennell KL, Bowles KA, Wang Y, et al. Higher dynamic medial knee load predicts greater
44	539	cartilage loss over 12 months in medial knee osteoarthritis. Annals of the rheumatic diseases.
46	540	2011;70(10):1770-4.
47	541	15. Brisson NM, Wiebenga EG, Stratford PW, et al. Baseline knee adduction moment interacts with
48	542	body mass index to predict loss of medial tibial cartilage volume over 2.5 years in knee
49 50		
51	543	Osteoarthritis. Journal of orthopaedic research : official publication of the Orthopaedic
52	544	<i>Research Society</i> . 2017;35(11):2476-83.
53	545	16. Briem K, Snyder-Mackler L. Proximal gait adaptations in medial knee OA. Journal of orthopaedic
54 55	546	research : official publication of the Orthopaedic Research Society. 2009;27(1):78-83.
55 56	547	17. Yang F, Liu W. Knee joint biomechanics of simplified 24 Tai Chi forms and association with pain
57	548	in individuals with knee osteoarthritis: A pilot study. Osteoarthritis and cartilage open.
58	549	2021;3(2).
59	550	18. Hinman RS, Bowles KA, Bennell KL. Laterally wedged insoles in knee osteoarthritis: do
60		

BMJ Open

3	551	biomechanical effects decline after one month of wear? BMC Musculoskelet Disord.
4 5	552	2009;10:146.
6	553	19. Divine JG, Hewett TE. Valgus bracing for degenerative knee osteoarthritis: relieving pain,
7	554	improving gait, and increasing activity. <i>The Physician and sportsmedicine</i> . 2005;33(2):40-6.
8	555	20. Lange AK, Vanwanseele B, Fiatarone Singh MA. Strength training for treatment of osteoarthritis of
9	556	the knee: a systematic review. <i>Arthritis and rheumatism</i> . 2008;59(10):1488-94.
10 11		•
12	557	21. Liu CJ, Latham NK. Progressive resistance strength training for improving physical function in
13	558	older adults. The Cochrane database of systematic reviews. 2009;2009(3):Cd002759.
14	559	22. Mikesky AE, Meyer A, Thompson KL. Relationship between quadriceps strength and rate of
15 16	560	loading during gait in women. Journal of orthopaedic research : official publication of the
16 17	561	Orthopaedic Research Society. 2000;18(2):171-5.
18	562	23. Cheung RTH, Ho KKW, Au IPH, et al. Immediate and short-term effects of gait retraining on the
19	563	knee joint moments and symptoms in patients with early tibiofemoral joint osteoarthritis: a
20	564	randomized controlled trial. Osteoarthritis and cartilage. 2018;26(11):1479-86.
21	565	24. Shull PB, Jirattigalachote W, Hunt MA, et al. Quantified self and human movement: a review on
22 23	566	the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait &
24	567	posture. 2014;40(1):11-9.
25	568	25. Sasaki T, Yasuda K. Clinical evaluation of the treatment of osteoarthritic knees using a newly
26	569	designed wedged insole. Clin Orthop Relat Res. 1987(221):181-7.
27 28		
28 29	570	26. Yasuda K, Sasaki T. The mechanics of treatment of the osteoarthritic knee with a wedged insole.
30	571	<i>Clin Orthop Relat Res.</i> 1987(215):162-72.
31	572	27. Hinman RS, Bowles KA, Metcalf BB, et al. Lateral wedge insoles for medial knee osteoarthritis:
32	573	effects on lower limb frontal plane biomechanics. Clin Biomech (Bristol, Avon).
33 34	574	2012;27(1):27-33.
35	575	28. Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane Handbook for
36	576	Systematic Reviews of Interventions version 6.2 (updated February 2021). Cochrane.
37	577	2021; Available from www.training.cochrane.org/handbook.
38	578	29. Salanti G, Del Giovane C, Chaimani A, et al. Evaluating the quality of evidence from a network
39 40	579	meta-analysis. <i>PloS one</i> . 2014;9(7):e99682.
41	580	30. Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons.
42	581	Statistics in medicine. 2004;23(20):3105-24.
43	582	31. Lu G, Ades AE, Sutton AJ, et al. Meta-analysis of mixed treatment comparisons at multiple follow-
44 45	583	up times. <i>Statistics in medicine</i> . 2007;26(20):3681-99.
45 46		
47	584	32. Smith TC, Spiegelhalter DJ, Thomas A. Bayesian approaches to random-effects meta-analysis: a
48	585	comparative study. <i>Statistics in medicine</i> . 1995;14(24):2685-99.
49	586	33. Caldwell DM, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining
50	587	direct and indirect evidence. BMJ (Clinical research ed). 2005;331(7521):897-900.
51 52	588	34. Cooper NJ, Sutton AJ, Morris D, et al. Addressing between-study heterogeneity and inconsistency
53	589	in mixed treatment comparisons: Application to stroke prevention treatments in individuals
54	590	with non-rheumatic atrial fibrillation. Statistics in medicine. 2009;28(14):1861-81.
55	591	35. Dias S, Welton NJ, Caldwell DM, et al. Checking consistency in mixed treatment comparison
56 57	592	meta-analysis. <i>Statistics in medicine</i> . 2010;29(7-8):932-44.
57 58	593	36. Salanti G, Higgins JP, Ades AE, et al. Evaluation of networks of randomized trials. <i>Statistical</i>
59	594	methods in medical research. 2008;17(3):279-301.
60	007	memous in medical research. 2000,17(37.279-301.

1 2 3

2		
3	595	37. Welton NJ, Caldwell DM, Adamopoulos E, et al. Mixed treatment comparison meta-analysis of
4	596	complex interventions: psychological interventions in coronary heart disease. <i>American</i>
5 6	597	journal of epidemiology. 2009;169(9):1158-65.
7	598	38. Turner RM, Jackson D, Wei Y, et al. Predictive distributions for between-study heterogeneity and
8	599	simple methods for their application in Bayesian meta-analysis. <i>Statistics in medicine</i> .
9 10	600	2015;34(6):984-98.
10	601	39. Dias S, Welton NJ, Sutton AJ, et al. Evidence synthesis for decision making 4: inconsistency in
12	602	networks of evidence based on randomized controlled trials. <i>Medical decision making : an</i>
13	603	international journal of the Society for Medical Decision Making. 2013;33(5):641-56.
14 15	603 604	40. Dias S, Welton NJ, Sutton AJ, et al. NICE Decision Support Unit Technical Support Documents.
16	604 605	
17		NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework for
18	606	Pairwise and Network Meta-Analysis of Randomised Controlled Trials. London: National
19 20	607	Institute for Health and Care Excellence (NICE)
20	608	Copyright © 2014 National Institute for Health and Clinical Excellence, unless otherwise stated. All
22	609	rights reserved. 2014.
23	610	41. Arazpour M, Bani MA, Maleki M, et al. Comparison of the efficacy of laterally wedged insoles and
24 25	611	bespoke unloader knee orthoses in treating medial compartment knee osteoarthritis.
26	612	Prosthetics and orthotics international. 2013;37(1):50-7.
27	613	42. Barrios JA, Butler RJ, Crenshaw JR, et al. Mechanical effectiveness of lateral foot wedging in
28	614	medial knee osteoarthritis after 1 year of wear. Journal of orthopaedic research : official
29 30	615	publication of the Orthopaedic Research Society. 2013;31(5):659-64.
31	616	43. Bennell KL, Hunt MA, Wrigley TV, et al. Hip strengthening reduces symptoms but not knee load
32	617	in people with medial knee osteoarthritis and varus malalignment: a randomised controlled
33	618	trial. Osteoarthritis and cartilage. 2010;18(5):621-8.
34 35	619	44. Bennell KL, Kyriakides M, Metcalf B, et al. Neuromuscular versus quadriceps strengthening
36	620	exercise in patients with medial knee osteoarthritis and varus malalignment: a randomized
37	621	controlled trial. Arthritis & rheumatology (Hoboken, NJ). 2014;66(4):950-9.
38 39	622	45. Erhart-Hledik JC, Elspas B, Giori NJ, et al. Effect of variable-stiffness walking shoes on knee
39 40	623	adduction moment, pain, and function in subjects with medial compartment knee osteoarthritis
41	624	after 1 year. Journal of orthopaedic research : official publication of the Orthopaedic
42	625	Research Society. 2012;30(4):514-21.
43 44	626	46. Foroughi N, Smith RM, Lange AK, et al. Lower limb muscle strengthening does not change frontal
44 45	627	plane moments in women with knee osteoarthritis: A randomized controlled trial. <i>Clin</i>
46	628	Biomech (Bristol, Avon). 2011;26(2):167-74.
47	629	47. Holsgaard-Larsen A, Clausen B, Søndergaard J, et al. The effect of instruction in analgesic use
48 49	630	compared with neuromuscular exercise on knee-joint load in patients with knee osteoarthritis:
50	631	a randomized, single-blind, controlled trial. <i>Osteoarthritis and cartilage</i> . 2017;25(4):470-80.
51	632	48. Hunt MA, Charlton JM, Krowchuk NM, et al. Clinical and biomechanical changes following a 4-
52 52	633	month toe-out gait modification program for people with medial knee osteoarthritis: a
53 54	634	randomized controlled trial. <i>Osteoarthritis and cartilage</i> . 2018;26(7):903-11.
55	635	49. Hunt MA, Pollock CL, Kraus VB, et al. Relationships amongst osteoarthritis biomarkers, dynamic
56	636	
57	636 637	knee joint load, and exercise: results from a randomized controlled pilot study. <i>BMC</i>
58 59		Musculoskelet Disord. 2013;14:115.
60	638	50. Jones RK, Nester CJ, Richards JD, et al. A comparison of the biomechanical effects of valgus knee

