

Supplementary Material

The Natural Cytotoxicity Receptor NKp44 (NCR2, CD336) is expressed on the majority of porcine NK cells *ex vivo* without stimulation

Running title:

Characterization of porcine NKp44 expression

Authors:

Kerstin H. Mair^{1,3*}, Assiatu J. Crossman^{2,4*}, Bettina Wagner⁵, Susanna Babasyan⁵, Leela Noronha^{5,6}, Patricia Boyd², Dante Zarlenga², Maria Stadler¹, Katinka A. van Dongen³, Wilhelm Gerner^{1,3,7}, Armin Saalmüller¹, and Joan K. Lunney^{2 #}

Affiliations:

- ¹Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- ²Animal Parasitic Disease Laboratory, BARC, ARS, USDA, Beltsville, MD 20705, USA
- ³CD Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- ⁴Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room 4B36, Bethesda, MD 20892, USA
- ⁵Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- ⁶USDA ARS Arthropod-Borne Animal Diseases Research Unit, ARS, USDA, Manhattan, KS 66502, USA

⁷The Pirbright Institute, Woking, United Kingdom

* These authors have contributed equally to this work and share first authorship

Correspondence:

Joan K. Lunney, PhD., APDL, BARC, ARS, USDA, Building 1040, Room 103, BARC-East, Beltsville, MD 20705, USA. PH: 240-645-5536; FAX: 301-504-5306; Email: Joan.Lunney@usda.gov

SUPP Figure 1: Gating strategy for FCM analyses of NKp44 expression. (A) Lymphocytes of PBMC and all organs analyzed were gated according to their light scatter properties. Potential doublet cells were excluded by a FSC-A/FSC-H gate, followed by gating of Near-IR⁻ or VDeFluor780⁻ cells to exclude dead cells. A representative example is shown for PBMC. **(B+C)** Cells with a high auto fluorescent signal were excluded from further analyses by using a bandpass filter 510/50 nm. Such cells were not observed in PBMC **(B)** but were found in lymphatic and non-lymphatic organs (C: representative example for spleen). The NKp44 gate was set according to an FMO (fluorescence minus one) control.

SUPP Figure 2: Frequencies of NKp44 and NKp46 expressing CD3⁺ cells in porcine blood. The frequencies of NKp44⁺ or NKp46⁺ cells co-expressing CD3 within total PBL was analyzed. (A) Dot plots show one representative example of a finishing pig. Frequencies of double-positive cells are indicated. (B) Frequencies of CD3⁺NKp44⁺ or CD3⁺NKp46⁺ within PBL are shown for piglets (n=6, open cycles), fattening pigs (n=24, grey cycles) and sows (n=6, black cycles). Frequencies of cell populations with mean and standard deviations were as follows: piglets - CD3⁺NKp44⁺: 0.46% ± 0.49, CD3⁺NKp46⁺: 0.54% ± 0.62; finishing pigs - CD3⁺NKp44⁺: 0.14% ± 0.15, CD3⁺NKp46⁺: 0.32% ± 0.22; sows - CD3⁺NKp44⁺: 0.50% ± 0.30, CD3⁺NKp46⁺: 0.77% ± 0.53. Means are indicated by red bars. Significant differences between NKp44 and NKp46 within the different age groups are indicated (*** p ≤ 0.001).

SUPP Figure 3: Ratios of NKp44 and NKp46 expressing cells in porcine blood. The ratios of NKp44⁺ to NKp46⁺ cells within total PBL (A) and within CD3⁻CD16⁺CD8 α^+ NK cells (B) are shown for piglets (*n*=6, open cycles), fattening pigs (*n*=24, grey cycles) and sows (*n*=6, black cycles). Ratios were calculated by dividing the % NKp44⁺ cells by the % NKp46⁺ cells of the respective animal. Black dashed lines represent a ratio of 1 (equal number of NKp44⁺ and NKp46⁺ cells).

SUPP Figure 4: NKp44 expression in cells from blood and organs of 2-4.5 year old sows. Expression of NKp44 was analyzed on lymphocytes isolated from blood, spleen, bronchial lymph node (BLN), tonsil and lung from 2-4.5 year old sows (PBMC: n=6, organs: n=3) by flow cytometry. Co-expression of NKp44 with CD3, CD8 α , CD16 and NKp46 is displayed. Results are shown for one representative animal with frequencies of NKp44⁺ cells indicated.

SUPP Figure 5: NKp44/ NKp46 defined phenotypes of NK cells in blood of 6 months old fattening pigs. Expression of NKp44 and NKp46 was analyzed on lymphocytes isolated from blood from 6 months old fattening pigs (n=24) by flow cytometry. Stacked bar charts show the frequencies of NKp44 and NKp46 double positive (red), single NKp44⁺ (blue), single NKp46⁺ (green) and double negative cells (grey) within total NK cells. For gating of cell populations, the same gating strategy as shown in Figures 4A was used. Frequencies of cell populations with mean and standard deviations were as follows: double-positive: 24.4% ± 11.6, NKp44⁺: 29.8% ± 22.2, NKp46⁺: 22.1% ± 19.1, double-negative: 23.8% ± 11.8.

SUPP Figure 6: NKp44 expression on porcine T-cell subsets after *in vitro* stimulation. Porcine PBMC from 6-month old finishing pigs (n=3) were stimulated *in vitro* for 7 days with IL-2 (50 ng/ml) or IL-15 (50 ng/ml). Cells cultured in medium alone served as the control. On day 7, cells were analyzed for NKp44 expression by flow cytometry. Non-cultivated cells (*ex vivo*) were stained in parallel. (A) For analyzing NKp44 induction on porcine T-cell subsets, CD3⁺CD4⁺, CD3⁺CD8 β^+ , or CD3⁺TCR $\gamma\delta^+$ cells were gated. Within these subsets, the frequency of NKp44⁺ cells was analyzed.

Supplementary Material

Graphs are from one representative animal. **(B)** Frequencies of NKp44⁺ cells within the distinct T-cell subsets for all animals are shown for all four conditions. Frequencies of NKp44⁺ cells with mean (red bars) and standard deviations were as follows: CD3⁺CD4⁺: *ex vivo*: $0.15\% \pm 0.04$, medium: $0.82\% \pm 0.27$, IL-2: $0.40\% \pm 0.24$, IL-15: $1.05\% \pm 0.79$; CD3⁺ CD8 β^+ : *ex vivo*: $0.20\% \pm 0.11$, medium: $0.31\% \pm 0.10$, IL-2: $0.81\% \pm 0.12$, IL-15: $0.66\% \pm 0.29$: CD3⁺ TCR $\gamma\delta^+$: *ex vivo*: $0.34\% \pm 0.11$, medium: $1.81\% \pm 1.22$, IL-2: $1.80\% \pm 0.41$, IL-15: $1.78\% \pm 0.93$.