Cell Metabolism, Volume 34

Supplemental information

Imatinib and methazolamide ameliorate COVID-19-

induced metabolic complications via elevating ACE2

enzymatic activity and inhibiting viral entry

Zilun Li, Meixiu Peng, Pin Chen, Chenshu Liu, Ao Hu, Yixin Zhang, Jiangyun Peng, Jiang Liu, Yihui Li, Wenxue Li, Wei Zhu, Dongxian Guan, Yang Zhang, Hongyin Chen, Jiuzhou Li, Dongxiao Fan, Kan Huang, Fen Lin, Zefeng Zhang, Zeling Guo, Hengli Luo, Xi He, Yuanyuan Zhu, Linghua Li, Bingding Huang, Weikang Cai, Lei Gu, Yutong Lu, Kai Deng, Li Yan, and Sifan Chen Supplemental Information Supplemental Information Inventory

1. Supplemental Figures Legends

2. Supplemental Figures:

Figure S1 related to Figure 1 Figure S2 related to Figure 2 Figure S3 related to Figure 3 Figure S4 related to Figure 4 Figure S5 related to Figure 5 Figure S6 related to Figure 6

3. Supplemental Table 1. DisGeNET query with four metabolic diseases, Related to Figure 1.

4. Supplemental Table 2. OpenTargetPlatform query with four metabolic diseases, Related to Figure 1.

5. Supplemental Table 3. The process of different steps upon high throughput compounds screening, Related to Figure 3.

6. Supplemental Table 4. Oligos used in this study, Related to STAR Methods.

7. Supplemental Table 5. References for meta-analysis of the risk of severity and mortality in COVID-19 patients treated with or without ACEi or ARB, Related to STAR Methods.

Supplementary Figure Legends

Figure S1. ACE2 is a Key Molecule Potentially Linking COVID-19 to Associated Metabolic Defects, Related to Figure 1.

(A-B) HUVECs were infected by SARS-CoV-2 (MOI = 0.005) for 24 h and subjected to transcriptome study. Kyoto Encyclopedia of Genes and Genomes (**KEGG**) pathway enrichment (**A**) and Gene Ontology (**GO**) pathway enrichment (**B**) of differentially expressed genes after infection were shown. (**C**) HUVECs were treated with vehicle (-) or combination of 50 ng/ml of TNF- α , IL-4, IL-6 and IFN- γ for 48 h and were subjected to real-time PCR of *ACE2* (n = 3). Error bars represent SEM; *p < 0.05; **p < 0.01; ***p < 0.001.

Figure S2. ACE2 Plays an Important Role in Maintaining Metabolic Homeostasis, Related to Figure 2.

(A-D) HUVECs were transfected with ACE2 plasmid for overexpression for 72 h and subjected to real-time PCR (n = 4). (E-N) Eight-week-old male ob/ob mice were treated with intravenous injection of AAV9-CAG-humanACE2-EGFP (ob/ob-ACE2) or corresponding control virus (ob/ob-Con) and their wild type littermates with control virus (WT-Con), and all mice were sacrificed at 12 weeks after 6 h fasting. Livers were subjected to immunoblotting of ACE2 (E, blot shown on the left, quantification on the right; n = 4). The ratio of plasma Ang II to Ang-(1-7) (F) was shown (n = 5). Body weight gain at 4 weeks after virus injection was calculated as body weight on sacrificed day against body weight on virus injection day (G), epididymal fat index (H), food intake (I) and water intake (J) were shown (n = 6). Plasma triglyceride (TG) (K) and total cholesterol (TC) (L) were shown (n = 5). (M) H&E staining in livers was shown. (N) Quantifications of TC in liver were shown (n = 6). Error bars represent SEM, *p < 0.05, **p < 0.01 and ***p < 0.001. Ang II, angiotensin II; Ang-(1-7), angiotensin (1-7).

Figure S3. Imatinib, Harpagoside and Methazolamide Are Identified as ACE2 Activators, Related to Figure 3.

(A) Conformational shuffling of ACE2 structure between closed (PDB code: 1R4L) and open state (PDB code: 1R42). (B) Knockdown efficiency of ACE2 siRNA in HUVECs was shown after real-time PCR analysis (n = 4). (C) Cell viability with the highest concentration of 15 compounds

in HUVECs was determined by lactate dehydrogenase (LDH) assay (n = 6). (**D-I**) HUVECs were treated with diminazene aceturate (**DIZE**, 100 μ M), imatinib (**Ima**), harpagoside (**Har**) or methazolamide (**Met**) for 16 h and subjected to real-time PCR (n = 6). (**J-M**) HUVECs were treated with combination of 50 ng/ml TNF- α , IFN- γ , IL-4 and IL-6 for 32 h following imatinib, harpagoside or methazolamide for 16 h and subjected to real-time PCR (n = 6). The significance of Inflammatory factors versus Control was shown as #, Ima/Har/Met + Inflammatory factors versus Inflammatory factors as *. (**N-S**) HUVECs were treated with 10 nM control siRNA (**siCon**) or ACE2 siRNA (**siACE2**) for 8 h following imatinib, harpagoside or methazolamide for 16 h and subjected to real-time PCR (n = 6), and immunoblotting (**U-W**, blot shown on the left, quantification on the right; n = 4). **L**, low concentration; **M**, medium concentration; **H**, high concentration; imatinib: 1 μ M, 5 μ M, 25 μ M, respectively; harpagoside: 4 μ M, 20 μ M, 100 μ M, respectively; methazolamide: 4 μ M, 20 μ M, 100 μ M, respectively; methazolamide: 4 μ M, 20 μ M, 100 μ M, respectively. Error bars represent SEM, *p < 0.05, **p < 0.01 and ***p < 0.001; #p < 0.05, ##p < 0.01 and ####p < 0.001.