BMJ Open

3	639	braces and lateral wedged insoles in patients with knee osteoarthritis. Gait & posture.
4 5	640	2013;37(3):368-72.
6	641	51. Khosravi M, Arazpour M, Sharafat Vaziri A. An evaluation of the use of a lateral wedged insole
7	642	and a valgus knee brace in combination in subjects with medial compartment knee
8	643	osteoarthritis (OA). Assistive technology : the official journal of RESNA. 2021;33(2):87-94.
9 10	644	52. Lim BW, Hinman RS, Wrigley TV, et al. Does knee malalignment mediate the effects of
10	645	quadriceps strengthening on knee adduction moment, pain, and function in medial knee
12	646	osteoarthritis? A randomized controlled trial. <i>Arthritis and rheumatism</i> . 2008;59(7):943-51.
13	647	53. Hinman RS, Wrigley TV, Metcalf BR, et al. Unloading Shoes for Self-management of Knee
14 15	648	
16		Osteoarthritis: A Randomized Trial. <i>Annals of internal medicine</i> . 2016;165(6):381-9. 54. Robert-Lachaine X, Dessery Y, Belzile É L, et al. Three-month efficacy of three knee braces in the
17	649 650	
18	650	treatment of medial knee osteoarthritis in a randomized crossover trial. Journal of orthopaedic
19 20	651	research : official publication of the Orthopaedic Research Society. 2020;38(10):2262-71.
20	652	55. Song Q, Shen P, Mao M, et al. Proprioceptive neuromuscular facilitation improves pain and
22	653	descending mechanics among elderly with knee osteoarthritis. Scandinavian journal of
23	654	medicine & science in sports. 2020;30(9):1655-63.
24 25	655	56. Trombini-Souza F, Matias AB, Yokota M, et al. Long-term use of minimal footwear on pain, self-
25	656	reported function, analgesic intake, and joint loading in elderly women with knee
27	657	osteoarthritis: A randomized controlled trial. Clin Biomech (Bristol, Avon). 2015;30(10):1194-
28	658	201.
29 30	659	57. Wang X, Xie X, Hou M, et al. [Kinetic mechanism of electroacupuncture for stair climbing in knee
30	660	osteoarthritis patients]. Zhongguo zhen jiu = Chinese acupuncture & moxibustion.
32	661	2017;37(10):1027-34.
33	662	58. Cooper NJ, Kendrick D, Achana F, et al. Network meta-analysis to evaluate the effectiveness of
34 35	663	interventions to increase the uptake of smoke alarms. <i>Epidemiologic reviews</i> . 2012;34:32-45.
36	664	59. Lambert PC, Sutton AJ, Abrams KR, et al. A comparison of summary patient-level covariates in
37	665	meta-regression with individual patient data meta-analysis. Journal of clinical epidemiology.
38	666	2002;55(1):86-94.
39 40	667	60. Schmid CH, Stark PC, Berlin JA, et al. Meta-regression detected associations between
40	668	heterogeneous treatment effects and study-level, but not patient-level, factors. Journal of
42	669	clinical epidemiology. 2004;57(7):683-97.
43	670	61. Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted?
44 45	671	Statistics in medicine. 2002;21(11):1559-73.
46	672	62. Bennell KL, Hinman RS. A review of the clinical evidence for exercise in osteoarthritis of the hip
47	673	and knee. J Sci Med Sport. 2011;14(1):4-9.
48	674	63. Fransen M, McConnell S, Harmer AR, et al. Exercise for osteoarthritis of the knee. <i>The Cochrane</i>
49 50		
51	675	database of systematic reviews. 2015;1:Cd004376.
52	676	64. Fransen M, McConnell S, Hernandez-Molina G, et al. Exercise for osteoarthritis of the hip. <i>The</i>
53	677	Cochrane database of systematic reviews. 2014(4):Cd007912.
54 55	678	65. Fu HC, Lie CW, Ng TP, et al. Prospective study on the effects of orthotic treatment for medial knee
56	679	osteoarthritis in Chinese patients: clinical outcome and gait analysis. Hong Kong medical
57	680	journal = Xianggang yi xue za zhi. 2015;21(2):98-106.
58	681	66. Goh SL, Persson MSM, Stocks J, et al. Efficacy and potential determinants of exercise therapy in
59 60	682	knee and hip osteoarthritis: A systematic review and meta-analysis. Annals of physical and

58 59 60

2		
3	683	rehabilitation medicine. 2019;62(5):356-65.
4 5	684	67. Maly MR. Abnormal and cumulative loading in knee osteoarthritis. Current opinion in
6	685	rheumatology. 2008;20(5):547-52.
7	686	68. Erhart-Hledik JC, Mahtani GB, Asay JL, et al. Changes in knee adduction moment wearing a
8 9	687	variable-stiffness shoe correlate with changes in pain and mechanically stimulated cartilage
9 10	688	oligomeric matrix levels. Journal of orthopaedic research : official publication of the
11	689	Orthopaedic Research Society. 2021;39(3):619-27.
12	690	69. Maleki M, Arazpour M, Joghtaei M, et al. The effect of knee orthoses on gait parameters in medial
13	691	
14 15	692	2016:40(2):193-201
16	693	2010,40(2).195 201.
17	694	
18 19	034	
20		
21		
22		
23 24		
25		
26		
27 28		
20 29		
30		
31		
32 33		
34		
35		
36 37		
38		
39		
40		knee compartment osteoarthritis: A literature review. <i>Prosthetics and orthotics international</i> . 2016;40(2):193-201.
41 42		
43		
44		
45 46		
40 47		
48		
49 50		
50 51		
52		
53		
54 55		
55 56		
57		

Page 29 of 73

Tables

Table 1. Characteristics of included studies (1) *

Country	Clinical criteria†	Radiographic features	Intervention	Comparisons	Follow up	
US	Medial compartment knee OA; Pain VAS (≥3 of 10 upon walking)	K/L grade ≥2, medial tibiofemoral compartment	bespoke full-length LWI	Placebo	12 months	
Australia	Medial compartment knee OA; Pain NRS (> 4 of 11 upon walking) over the previous weekK/L grade ≥2, medial tibiofemoral compartment5° full-length LWIPlaceboPlacebo5° full-length LWIPlacebo				6 months	
Iran	Medial compartment knee OA	K/L grade 1 and 2, medial tibiofemoral compartment	6° full-length LWI	bespoke unloader knee braces	6 weeks	
UK	Medial compartment knee OA	K/L grade 2 and 3, medial JSN	LWI: The heel was inclined at 5° with the inclination reduced to 0° at the 5th metatarsal head with a contoured arch profile	6° valgus knee brace	2 weeks	
Iran	Medial compartment knee OA	K/L grade 2 and 3	Full length custom-made LWI; LWI+ knee brace	three-point valgus knee brace	6 weeks	
			K/L=Kellgren/Lawrence; NR	e=not reported; JSN=joint s	space narrowing	
A); Knee adduction r						
	For peer review only - h	illp://bmjopen.bmj.com/site/	about/guidelines.xntml			
	US Australia Iran UK Iran	US Medial compartment knee OA; Pain VAS (≥3 of 10 upon walking) Australia Medial compartment knee OA; Pain NRS (> 4 of 11 upon walking) over the previous week Iran Medial compartment knee OA UK Medial compartment knee OA Iran Medial compartment knee OA Structure Ital compartment knee OA Iran Medial compartment knee OA Studie Iran Medial compartment knee OA Iran Iran Medial compartment knee OA Iran Medial compartment knee OA Iran Medial compartment knee OA Iran Medial compartment knee OA <	US Medial compartment knee OA; Pain VAS (≥3 of 10 upon walking) K/L grade ≥2, medial tibiofemoral compartment walking) Australia Medial compartment knee OA; Pain NRS (> 4 of 11 upon walking) over the previous week K/L grade 1 and 2, medial tibiofemoral compartment Iran Medial compartment knee OA K/L grade 1 and 2, medial tibiofemoral compartment UK Medial compartment knee OA K/L grade 2 and 3, medial JSN Iran Medial compartment knee OA K/L grade 2 and 3, medial JSN Iran Medial compartment knee OA K/L grade 2 and 3 Iran Medial compartment knee OA K/L grade 2 and 3 Iran Medial compartment knee OA K/L grade 2 and 3 Iran Medial compartment knee OA K/L grade 2 and 3	US Medial compartment knee OA; Pain VAS (≥3 of 10 upon walking) K/L grade ≥2, medial tibiofemoral compartment bespoke full-length LWI Australia Medial compartment knee OA; Pain NRS (> 4 of 11 upon walking) over the previous week K/L grade ≥2, medial tibiofemoral compartment 5° full-length LWI Iran Medial compartment knee OA K/L grade 1 and 2, medial tibiofemoral compartment 6° full-length LWI UK Medial compartment knee OA K/L grade 2 and 3, medial JSN LWI: The heel was inclined at 5° with the inclination reduced to 0° at the 5th metatarsal head with a contoured arch profile Iran Medial compartment knee OA K/L grade 2 and 3 Full length custom-made LWI; LWI+ knee brace Iran Medial compartment knee OA K/L grade 2 and 3 Full length custom-made LWI; LWI+ knee brace Iran Medial compartment knee OA K/L grade 2 and 3 Full length custom-made LWI; LWI+ knee brace LWI=lateral wedged insoles; VAS=visual analog scale; NRS=numerical rating scale; K/L=Kellgren/Lawrence; NR	US Medial compartment knee OA; Pain VAS (≥3 of 10 upon walking) K/L grade ≥2, medial tibiofemoral compartment bespoke full-length LWI Placebo Australia Medial compartment knee OA; Walking) over the previous week K/L grade ≥2, medial tibiofemoral compartment 5° full-length LWI Placebo Iran Medial compartment knee OA K/L grade 1 and 2, medial tibiofemoral compartment 6° full-length LWI bespoke unloader knee braces UK Medial compartment knee OA K/L grade 2 and 3, medial JSN LWI: The heel was conclusion reduced to 0° at the 5th metatarsal head with a contoured arch profile 6° valgus knee brace inclination reduced to 0° at the 5th metatarsal head with a contoured arch profile Iran Medial compartment knee OA K/L grade 2 and 3 Full length custom-made LWI; LWI+ knee brace three-point valgus knee brace Iran Medial compartment knee OA K/L grade 2 and 3 Full length custom-made LWI; LWI+ knee brace three-point valgus knee brace I.LWI=lateral wedged insoles; VAS=visual analog scale; NRS=numerical rating scale; K/L=Kellgren/Lawrence; NR=not reported; JSN=joint states N; Knee adduction angular impulse (KAAI)	

Table 1. Characteristics of included studies (2)	*
--	---

stralia	Medial compartment knee OA; Pain (≥3 of 10) longer than 6 nonths Medial compartment knee OA; Medial knee pain Medial compartment knee OA; Medial knee pain Medial compartment knee OA; Varus malalignment; Pain (> 3 of 11 upon walking)	K/L grade ≥2, medial tibiofemoral compartment K/L grade ≥2, medial JSN K/L grade ≥1 K/L grade ≥2, medial JSN	Toe-out gait modification Quadriceps strengthening Variable-stiffness shoe with stiffer soles on the lateral side Hip strengthening	Walking without any guidance No intervention Constant-stiffness control shoe No intervention	4 months 12 weeks 12 months 13 weeks
] stralia	Medial knee pain Medial compartment knee OA; Medial knee pain Medial compartment knee OA; Varus malalignment; Pain (> 3	K/L grade ≥1 K/L grade ≥2, medial JSN	strengthening Variable-stiffness shoe with stiffer soles on the lateral side	Constant-stiffness control shoe	12 months
stralia 1	Medial knee pain Medial compartment knee OA; Varus malalignment; Pain (> 3	K/L grade ≥2, medial JSN	with stiffer soles on the lateral side	control shoe	
,	Varus malalignment; Pain (>3	N L		No intervention	13 weeks
					15 WEEKS
]	Knee pain occurred at least one day a week during each of the 8	K/L grade 1 and 2	Gait retraining for KAM reduction	Walking without any guidance	6 weeks
lateral wedged ir	soles; VAS=visual analog scale;	NRS=numerical rating scale; I	K/L=Kellgren/Lawrence; NR	=not reported; JSN=joint s	pace narrowing
e adduction mom	ent (KAM); Knee adduction angu	lar impulse (KAAI)			
	For peer review only - h	ttp://bmjopen.bmj.com/site/	about/guidelines.xhtml		
18	I tteral wedged in	Knee pain occurred at least one day a week during each of the 8 weeks prior ateral wedged insoles; VAS=visual analog scale;	a Medial compartment knee OA; K/L grade 1 and 2 Knee pain occurred at least one day a week during each of the 8 weeks prior ateral wedged insoles; VAS=visual analog scale; NRS=numerical rating scale; adduction moment (KAM); Knee adduction angular impulse (KAAI)	a Medial compartment knee OA; K/L grade 1 and 2 Gait retraining for KAM Knee pain occurred at least one day a week during each of the 8 weeks prior ateral wedged insoles; VAS=visual analog scale; NRS=numerical rating scale; K/L=Kellgren/Lawrence; NR	a Medial compartment knee OA; K/L grade 1 and 2 Gait retraining for KAM Walking without any guidance day a week during each of the 8 weeks prior weeks prior starteral wedged insoles; VAS=visual analog scale; NRS=numerical rating scale; K/L=Kellgren/Lawrence; NR=not reported; JSN=joint starteral wedged insoles; VAS=visual analog scale; NRS=numerical rating scale; K/L=Kellgren/Lawrence; NR=not reported; JSN=joint starteral wedged insoles; VAS=visual analog scale; NRS=numerical rating scale; K/L=Kellgren/Lawrence; NR=not reported; JSN=joint starteral wedged insoles; VAS=visual analog scale; NRS=numerical rating scale; K/L=Kellgren/Lawrence; NR=not reported; JSN=joint starteral wedged insoles; VAS=visual analog scale; MRS=numerical rating scale; K/L=Kellgren/Lawrence; NR=not reported; JSN=joint starteral wedged insoles; KAM); Knee adduction angular impulse (KAAI)

BMJ Open

Authors	Country	Clinical criteria†	Radiographic features	Intervention	Comparisons	Follow u
Foroughi 2011 ⁴⁶	Australia	Primary knee OA	K/L grade ≥1	Lower limb exercise	Sham-exercise	6 month
Bennell 2014 ⁴⁴	Australia	Medial compartment knee OA; Pain VAS (≥25 of 100) over the past week	K/L grade ≥2, medial tibiofemoral compartment	Neuromuscular exercise	Quadriceps strengthening	12 week
Hunt 2013 ⁴⁹	Canada	Medial compartment knee OA; Knee pain >3/10 on most days of the previous month	K/L grade ≥2, medial tibiofemoral compartment	Lower limb exercise	No intervention	11 week
Holsgaard-Larsen 2017 ⁴⁷	Denmark	Primary knee OA Pain KOOS(< 80 of 100, at least mild pain)	K/L grade ≤3	Neuromuscular exercise	Analgesic advice	8 weeks
* OA=osteoarthritis;	LWI=lateral wedg	ed insoles; VAS=visual analog scale;			R=not reported; JSN=join	t space narrowin
nee osteoarthritis (KOA	۱); Knee adduction ۱	moment (KAM); Knee adduction angu	lar impulse (KAAI)			
		For peer review only - h	http://bmjopen.bmj.com/site/	/about/guidelines.xhtml		

 Table 1. Characteristics of included studies (4) *

	Country	Clinical criteria†	Radiographic features	Intervention	Comparisons	Follow up
Song 2020 ⁵⁵ China		Medial compartment knee OA in one or both legs.	K/L grade ≤3	PNF (one-hour sessions three times a week)	Watch television or read magazines at the same time	12 weeks
Wang 2017 ⁵⁷	China	Medial compartment knee OA	K/L grade 2 and 3	Acupuncture with 2 Hz continuous wave in Neixiyan (EX-LE 4), Dubi (ST 35), Yanglingquan (GB 34), Yinlingquan (SP 9), Xuehai (SP 10), Liangqiu (ST 34) and Zusanli (ST 36)	2 cm next to the same acupoints with shallow acupuncture and no current	Immediate
Robert-Lachaine 2020 ⁵⁴	Canada	Medial compartment knee OA; Pain > $31/100$ on WOMAC; Varus knee alignment $\ge 2^{\circ}$	K/L grade 2 and 3	V3P-brace; VER-brace; ACL-brace (wear the brace as often as possible)	/	3 months
Trombini-Souza 2015 ⁵⁶	Brazil	Medial compartment knee OA; Knee pain between 3 and 8 on VAS	K/L grade 2 and 3	Minimalist footwear (Moleca®)	Standard, neutral tennis shoe	6 months
	LWI=lateral wedg	ed insoles; VAS=visual analog scale;	NRS=numerical rating scale: I	K/I =Kellgren/I awrence: NR:	=not reported: JSN=ioint sr	Dace narrowing: Pi
Proprioceptive neuro	omuscular facilitatio	on; V3P-brace= three-point bending	system valgus knee brace; VI	ER-brace= unloader brace with	th valgus and external rota	ation functions; A
Proprioceptive neuro brace= functional me	omuscular facilitation edial-lateral stabiliz		system valgus knee brace; VI es; The Moleca® shoe is a low	ER-brace= unloader brace wi w-cost women's double canva	th valgus and external rota s, flexible, flat, walking sh	ation functions; A0
Proprioceptive neuro brace= functional me a 5-mm anti-slip rub	omuscular facilitatio edial-lateral stabiliz ber sole and a 3-mn	on; V3P-brace= three-point bending zation brace used after ligament injuri	system valgus knee brace; VI es; The Moleca® shoe is a low that provides only protection I	ER-brace= unloader brace wi w-cost women's double canva	th valgus and external rota s, flexible, flat, walking sh	ation functions; A

Table 2. (Characteristics	of p	articipants	in	included	studies	(1)	*
------------	-----------------	------	-------------	----	----------	---------	-----	---

Authors	No.	Sex, M:F	Age, years	Height, meters	Body mass, kg	BMI, kg/m ²	Bilateral knee	ee K/L grade, no.				Main
							OA included	1	2	3	4	outcomes
Barrios 201342	38	NR	61.90±8.37	NR	NR	32.00±7.43	NR	0	17	14	7	1 st KAM;
												KAAI
Hinman 2016 ⁵³	164	20:21	64.30±7.45	1.67 ± 0.10	82.95±14.76	29.70±3.64	NR	0	49	52	63	1 st KAM;
												KAAI
Arazpour 2012 ⁴¹	24	3:4	59.29±2.37	NR	NR	27.01±1.71	Yes	9	15	0	0	1 st KAM
Len er 201250	20	4.2	((20+8.20	1.75+0.12	00.7+15.10	ND	N	0	10	18	0	1st 1 Ond
Jones 2013 ⁵⁰	28	4:3	66.30±8.20	1.75±0.13	88.7±15.10	NR	No	0	10	18	0	1^{st} and 2^{nc}
												KAM; KAA
Khosravi 2019 ⁵¹	21	13:8	58.97±6.80	1.62±0.11	79.11±9.35	NR	NR	0	9	12	0	1 st KAM
* Values are the me	ean±SD un	less indicated	otherwise. BMI=bo	dy mass index; K/I	_=Kellgren/Lawrenc	e; NR=not repor	rted; JSN=joint space	ce narro	owing; K	AM=kn	ee addu	iction mome
KAAI=knee adducti	on angular	impulse.					NJ.					
Knee osteoarthritis (K	(OA). Knoo	adduction mor	ent (KAM): Knoc of	duction angular imp								
	OA), KIIEE						lin og vilstur-l					
			For peer r	eview only - http://k	omjopen.pmj.com/s	site/about/guide	lines.xntml					

 Table 2. Characteristics of participants in included studies (2) *

Authors	No.	Sex, M:F	Age, years	Height, meters	Body mass, kg	BMI, kg/m ²	Bilateral knee	K/L grade, no.			Main	
							OA included	1	2	3	4	outcomes
Hunt 2018 ⁴⁸	79	24:55	64.99±8.60	1.65±0.10	74.59±13.15	27.35±3.48	Yes	0	37	31	11	1st and 2nd
												KAM; KAAI
Lim 2008 ⁵²	107	48:59	64.60±8.51	1.65±0.10	79.41±15.32	28.96±4.85	Yes	0	34	29	44	1 st KAM
Erhart-Hledik	79	41:38	61.70±9.43	1.69±0.08	79.50±15.07	27.51±4.87	Yes	NR	NR	NR	NR	1 st KAM
201245												
Sennell 201043	89	46:43	64.55±8.34	NR	NR	27.94±4.41	Yes	0	30	29	30	1 st KAM;
												KAAI
Cheung 2018 ²³	20	1:1	61.95±6.11	1.63±0.09	65.85±6.64	27.35±3.48	NR	5	15	0	0	1 st KAM
Values are the m	ean±SD ur	iless indicated of	otherwise. BMI=bo	dy mass index; K/I	L=Kellgren/Lawrenc	ce; NR=not repor	ted; JSN=joint spa	ce narro	wing; K	XAM=kr	iee addi	action moment;
KAAI=knee adduct	ion angular	impulse.										
Knee osteoarthritis (ł	(OA); Knee	adduction mom	ent (KAM); Knee ad	dduction angular imp	oulse (KAAI)							
·					omjopen.bmj.com/s	site/about/quide	lines.xhtml					
			i oi peer i			, about, galae						

	No.	Sex, M:F	Age, years	Height, meters	Body mass, kg	BMI, kg/m ²	Bilateral knee		e K/L grade, no.			
							OA included	1	2	3	4	outcom
Foroughi 2011 ⁴⁶	54	0:54	65.48±7.44	NR	82.87±18.43	32.07±7.08	Yes	20	7	20	1	1^{st} and 2
												KAM
Bennell 2014 ⁴⁴	100	48:52	62.45±7.32	1.67±0.10	82.70±14.29	29.65±4.08	Yes	0	22	43	35	1 st KAN
												KAA
Hunt 2013 ⁴⁹	17	8:9	66.10±11.3	NR	NR	27.00±4.50	Yes	0	10	5	2	1 st KAN
												KAAI
Holsgaard-Larsen	93	39:54	58.10±7.96	NR	79.64±12.49	26.90±3.09	NR	45	31	17	0	1 st KAN
201747												KAA
۲nee osteoarthritis (Ko	DA); Knee	adduction mom	ent (KAM); Knee ad	lduction angular imp								
۲nee osteoarthritis (K	DA); Knee	adduction mom										

 Table 2. Characteristics of participants in included studies (4) *

Authors	No.	Sex, M:F	Age, years	Height, meters	Body mass, kg	BMI, kg/m ²	Bilateral knee		K/L grade, no.			Main
							OA included	1	2	3	4	outcomes
Song 2020 ⁵⁵	36	1:1	68.01±3.91	1.62±0.07	68.16±6.77	NR	Yes	9	20	7	0	1 st KAM
Wang 2017 ⁵⁷	36	1:5	63.50±7.95	NR	NR	23.75±2.66	Yes	0	19	17	0	1^{st} and 2^{nd}
												KAM
Robert-Lachaine	24	7:5	57.20±8.60	1.68±0.09	89.30±18.70	31.40±5.00	NR	0	15	8	0	1^{st} and 2^{nd}
2020 ⁵⁴												KAM; KAA
Trombini-Souza	56	NR	66.00±5.00	1.60±0.10	73.40±13.10	NR	NR	0	NR	NR	0	1 st KAM;
2015 ⁵⁶												KAAI
Knee osteoarthritis (K(DA): Knee	adduction mom	ent (KAM): Knee ad	dduction angular imp	ulse (KAAI)							
Knee osteoarthritis (K0	DA); Knee	adduction mom		dduction angular imp eview only - http://k		site/about/quide	lines.xhtml					

						1		1	
J	0.41 (-0.66,1.49)	0.16 (-0.46,0.79)	-	0.20 (-0.23,0.64)	0.81 (0.17,1.45)	-	0.30 (-0.61,1.21)	0.54 (0.02,1.07)	0.32
0.28 (-0.34,0.89)	I	-0.25 (-1.33,0.84)	_	-0.21 (-1.37,0.95)	0.40 (-0.70,1.49)	-	-0.12 (-1.39,1.16)	0.13 (-0.90,1.16)	-0.09 (-1.08,0.90
0.07 (-0.50,0.64)	-0.21 (-0.89,0.47)	Н	_	0.04 (-0.72,0.80)	0.64 (-0.01,1.30)	_	0.13 (-0.79,1.05)	0.38 (-0.16,0.92)	0.16 (-0.29,0.61
-0.69 (-1.36,-0.02)	-0.97 (-1.73,-0.21)	-0.76 (-1.49,-0.03)	G	<u> </u>	-	_	-	-	-
0.24 (-0.11,0.59)	-0.04 (-0.64,0.57)	0.17 (-0.39,0.74)	0.93 (0.27,1.60)	F	0.61 (-0.17,1.38)	-	0.09 (-0.91,1.10)	0.34 (-0.34,1.02)	0.12 (-0.49,0.73
0.89 (0.35,1.44)	0.62 (-0.04,1.28)	0.83 (0.20,1.45)	1.59 (0.87,2.30)	0.65 (0.11,1.19)	E	-	-0.51 (-1.45,0.42)	-0.27 (-0.83,0.30)	-0.48 (-0.96,-0.0
1.28 (0.21,2.36)	1.01 (-0.13,2.14)	1.22 (0.10,2.33)	1.98 (0.81,3.15)	1.04 (-0.03,2.11)	0.39 (-0.71,1.49)	D	_	_	-
0.78 (0.11,1.45)	0.50 (-0.26,1.27)	0.71 (-0.02,1.44)	1.47 (0.66,2.29)	0.54 (-0.12,1.20)	-0.11 (-0.83,0.60)	-0.50 (-1.46,0.46)	С	0.25 (-0.50,0.99)	0.03 (-0.77,0.83
0.56 (0.10,1.02)	0.29 (-0.30,0.87)	0.49 (-0.05,1.04)	1.26 (0.61,1.90)	0.32 (-0.13,0.77)	-0.33 (-0.85,0.19)	-0.72 (-1.70,0.25)	-0.22 (-0.71,0.27)	B	-0.22 (-0.52,0.08
0.37 (0.02,0.71)	0.09 (-0.42,0.60)	0.30 (-0.15,0.75)	1.06 (0.49,1.63)	0.13 (-0.21,0.46)	-0.53 (-0.95,-0.10)	-0.92 (-1.94,0.10)	-0.41 (-0.99,0.16)	-0.19 (-0.49,0.10)	A

Table 3. Detailed results of network meta-analysis for the First peak KAM (grey) and KAAI (white). Data are SMDs (from the top left to the bottom right, higher comparator versus

lower comparator) and their related 95%CI. Bold texts in the table mean SMDs are statistically significant.

A= Control condition; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness -1/L shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

	Box 1. Inclusion criteria
1 2	Design
2	Randomized controlled trial
4	Participants
5	People with radiologically confirmed knee osteoarthritis
6	Intervention
7	• Manual therapy
8	Aerobic exercise
9	• Pulsed electrical stimulation (PES)
10	• Acupuncture
11	• Knee braces
12	Ice/cooling treatment
13	• Pulsed electromagnetic fields (PEMF)
14	• Balneotherapy
15	Interferential therapy
16	Transcutaneous electric Nerve stimulation (TENS)
17	Heat treatment
18	• Foot orthoses
19	• Laser/light therapy
20	Muscle-strengthening exercise
21	Static magnets
22	• Tai Chi
23	• Athletic tape
24	Neuromuscular electrical stimulation (NMES)
25	Comparator
26	• Control condition (standard/conventional care, placebo intervention,
27	no intervention, sham-exercise, analgesic advice and education)
28	Outcome measures
29	• KAM and KAAI.
30 21	Comparisons
31 22	 Interferential therapy Transcutaneous electric Nerve stimulation (TENS) Heat treatment Foot orthoses Laser/light therapy Muscle-strengthening exercise Static magnets Tai Chi Athletic tape Neuromuscular electrical stimulation (NMES) Comparator Control condition (standard/conventional care, placebo intervention, no intervention, sham-exercise, analgesic advice and education) Outcome measures KAM and KAAI. Comparisons All interventions compared to the comparator and to each other
32 33	Figure Legends
33 34	Figure 1. Flow chart of the study selection
35	Figure 2. Rankings for effects on First peak KAM. The graph displays th
36	(from the best to worst according to the outcomes), Y-axis represents the
37	
38	three options, and so on. A= Control condition; B= Lateral Wedge Insole
39	G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise
40	Figure 3. Rankings for effects on KAAI. The graph displays the distribut
41 42	Knee osteoarthritis (KOA); Knee adduction moment (KAM); Knee adduction a
42 43	
43 44	For peer review only
45	

Page 39 of 73

BMJ Open

best to worst according to the outcomes), Y-axis represents the cumulative probability for each treatment to be the best option, among the best two options, among the best three .ree; E=C. options, and so on. A= Control condition; B= Lateral Wedge Insole; C= Knee Brace; E= Gait retraining; F= Quadriceps strengthening; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Figure 4. Risk of bias summary

Initial citations retrieved from database search (n=4919)

 \rightarrow Duplicates (n=1350)

Title and abstracts screened (n= 3569)

Studies were excluded based on titles/abstracts (n=3043)

Studies were obtained for full-text evaluation (n= 526)

Full-text articles were excluded for the following reasons(n=508)

- Not randomized controlled trial (n=256)
- ♦ No suitable control group (n=35)
- Not OA study (n=8)
- No suitable data(n=119)
- Surgical intervention(n=51)
- ◆ Duplicates (n=39)

Not eligible for NMA but included in systematic review(n=4)

Included in final NMA(n=14)

For peer review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

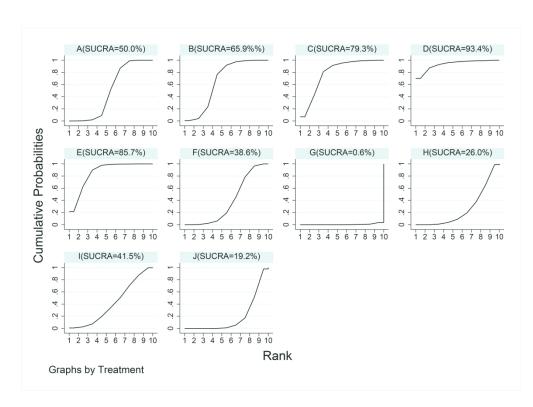


Figure 2

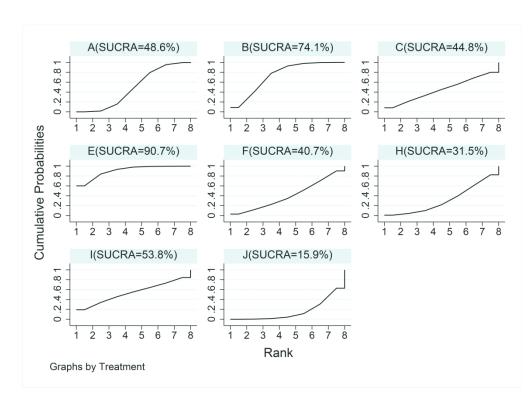
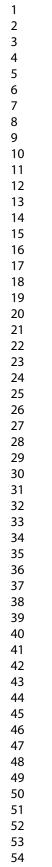


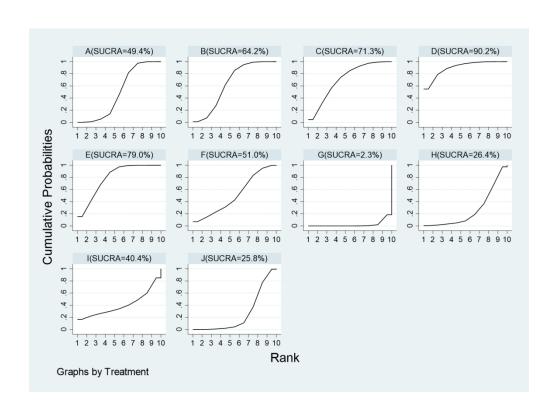
Figure 3

je 43 of 73			I	BMJ Ope	en			
Stud	ły ID	Randomization process	Deviations from intended j	Missing outcome data	Measurement of the outcome	Selection of the reported	0vera11	
Arazpour	2012	?	?	?	+	+	!	
Barrios	<u>2</u> 013	?	+	+	+	+	-	
Bennel1	2010	+	+	+	•	+	+	
Bennel1	2014	+	+	?	+	+	?	
Cheung	2018	?	?	?	•	?	?	
Erhart-Hledik	2012	?	+	?	+	?	?	
Foroughi	2011	?	+	?	+	+	?	
Hinman	2016	?	+	?	•	+	!	
Holsgaard-Larsen	2017	+	+	+	+	+	+	-
Hunt	2013	•	+	+	+	?	!	
Hunt	2018		?	+	+	?	?	
Jones	2013		?	?	•	?	?	
Khosravi	2019	?	?	?	?	?		
Lim	2008		?	"	+	?		
Robert-Lachaine	2020	?		•	+	+		
Song	2020			?	•	?	?	
Trombini-Souza		?	+					
Wang	2017	+	?	•	+	?]

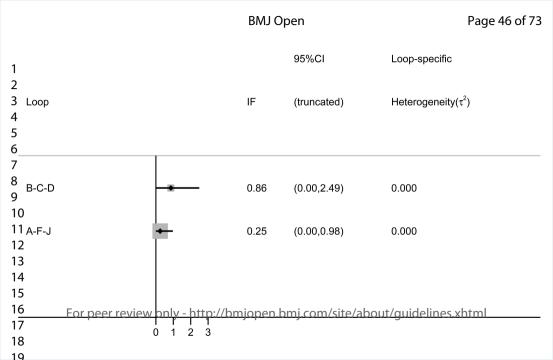

Page 43 of 73

G

н

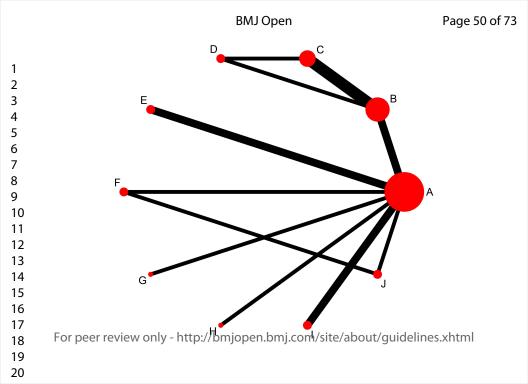

349x254mm (120 x 120 DPI)

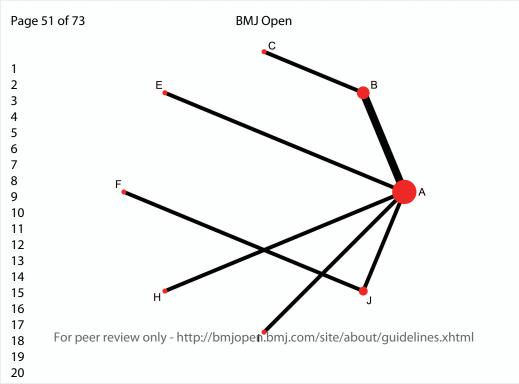
в

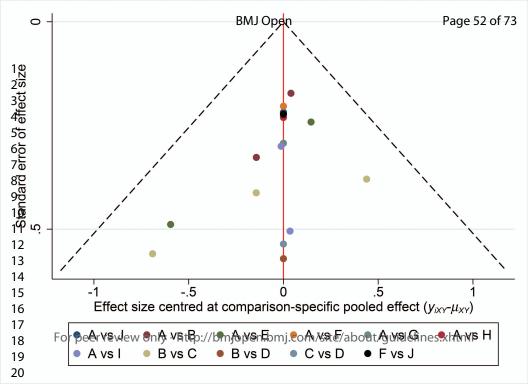


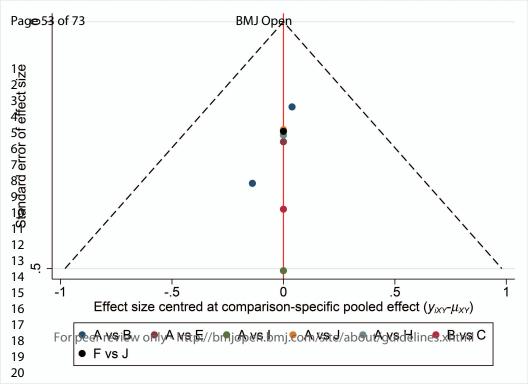
59

349x254mm (120 x 120 DPI)


BMJ Open


Study or Subgroup		otal Me	an SE) Total	Weight	Std. Mean Difference IV. Random, 95% CI	Std. Mean Difference IV, Random, 95% C
1.1.1 Gait retraining vs S Cheung 2018 Hunt 2018 Subtotal (95% CI) Heterogeneity: Tau ² = 0.13	-0.078 0.0839 -0.01 0.3599	37 0. 47	05 0.0547 13 0.3666 7): l ² = 46%	33 43		-1.12 [-2.08, -0.16] -0.38 [-0.86, 0.09] -0.63 [-1.32, 0.06]	
Test for overall effect: Z =		(1 - 0.1	/),1 = 407	5			
1.1.2 LWI vs Standard Ca		40 0.0	00 0 440		04 70/	0.041.0.00.0.001	
Barrios 2013 Hinman 2016	-0.011 0.1351 0.26 1.3295	68 0.	32 0.1133 46 1.234	4 67	78.3%	-0.34 [-0.98, 0.30] -0.16 [-0.49, 0.18]	
Subtotal (95% CI) Heterogeneity: Tau ² = 0.0); Chi² = 0.24, df = 1	87 (P = 0.6	2); l² = 0%	86	100.0%	-0.19 [-0.49, 0.10]	
Test for overall effect: Z =	1.28 (P = 0.20)						
1.1.3 Quadriceps strengt Lim 2008	hening vs Standar 0.1 0.9685		87 0.8962	2 48	100.0%	0.20 [-0.20, 0.60]	_ _
Subtotal (95% CI) Heterogeneity: Not applica		49			100.0%	0.20 [-0.20, 0.60]	-
Test for overall effect: Z =							
1.1.4 Variable-stiffness s							
Erhart-Hledik 2012 Subtotal (95% CI)	0.338 0.3763	32 -0.0	72 0.3878		100.0% 100.0%	1.06 [0.49, 1.63] 1.06 [0.49, 1.63]	
Heterogeneity: Not applica Test for overall effect: Z =							
1.1.5 Hip strengthening							
Bennell 2010 Subtotal (95% CI)	0.15 0.4371	39 0. 39	02 0.4258		100.0% 100.0%	0.30 [-0.15, 0.75] 0.30 [-0.15, 0.75]	
Heterogeneity: Not applica Test for overall effect: Z =						- · ·	
1.1.6 Lower limb exercis							
Foroughi 2011	-0.02 1.26	20 -0.	11 1.0223		73.9% 26.1%	0.08 [-0.51, 0.67]	
Hunt 2013 Subtotal (95% CI)	-0.05 0.91	29	17 0.9044	1 7 32		0.13 [-0.86, 1.11] 0.09 [-0.42, 0.60]	-
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =		(P = 0.9	4); I ² = 0%				
1.1.7 Neuromuscular exe							
Holsgaard-Larsen 2017 Subtotal (95% CI)	0.12 0.3125	44 0. 44	03 0.3168		100.0% 100.0%	0.28 [-0.14, 0.71] 0.28 [-0.14, 0.71]	
Heterogeneity: Not applica Test for overall effect: Z =							
1.1.8 LWI vs Knee Brace	. *						
Arazpour 2012 Jones 2013	-0.07 0.0324 -0.075 0.1296		08 0.019 45 0.1346		36.6% 41.3%	0.36 [-0.44, 1.17] -0.22 [-0.96, 0.52]	
Khosravi 2019 Subtotal (95% CI)	-0.08 0.1752		22 0.1442	2 7	22.1% 100.0%	0.82 [-0.29, 1.92] 0.22 [-0.34, 0.79]	
Heterogeneity: Tau ² = 0.0			8); I² = 22%		1001070	0.22 [0.04, 0.10]	
Test for overall effect: Z =							
1.1.9 LWI vs LWI+Knee E Khosravi 2019	-0.08 0.1752		51 0.1153		100.0%	1.08 [-0.07, 2.23]	
Subtotal (95% CI) Heterogeneity: Not applica		7			100.0%	1.08 [-0.07, 2.23]	
Test for overall effect: Z =							
1.1.10 Knee Brace vs LW Khosravi 2019	/I+Knee Brace -0.22 0.1442		51 0.1153			0.22 [-0.83, 1.27]	
Subtotal (95% CI) Heterogeneity: Not applica		7		7	100.0%	0.22 [-0.83, 1.27]	
Test for overall effect: Z =							
1.1.11 Quadriceps streng Bennell 2014	othening vs Neuror -0.04 0.4605	44 0.	exercise		100.0%	-0.33 [-0.77, 0.11]	— — —
Subtotal (95% CI) Heterogeneity: Not applica		44			100.0%	-0.33 [-0.77, 0.11]	
Test for overall effect: Z =							
1.1.12 PNF vs Standard Song 2020	Care 0.01 0.13	13 0.	01 0.13	3 16	100.0%	0.00 [-0.73, 0.73]	
Subtotal (95% CI) Heterogeneity: Not applica		13			100.0%	0.00 [-0.73, 0.73]	
Test for overall effect: Z =							
1.1.13 Electroacupunctu Wang 2017	re vs Sham-acupur 0.019 0.095		36 0.094	1 40	100.0%	0.57 [-0.10, 1.24]	
Subtotal (95% CI)		18 -0.0			100.0%	0.57 [-0.10, 1.24]	
Heterogeneity: Not applica Test for overall effect: Z =							
1.1.14 Minimalist footwe					10		
Trombini-Souza 2015 Subtotal (95% CI)	-0.23 0.84	28 0. 28	18 1.15		100.0% 100.0%	-0.40 [-0.93, 0.13] -0.40 [-0.93, 0.13]	
Heterogeneity: Not applica Test for overall effect: Z =							
1.1.15 ACL-brace vs V3F	-brace						
Robert-Lachaine 2020 Subtotal (95% CI)	0.005 0.0991	21 -0. 21	01 0.0967		100.0% 100.0%	0.15 [-0.46, 0.76] 0.15 [-0.46, 0.76]	
Heterogeneity: Not applica Test for overall effect: Z =							
1.1.16 ACL-brace vs VEF							
Robert-Lachaine 2020 Subtotal (95% CI)	0.005 0.0991	21 -0.0 21	18 0.1043		100.0% 100.0%	0.22 [-0.39, 0.83] 0.22 [-0.39, 0.83]	
Heterogeneity: Not applica				21	100.0 /0	0.22 [-0.33, 0.03]	
	0.72 (P = 0.47)						
Test for overall effect: Z =	hrace						<u> </u>
1.1.17 V3P-brace vs VER Robert-Lachaine 2020	-brace -0.01 0.0967		18 0.1043		100.0%	0.08 [-0.53, 0.68]	
1.1.17 V3P-brace vs VER	-0.01 0.0967 able	21 -0.0 21	18 0.1043		100.0% 1 00.0 %	0.08 [-0.53, 0.68] 0.08 [-0.53, 0.68]	-


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


to beet terien only

For peet terien only

Appendix

Appendix 1 Search strategies	2
Appendix 2 Results of re-analysis	
Appendix 3 Results of Inconsistency	6
Appendix 4 Conventional meta-analyses results	7
Appendix 5 Network Diagram	
Appendix 6 Table of GRADE	
Appendix 7 Comparison-adjusted funnel plot for each outcome from the network meta	a-analysis 16

Appendix 1 Search strategies

Search strategies for randomized controlled trials Pubmed

- (((((("Osteoarthritis, Knee"[Mesh]) OR Knee Osteoarthritides[Title/Abstract]) OR 1. Knee Osteoarthritis[Title/Abstract]) OR Osteoarthritis of Knee[Title/Abstract]) OR Osteoarthritis of the Knee[Title/Abstract])))) AND (((((((((((("Physical Therapy Modalities"[Mesh]) OR (Modalities, Physical Therapy[Title/Abstract])) OR (Modality, Physical Therapy[Title/Abstract])) OR (Physical Therapy Modality[Title/Abstract])) OR (Techniques)[Title/Abstract])) OR (Physiotherapy (Physiotherapies (Techniques)[Title/Abstract])) OR (Physical Therapy Techniques[Title/Abstract])) OR (Techniques, (Physical Therapy Technique[Title/Abstract])) OR Physical Therapy[Title/Abstract])) OR (Group Physiotherapy[Title/Abstract])) OR (Group Physiotherapies[Title/Abstract])) OR (Physiotherapies, Group[Title/Abstract])) OR (Physiotherapy, Group[Title/Abstract])) OR (Neurological Physiotherapy[Title/Abstract])) OR (Physiotherapy, Neurological[Title/Abstract])) OR (Neurophysiotherapy[Title/Abstract])
- ((((((("Osteoarthritis, Knee"[Mesh]) OR Knee Osteoarthritides[Title/Abstract]) OR Knee Osteoarthritis[Title/Abstract]) OR Osteoarthritis of Knee[Title/Abstract]) OR Osteoarthritis of the Knee[Title/Abstract]))))) AND (((("Orthopedic Equipment"[Mesh]) OR(Equipment,Orthopedic[Title/Abstract]))OR(Equipments,
- 1. ('physiotherapy'/exp OR 'physical therapy':ab,ti OR 'physical therapy (speciality)':ab,ti OR 'physical therapy (specialty)':ab,ti OR 'physical therapy modalities ':ab,ti OR 'physical therapy service':ab,ti OR 'physical therapy speciality':ab,ti OR 'physical therapy specialty ':ab,ti OR 'physical treatment':ab,ti OR ' physic therapy ':ab,ti OR 'physical techniques':ab,ti 'physical treatment':ab,ti OR therapy OR 'physiotherapy department':ab,ti OR 'therapy, physical':ab,ti) AND ('knee osteoarthritis'/exp OR 'arthrosis, knee':ab,ti OR 'femorotibial arthrosis':ab,ti OR 'gonarthrosis':ab,ti OR 'knee arthrosis':ab,ti OR 'knee joint arthrosis':ab,ti OR 'knee joint osteoarthritis':ab,ti OR 'knee osteo-arthritis':ab,ti OR 'knee osteo-arthrosis':ab,ti OR 'knee osteoarthrosis':ab,ti OR 'osteoarthritis, knee':ab,ti OR 'osteoarthrosis, knee':ab,ti)
- 2. ('orthosis'/exp OR 'device, orthotic':ab,ti OR 'devices, orthotic':ab,ti OR 'orthesis':ab,ti OR 'orthopeadic support device':ab,ti OR 'orthopedic support device':ab,ti OR 'orthoses':ab,ti OR 'orthotic device (physical object)':ab,ti OR 'orthotic devices':ab,ti) AND ('knee osteoarthritis'/exp OR 'arthrosis, knee':ab,ti OR 'femorotibial arthrosis':ab,ti OR 'gonarthrosis':ab,ti OR 'knee arthrosis':ab,ti OR 'knee joint arthrosis':ab,ti OR 'knee joint osteoarthritis':ab,ti OR 'knee osteo-arthritis':ab,ti OR 'knee osteo-arthrosis':ab,ti OR 'knee osteo-arthrosis':ab,ti

Web of Science

1. AB=(physical

therapy OR physiotherapy OR physio therapy OR physical treatment OR physioth erapy department OR physical therapy techniques)

- 2. TI=(physical therapy OR physiotherapy OR physio therapy OR physical treatment OR physiotherapy department OR physical therapy techniques)
- 3. AB=(orthosis OR device OR orthesis OR orthoses OR orthopeadic support device OR orthotic device)
- 4. TI=(orthosis OR device OR orthesis OR orthoses OR orthopeadic support device OR orthotic device)
- 5. #4 OR #3 OR #2 OR #1
- 6. AB=(knee osteoarthritis OR femorotibial OR OR arthrosis gonarthrosis OR knee arthrosis OR knee osteo-arthritis knee osteoarthrosis OR osteoarthrosis)
- 7. TI=(knee osteoarthritis OR femorotibial arthrosis OR gonarthrosis OR knee arthrosis OR knee osteo-arthritis OR knee osteoarthrosis OR osteoarthrosis)
- 8. #6 OR #7
- 9. #8 AND #5
- 1. (MeSH descriptor: [Physical Therapy Modalities] explode all trees OR (Neurological Physiotherapy):ti,ab,kw OR (Physiotherapy, Neurological):ti,ab,kw OR (Neurophysiotherapy):ti,ab,kw OR (Techniques, Physical Therapy):ti,ab,kw OR (Physiotherapies (Techniques)):ti,ab,kw OR (Physical Therapy Techniques):ti,ab,kw OR (Physiotherapy (Techniques)):ti,ab,kw OR (Modality, Physical Therapy):ti,ab,kw OR (Physical Therapy Modality):ti,ab,kw OR (Physical Therapy Technique):ti,ab,kw OR (Modalities, Physical Therapy):ti,ab,kw OR (Group Physiotherapies):ti,ab,kw OR (Physiotherapy, Group):ti,ab,kw OR (Group Physiotherapy):ti,ab,kw OR (Physiotherapies, Group):ti,ab,kw) AND ((Osteoarthritis of Knee):ti,ab,kw OR (Knee Osteoarthritides):ti,ab,kw OR (Knee Osteoarthritis):ti,ab,kw OR (Osteoarthritis of the Knee):ti,ab,kw) OR MeSH descriptor: [Osteoarthritis, Knee] explode all trees)
- (MeSH descriptor: [Orthopedic Equipment] explode all trees OR (Orthopedic Equipments):ti,ab,kw OR (Equipment, Orthopedic):ti,ab,kw OR (Equipments, Orthopedic):ti,ab,kw) AND ((Osteoarthritis of Knee):ti,ab,kw OR (Knee Osteoarthritides):ti,ab,kw OR (Knee Osteoarthritis):ti,ab,kw OR (Osteoarthritis of the Knee):ti,ab,kw) OR MeSH descriptor: [Osteoarthritis, Knee] explode all trees)

MEDLINE

- 1. (knee osteoarthritis) OR (femorotibial arthrosis) OR (gonarthrosis) OR (knee arthrosis) OR (knee osteo-arthritis) OR (knee osteoarthrosis) OR (osteoarthrosis)
- (physical therapy) OR (physiotherapy) OR (physio therapy) OR (physical treatment) OR (physioth erapy department) OR (physical therapy techniques)
- 3. (orthotic devices) OR (Orthopedic Equipment) OR (orthosis) OR (device) OR (orthesis) OR (orthoses) OR (orthopedic support device)
- 4. #2 OR #3

1 2 3

4

5

6 7

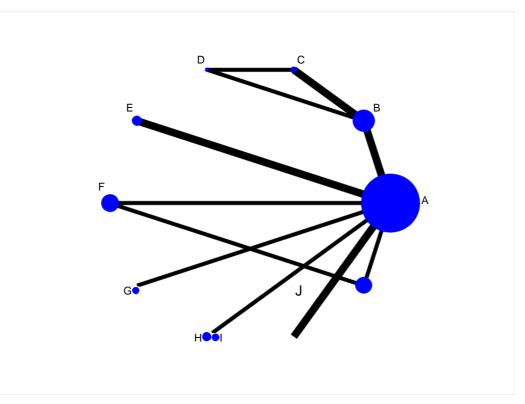
8

9

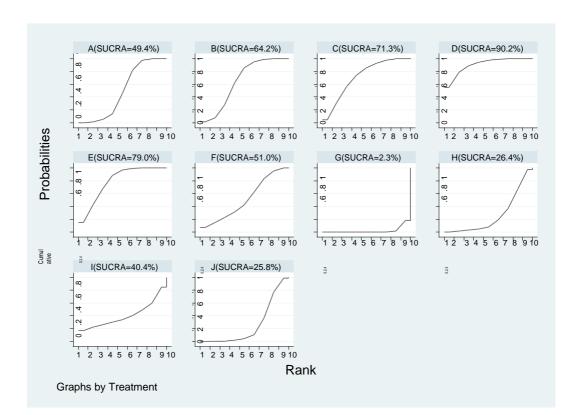
10 11

12

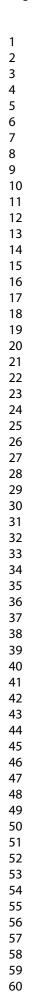
13

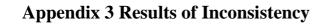

14

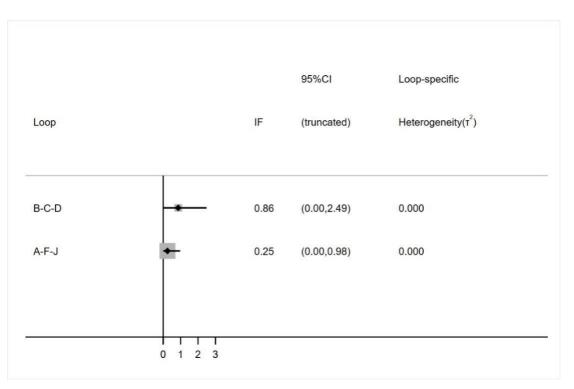
15


16

5. #1 AND #4


Appendix 2 Results of re-analysis




eFigure 1. Structure of network formed by interventions and their direct comparisons on First peak KAM (re-analysis). A= Control condition; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

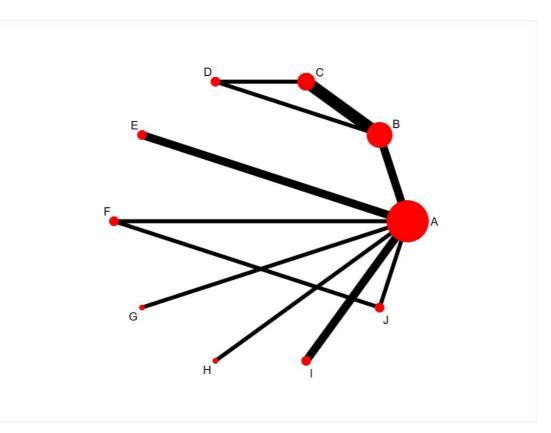
eFigure 2. Rankings for effects on First peak KAM (re-analysis). Graph displays distribution of probabilities for each treatment. X-axis represents the possible rank of each treatment (from the best to worst according to the outcomes), Y-axis represents the cumulative probability for each treatment to be the best option, among the best two options, among the best three options, and so on. A= Control condition; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

eFigure 1. Inconsistency for triangular loops in First peak KAM.

Appendix 4 Conventional meta-analyses results

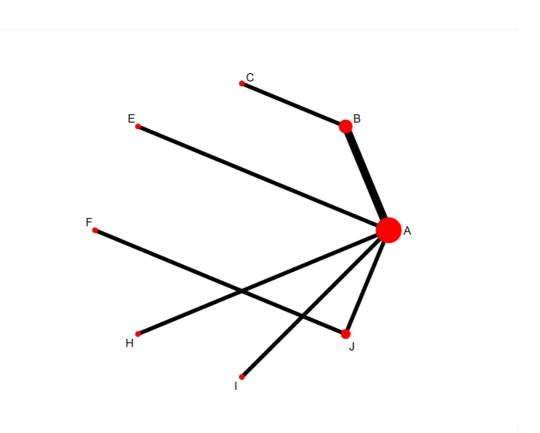
Study or Subgroup		Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.1.1 Gait retraining vs St Cheung 2018 Hunt 2018 Subtotal (95% CI)	-0.078 0.0839 -0.01 0.3599	10 37 47	0.13	0.0547 0.3666	10 33 43	33.5% 66.5% 100.0 %	-1.12 [-2.08, -0.16] -0.38 [-0.86, 0.09] - 0.63 [-1.32, 0.06]	
Heterogeneity: Tau ² = 0.13 Test for overall effect: Z =		(P = 0	.17); l² =	= 46%				
1.1.2 LWI vs Standard Ca				0.1133				
Barrios 2013 Hinman 2016	-0.011 0.1351 0.26 1.3295	19 68	0.032	1,234	19 67	21.7% 78.3%	-0.34 [-0.98, 0.30] -0.16 [-0.49, 0.18]	
Subtotal (95% CI) Heterogeneity: Tau² = 0.0(87 (P = 0	.62); l²=	= 0%	86	100.0%	-0.19 [-0.49, 0.10]	
Test for overall effect: Z =								
1.1.3 Quadriceps strengt Lim 2008	hening vs Standar 0.1 0.9685	49	-0.087	0.8962		100.0%	0.20 [-0.20, 0.60]	
Subtotal (95% CI) Heterogeneity: Not applica	able	49			48	100.0%	0.20 [-0.20, 0.60]	-
Test for overall effect: Z = 0	0.98 (P = 0.33)							
1.1.4 Variable-stiffness s Erhart-Hledik 2012	hoes vs Standard 0.338 0.3763		-0.072	0.3878	23	100.0%	1.06 [0.49, 1.63]	
Subtotal (95% CI) Heterogeneity: Not applic:	ible	32			23	100.0%	1.06 [0.49, 1.63]	-
Test for overall effect: Z = :								
1.1.5 Hip strengthening ∨ Bennell 2010	s Standard Care 0.15 0.4371	39	0.02	0.4258	37	100.0%	0.30 [-0.15, 0.75]	
Subtotal (95% CI)		39	0.02	0.4200	37	100.0%	0.30 [-0.15, 0.75]	-
Heterogeneity: Not applic: Test for overall effect: Z =								
1.1.6 Lower limb exercis			0.44	1.0000		70.0%	0.0010.51.0.07	· · · · · ·
Foroughi 2011 Hunt 2013 Subtatel (05% CD	-0.02 1.26 -0.05 0.91	20 9		1.0223 0.9044	25 7	73.9% 26.1%	0.08 [-0.51, 0.67] 0.13 [-0.86, 1.11]	
Subtotal (95% CI) Heterogeneity: Tau ² = 0.0(29 (P = 0	.94); l² =	= 0%	32	100.0%	0.09 [-0.42, 0.60]	
Test for overall effect: Z = (
1.1.7 Neuromuscular exe Holsgaard-Larsen 2017	0.12 0.3125	44	0.03	0.3168		100.0%	0.28 [-0.14, 0.71]	
Subtotal (95% CI) Heterogeneity: Not applica		44			41	100.0%	0.28 [-0.14, 0.71]	
Test for overall effect: Z = 1	1.30 (P = 0.19)							
1.1.8 LWI vs Knee Brace Arazpour 2012	-0.07 0.0324	12	-0.08	0.019	12	36.6%	0.36 [-0.44, 1.17]	
Jones 2013 Khosravi 2019	-0.075 0.1296 -0.08 0.1752		-0.045	0.1346 0.1442	14	41.3% 22.1%	-0.22 [-0.96, 0.52] 0.82 [-0.29, 1.92]	
Subtotal (95% Cl) Heterogeneity: Tau ² = 0.06		33 /P = 0			33	100.0%	0.22 [-0.34, 0.79]	-
Test for overall effect: Z = 1		. (1 – 0	20/1-	- 22 /0				
1.1.9 LWI vs LWI+Knee B Khosravi 2019	race -0.08 0.1752	7	0.261	0.1153	7	100.0%	1.08 [-0.07, 2.23]	
Subtotal (95% CI)		7	-0.231	0.1155		100.0%	1.08 [-0.07, 2.23]	
Heterogeneity: Not applica Test for overall effect: Z =								
1.1.10 Knee Brace vs LW Khosravi 2019	I+Knee Brace -0.22 0.1442	7	0.054	0.1153	7	100.0%	0.22 [-0.83, 1.27]	
Subtotal (95% CI)		7	-0.251	0.1155	7	100.0%	0.22 [-0.83, 1.27]	
Heterogeneity: Not applica Test for overall effect: Z = (
1.1.11 Quadriceps streng								
Bennell 2014 Subtotal (95% CI)	-0.04 0.4605	44 44	0.12	0.502	38 38	100.0% 100.0%	-0.33 [-0.77, 0.11] - 0.33 [-0.77, 0.11]	-
Heterogeneity: Not applica Test for overall effect: Z =								
1.1.12 PNF vs Standard C								
Song 2020 Subtotal (95% CI)	0.01 0.13	13 13	0.01	0.13	16 16	100.0% 100.0%	0.00 [-0.73, 0.73] 0.00 [-0.73, 0.73]	
Heterogeneity: Not applic: Test for overall effect: Z = I								
1.1.13 Electroacupunctur		cture						
Wang 2017 Subtotal (95% Cl)	0.019 0.095	18 18	-0.036	0.094		100.0% 100.0%	0.57 [-0.10, 1.24] 0.57 [-0.10, 1.24]	
Heterogeneity: Not applica Test for overall effect: Z =								
1.1.14 Minimalist footwea		rtral te	nnis sh	oe				
Trombini-Souza 2015 Subtotal (95% Cl)	-0.23 0.84	28 28	0.18	1.15		100.0% 100.0%	-0.40 [-0.93, 0.13] -0.40 [-0.93, 0.13]	
Heterogeneity: Not applica Test for overall effect: Z =								
1.1.15 ACL-brace vs V3P								
Robert-Lachaine 2020 Subtotal (95% CI)	0.005 0.0991	21 21	-0.01	0.0967		100.0% 100.0%	0.15 [-0.46, 0.76] 0.15 [-0.46, 0.76]	
Heterogeneity: Not applica Test for overall effect: Z = 1								
1.1.16 ACL-brace vs VER								
Robert-Lachaine 2020 Subtotal (95% CI)	0.005 0.0991	21 21	-0.018	0.1043		100.0% 100.0%	0.22 [-0.39, 0.83] 0.22 [-0.39, 0.83]	
Heterogeneity: Not applica Test for overall effect: Z = 1								
1.1.17 V3P-brace vs VER								
1.1.17 V3P-brace vs VER Robert-Lachaine 2020 Subtotal (95% CI)	-0.01 0.0967	21 21	-0.018	0.1043		100.0% 100.0%	0.08 [-0.53, 0.68]	
	shio	21			21	100.0%	0.08 [-0.53, 0.68]	
Heterogeneity: Not applica								
Heterogeneity: Not applica Test for overall effect: Z = (

eFigure 1a. Conventional meta-analysis of treatment effects on First peak KAM.


	Exp	erimenta	ıl	(Control	1	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	IV, Random, 95% Cl	IV, Random, 95% Cl
1.2.1 Gait retraining vs 9	Standard	Care						
Hunt 2018	-0.24	0.2699	37	0.02	0.2849	33	-0.93 [-1.42, -0.43]	
1.2.2 Lower limb exerci	se vs Sta	andard Ca	are					
Foroughi 2011	0.14	1.311	20	0.06	0.9254	25	0.07 [-0.52, 0.66]	× 1
1.2.3 LWI vs Knee Brac	е							
Jones 2013	-0.06	0.144	14	-0.05	0.12	14	-0.07 [-0.81, 0.67]	
1.2.4 Electroacupunctu	re vs Sha	m-acupi	incture	•				
Wang 2017	-0.002	0.093	18	-0.046	0.012	18	0.65 [-0.02, 1.32]	
1.2.5 ACL-brace vs V3P	-brace							
Robert-Lachaine 2020	-0.001	0.106	21	-0.002	0.0989	21	0.01 [-0.60, 0.61]	30 28
1.2.6 ACL-brace vs VER	-brace							
Robert-Lachaine 2020	-0.001	0.106	21	-0.014	0.1043	21	0.12 [-0.48, 0.73]	
1.2.7 V3P-brace vs VER	-brace							
Robert-Lachaine 2020	-0.002	0.0989	21	-0.014	0.1043	21	0.12 [-0.49, 0.72]	······································
							387	-1 -0.5 0 0.5 1
								Favours (experimental) Favours (control)

eFigure 1b. Conventional meta-analysis of treatment effects on Second peak KAM.

Study or Subgroup	Expe Mean	erimental SD	Total	Mean	ontrol SD	Total	Weight	Std. Mean Difference IV, Random, 95% Cl	Std. Mean Difference IV, Random, 95% Cl
1.3.1 LWI vs Standard Ca		30	, viai	mean	30	ivial	rreight	W, Randolli, 33% Cl	TV, IXANUUTI, 5570 CI
Barrios 2013		0.0727	19	0.016	0.064	19	21.7%	-0.36 [-1.00, 0.28]	
			68				78.3%		
Hinman 2016	0.07	0.451		0.15	0.435	67		-0.18 [-0.52, 0.16]	
Subtotal (95% CI)			87			86	100.0%	-0.22 [-0.52, 0.08]	
Heterogeneity: Tau² = 0.0(Test for overall effect: Z =			(P = 0.	63); I² = 0	%				
1.3.2 Gait retraining vs St	andard Ca	re							_
Hunt 2018	-0.04	0.105	37	0.01	0.0987	33	100.0%	-0.48 [-0.96, -0.01]	
Subtotal (95% Cl)			37			33	100.0%	-0.48 [-0.96, -0.01]	
Heterogeneity: Not applica Test for overall effect: Z =		.05)							
1.3.3 Hip strengthening v	s Standard	l Care							_
Bennell 2010	0.05	0.1873	39	0.02	0.1825	37	100.0%	0.16 [-0.29, 0.61]	
Subtotal (95% CI)			39			37	100.0%	0.16 [-0.29, 0.61]	
Heterogeneity: Not applica	ble								
Test for overall effect: Z = I		.48)							
1.3.4 Lower limb exercis			5		à tàci	2	100.05		
Hunt 2013	-0.12	0.3775	9	-0.08	0.4951		100.0%	-0.09 [-1.08, 0.90]	
Subtotal (95% CI)			9			7	100.0%	-0.09 [-1.08, 0.90]	
Heterogeneity: Not applica Test for overall effect: Z = (.86)							
1.3.5 Neuromuscular exe				224		1.2	incipii	16 an 1 a 1 à 16 - 1 1	
Holsgaard-Larsen 2017	0.05	0.1316	44	0.01	0.1109		100.0%	0.32 [-0.10, 0.75]	
Subtotal (95% CI)			44			41	100.0%	0.32 [-0.10, 0.75]	
Heterogeneity: Not applica Test for overall effect: Z =		.14)							
1.3.6 LWI vs Knee Brace				à các é			100.000		
Jones 2013	-0.0395	0.0687		-0.0215	0.0726		100.0%	-0.25 [-0.99, 0.50]	
Subtotal (95% CI)	14		14			14	100.0%	-0.25 [-0.99, 0.50]	
Heterogeneity: Not applica Test for overall effect: Z = I		.51)							
1.3.7 Quadriceps strengt							100-001		_
Bennell 2014	-0.02	0.1809	44	0.02	0.213		100.0%	-0.20 [-0.64, 0.23]	
Subtotal (95% CI)			44			38	100.0%	-0.20 [-0.64, 0.23]	
Heterogeneity: Not applica	ble								
Test for overall effect: Z = I).91 (P = 0	.36)							
1.3.8 Minimalist footwear					0.4000	20	100.000		
Trombini-Souza 2015	-0.09	0.3652	28 28	0.01	0.4803		100.0% 100.0%	-0.23 [-0.76, 0.29]	
Subtotal (95% CI)	i.i.e		28			20	100.0%	-0.23 [-0.76, 0.29]	
Heterogeneity: Not applica Test for overall effect: Z = I		.39)							
1.3.9 ACL-brace VS V3P-									
Robert-Lachaine 2020	ി.2	4.9428	21	0	4.8368		100.0%	0.04 [-0.56, 0.65]	
Subtotal (95% CI)			21			21	100.0%	0.04 [-0.56, 0.65]	
Heterogeneity: Not applica Test for overall effect: Z = I		.90)							
1.3.10 ACL-brace vs VER	brace								
Robert-Lachaine 2020	0.2	4.9428	21	-0.4	4.9624	21	100.0%	0.12 [-0.49, 0.72]	
Subtotal (95% CI)			21			21	100.0%	0.12 [-0.49, 0.72]	
Heterogeneity: Not applica Test for overall effect: Z = I		.70)							
1.3.11 V3P-brace vs VER									
Robert-Lachaine 2020	0	4.8368	21	-0.4	4.9624		100.0%		
Subtotal (95% CI)			21			21	100.0%	0.08 [-0.53, 0.69]	
Heterogeneity: Not applica	ble								
Test for overall effect: Z = I		.80)							
	17	25							
									-1 -0.5 0 0.5 1


eFigure 1c. Conventional meta-analysis of treatment effects on KAAI.

Appendix 5 Network Diagram

eFigure 1a. Structure of network formed by interventions and their direct comparisons (First peak KAM). A= Control condition; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Footnote: Width of the lines is proportional to the number of trials comparing every pair of treatments. Size of every circle is proportional to the number of randomly assigned participants (ie, sample size).

eFigure 1b. Structure of network formed by interventions and their direct comparisons (KAAI). A= Control condition; B= Lateral Wedge Insole; C= Knee Brace; E= Gait retraining; F= Quadriceps strengthening; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Footnote: Width of the lines is proportional to the number of trials comparing every pair of treatments. Size of every circle is proportional to the number of randomly assigned participants (ie, sample size).

Appendix 6 Table of GRADE

Based on all the above information, we GRADEd each network estimate according to the following criteria:

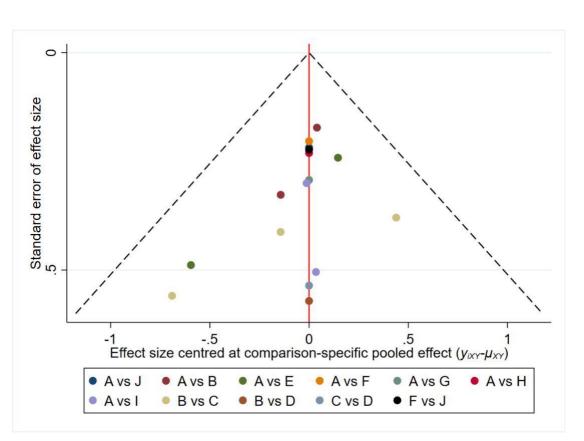
- Study limitations: We downgraded by one level when the contributions from low RoB comparisons were less than 30% and contributions from moderate RoB comparisons were 70% or greater. And we downgraded by two level when the contributions from low RoB comparisons were more than 30%.
- 2) Imprecision: We considered a clinically meaningful threshold for CI to be 0 and did not

BMJ Open

downgrade the estimate if the upper limit is below 0; or if the lower limit is above 0.

- 3) Inconsistency: We rated two concepts, heterogeneity and incoherence (inconsistency), in this domain. For heterogeneity, we did not downgrade any network estimate for heterogeneity, because we looked at the common tau and found that it is low. For inconsistency, we looked at the results of inconsistency (Appendix 2), where we have not downgraded for imprecision.
- 4) Indirectness: We have assured transitivity in our network by limiting the included studies to patients with knee osteoarthritis. Evaluation of transitivity for singly-connected nodes is unclear, so we downgraded such nodes for indirectness.
- 5) Publication bias: The comparison-adjusted funnel plot (Appendix 5) did not suggest presence of overall publication bias. We managed to retrieve supplementary and unpublished information included in the available systematic reviews and network meta-analyses, and we are confident that we have all available information that is possible to capture from clinical trial registries. Although we cannot completely rule out the possibility that some research is still missing, we still believe that the project does not need to be downgraded.

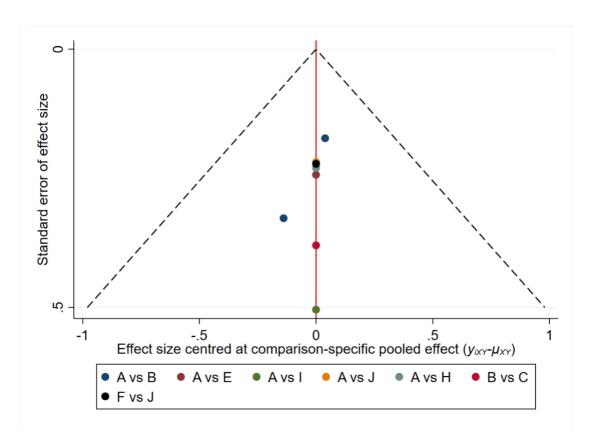
Comparison	Nature of the Evidence	GRADE	Downgarding due to
AB: Control Condition vs LWI	Mixed	LOW	Study limitations; Imprecision
AC: Control Condition vs Knee Brace	Indirect	LOW	Study limitations; Imprecision
AD: Control Condition <i>vs</i> LWI+Knee Brace	Indirect	LOW	Study limitations; Imprecision
AE: Control Condition <i>vs</i> Gait Retraining	Mixed	VERY LOW	Study limitations; Indirectness
AF: Control Condition <i>vs</i> Quadriceps Strengthening	Mixed	VERY LOW	Study limitations; Imprecision
AG: Control Condition <i>vs</i> Variable- Stiffness Shoes	Mixed	VERY LOW	Study limitations; Indirectness;
AH: Control Condition <i>vs</i> Hip Strengthening	Mixed	VERY LOW	Study limitations; Indirectness; Imprecision


AI: Control Condition vs Lower Limb	Mixed	VERY LOW	Study limitations; Indirectness;
Exercise			Imprecision
AJ: Control Condition vs	Mixed	MODERATE	Study limitations
Neuromuscular Exercise			
BC: LWI vs Knee Brace	Mixed	VERY LOW	Study limitations; Imprecision
BD: LWI vs LWI+Knee Brace	Mixed	VERY LOW	Study limitations; Imprecision
BE: LWI vs Gait Retraining	Indirect	VERY LOW	Study limitations; Indirectness;
			Imprecision
BF: LWI vs Quadriceps Strengthening	Indirect	LOW	Study limitations; Imprecision
BG: LWI vs Variable-Stiffness Shoes	Indirect	LOW	Study limitations; Indirectness
BH: LWI vs Hip Strengthening	Indirect	VERY LOW	Study limitations; Indirectness;
			Imprecision
BI: LWI vs Lower Limb Exercise	Indirect	VERY LOW	Study limitations; Indirectness;
			Imprecision
BJ: LWI vs Neuromuscular Exercise	Indirect	MODERATE	Study limitations
CD: Knee Brace vs LWI+Knee Brace	Mixed	VERY LOW	Study limitations; Imprecision
CE: Knee Brace vs Gait Retraining	Indirect	VERY LOW	Study limitations; Indirectness;
			Imprecision
CF: Knee Brace vs Quadriceps	Indirect	LOW	Study limitations; Imprecision
Strengthening			
CG: Knee Brace vs Variable-Stiffness	Indirect	LOW	Study limitations; Indirectness
Shoes			
CH: Knee Brace vs Hip Strengthening	Indirect	VERY LOW	Study limitations; Indirectness;
			Imprecision
CI: Knee Brace vs Lower Limb	Indirect	VERY LOW	Study limitations; Indirectness;
Exercise			Imprecision
CJ: Knee Brace vs Neuromuscular	Indirect	MODERATE	Study limitations
Exercise			
Exercise			

2 3				
4	Retraining			Imprecision
5 6	DF: LWI+Knee Brace vs Quadriceps	Indirect	LOW	Study limitations; Imprecision
7 8	Strengthening			
9 10	DG: LWI+Knee Brace vs Variable-	Indirect	VERY LOW	Study limitations; Indirectness
11 12	Stiffness Shoes			
13 14	DH: LWI+Knee Brace <i>vs</i> Hip	Indirect	LOW	Study limitations; Indirectness
15 16	Strengthening			
17 18	DI: LWI+Knee Brace vs Lower Limb	Indirect	VERY LOW	Study limitations; Indirectness;
19 20	Exercise			Imprecision
21 22	DJ: LWI+Knee Brace <i>vs</i>	Indirect	MODERATE	Study limitations
23 24	Neuromuscular Exercise			
25 26	EF: Gait Retraining vs Quadriceps	Indirect	VERY LOW	Study limitations; Indirectness
27 28	Strengthening			
29 30	EG: Gait Retraining vs Variable-	Indirect	VERY LOW	Study limitations; Indirectness
31 32	Stiffness Shoes			
33 34	EH: Gait Retraining vs Hip	Indirect	LOW	Study limitations; Indirectness
35 36	Strengthening			
37	EI: Gait Retraining vs Lower limb	Indirect	VERY LOW	Study limitations; Indirectness;
38 39	Exercise			Imprecision
40 41	EJ: Gait Retraining vs Neuromuscular	Indirect	LOW	Study limitations; Indirectness
42 43	Exercise			
44 45	FG: Quadriceps Strengthening vs	Indirect	VERY LOW	Study limitations; Indirectness
46 47	Variable-Stiffness Shoes			
48 49	FH: Quadriceps Strengthening vs Hip	Indirect	VERY LOW	Study limitations; Indirectness;
50 51	Strengthening			Imprecision
52 53	FI: Quadriceps Strengthening vs	Indirect	VERY LOW	Study limitations; Indirectness;
54 55	Lower Limb Exercise			Imprecision
56 57	FJ: Quadriceps Strengthening vs	Mixed	LOW	Study limitations; Imprecision
58 59	Neuromuscular Exercise			
60				

GH: Variable-Stiffness Shoes vs Hip	Indirect	LOW	Study limitations; Indirectness
Strengthening			
GI: Variable-Stiffness Shoes vs Lower	Indirect	VERY LOW	Study limitations; Indirectness
Limb Exercise			
GJ: Variable-Stiffness Shoes vs	Indirect	LOW	Study limitations; Indirectness
Neuromuscular Exercise			
HI: Hip Strengthening vs Lower Limb	Indirect	VERY LOW	Study limitations; Indirectness;
Exercise			Imprecision
HJ: Hip Strengthening vs	Indirect	VERY LOW	Study limitations; Indirectness;
Neuromuscular Exercise			Imprecision
IJ: Lower Limb Exercise <i>vs</i>	Indirect	VERY LOW	Study limitations; Indirectness;
Neuromuscular Exercise			Imprecision

BMJ Open


Appendix 7 Comparison-adjusted funnel plot for each outcome from

the network meta-analysis

eFigure 1a. Comparison-adjusted funnel plot for First peak KAM.

A= Control condition; B= Lateral Wedge Insole; C= Knee Brace; D= Lateral Wedge Insole+ Knee Brace; E= Gait retraining; F= Quadriceps strengthening; G= Variable-stiffness shoe; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

eFigure 1b. Comparison-adjusted funnel plot for KAAI.

A= Control condition; B= Lateral Wedge Insole; C= Knee Brace; E= Gait retraining; F= Quadriceps strengthening; H= Hip strengthening; I= Lower limb exercise; J= Neuromuscular exercise.

Page 71 of 73

ERIS M

2

PRISMA 2009 Checklist

Section/Topic	#	Checklist Item	Reported on Page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Page 1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Page 3, Line 67-93
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	Page 4-5, Line 107-169
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Page 7, Line 167-169
METHODS	·		
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	None
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Page 8, Line 179-186
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Page 8, Line 179-186
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Appendix 1 Search strategies
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Page 8, Line 179-186 & Figure 1
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Page 9, Line 206-215
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Page 8, Line 192-196
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the Study or outcomellevel) partition and the study or outcomellevel) partition and the study of the s	Page 9-10, Line 217-242

Page 72 of 73

353-362

& Figure

PRISMA 2009 Checklist

			& Figure 4
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Page 11-12, Line 244-272
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	Page 11-12, Line 244-272

Page 1 of 2

Reported Section/Topic **Checklist Item** # on Page # Page 16 9-10. Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective 17 Risk of bias across studies 15 reporting within studies). Line 18 19 217-228 20 Page 12, 2 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating Line Additional analyses 16 22 which were pre-specified. 267-272 23 24 RESULTS 26 Page 27 12-13, 28 Line Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at 29 Study selection 17 each stage, ideally with a flow diagram. 285-294 30 & Figure 31 1 32 33 Page 34 13-14. 35 Line For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and ³⁶ Study characteristics 18 provide the citations. 296-309 37 & Table 38 39 1, 2 40 Page 16, 41 Line 42 Risk of bias within studies Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). 19

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

45 46 47

43

Page 73 of 73

PRISMA 2009 Checklist

BMJ Open

-	-		
1			4
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Page 14-15, Line 310-339 & Appendix 4
3 4 5 6 7 Synthesis of results 8 9 20	21	Present the main results of the review. If meta-analyses done, include for each, confidence intervals and measures of consistency.	Page 14-15, Line 310-339 &Table 3 & Figure 2, 3
22 23 24 25 Risk of bias across studies 26 27 28	22	Present results of any assessment of risk of bias across studies (see Item 15).	Page 16, Line 353-362 & Appendix 6
29 30 31 32 Additional analysis 33 34 35	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Page 15, Line 340-351 & Appendix 2 & 3 & 7
38 39 40 Summary of evidence 11	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Page 16-17, Line 364-376
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Page 17-18,
15 16 17			

PRISMA 2009 Checklist

2				
3 4 5				Line 392-410
6 7	nclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Page 19-22, Line 431-489
1 FU	INDING			
13 14 Fu 15 16	nding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Page 22, Line 499-502
17 18 <i>Fro.</i> 18 doi:	<i>m:</i> Moher D, Liberati A, Tetzlaff , 10.1371/journal.pmed1000097	J, Altma	an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med	6(6): e1000097.
19 ^{20.} 20			For more information, visit: www.prisma-statement.org.	
20			Page 2 of 2	
22			Page 2 of 2	
23			1 490 2 01 2	
24				
25				
26				
27				
28 29				
30				
31				
32				
33				
34				
35				
36				
37				
38 39				
40				
41				
42				
43				
44				
45			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
46				
47				