Figure S4. Imatinib, Harpagoside and Methazolamide Directly Bind to and Activate ACE2, Related to Figure 4.

(A) Alignment of human and mouse ACE2 protein. Conserved amino acid residues for two proteins were labeled with asterisk (*), as unconserved amino acid residues were highlighted in red. (B) Murine AML12 cells were treated with 10 nM control siRNA (Con) and ACE2 siRNA (siACE2) for 24 h and subjected to real-time PCR (n = 6). (C-E) AML12 cells were treated with imatinib, harpagoside or methazolamide for 16 h and subjected to real-time PCR (n = 5). L, low concentration; H, high concentration; imatinib: 1 μ M, 25 μ M, respectively; harpagoside: 4 μ M, 100 μ M, respectively; methazolamide: 4 μ M, 100 μ M, respectively. Error bars represent SEM, *p < 0.05, **p < 0.01 and ***p < 0.001.

Figure S5. Imatinib and Methazolamide Ameliorate Metabolic Defects in Insulin-resistant Mice via ACE2, Related to Figure 5.

(A-L) Twenty-eight-week-old male mice with 23 weeks high-fat-diet treatment (DIO) and controlled lean mice (Lean) were treated with vehicle, 250 mg/kg of imatinib (DIO + Ima) or 100 mg/kg of methazolamide (DIO + Met) through gavage once each day for 4 weeks. At 32 weeks,

all mice were fasted for 6 h and sacrificed. Body weight (A), epididymal fat index (B), food intake (C) and water intake (D) were shown (n = 6). The significance of DIO versus Lean was shown as^{*}, DIO+Met versus DIO as #. **p < 0.05, **#p < 0.01 and ***#p < 0.001. Plasma triglyceride (**TG**) (E), total cholesterol (TC) (F), alanine aminotransferase (ALT) (G) and aminotransferase (AST) (H) were shown. Livers were subjected to quantifications of TG (I) and TC (J) (n = 6) and immunoblotting of FoxO1 (**K**, blot shown on the left, quantification on the right; n = 6) and ACE2 (L, blot shown on the left, quantification on the right; n = 6). (M-O) For whole body knockdown of ACE2 (ACE2 kd), twenty-six-week-old male mice with 21 weeks high-fat-diet treatment (DIO) were treated with intravenous injection of AAV9-CAG-mACE2shRNA-EGFP or control virus. After two weeks recovery, all mice were given vehicle (DIO and DIO + ACE2 kd), 250 mg/kg of imatinib (DIO + Ima and DIO + Ima + ACE2 kd) or 100 mg/kg of methazolamide (DIO + Met and DIO + Met + ACE2 kd) through gavage once each day for 4 weeks. At 32 weeks, all mice were fasted for 6 h and sacrificed. Livers, kidneys and aortas were subjected to real-time PCR (M) (n = 3). Glucose tolerance testing (GTT) was performed at 30 weeks (N), and insulin tolerance testing (ITT) was performed at 31 weeks (O) (n = 6). The significance of Lean versus DIO was shown as *, DIO versus DIO + Ima as #, DIO versus DIO + Met as \$, and DIO + Ima versus DIO + Ima + ACE2 kd as &. $^{*\#\&p} < 0.05$, $^{**\#\#\&\&p} < 0.01$ and $^{***\#\#\#\&\&\&\&p} < 0.001$. (**P**) Kidneys from kidney conditional knockdown of ACE2 (ACE2 C-kd) with transparenchymal renal pelvis injection of AAV9-CAG-mACE2shRNA-EGFP or control virus were subjected to real-time PCR for knockdown efficiency analysis (n = 6). (Q, R) Twenty-eight-week-old male mice with 23 weeks high-fat-diet treatment were treated with vehicle (DIO), 250 mg/kg of imatinib (DIO + Ima) or 100 mg/kg of methazolamide (DIO + Met) through gavage once each day for 4 weeks. At 32 weeks, all mice were fasted for 6 h and sacrificed. Kidneys (\mathbf{O}) and aortas (\mathbf{R}) were subjected to real-time PCR (n = 4-6). Error bars represent SEM. $p^* < 0.05$, $p^* < 0.01$ and $p^* < 0.001$.

Figure S6. ACE2 Enzymatic Activators Improve Metabolic Defects and Inhibit Virus Entry upon SARS-CoV-2 Infection, Related to Figure 6.

(A) Twelve-week-old human ACE2 transgenic mice were treated with vehicle (Mock and CoV-2), 250 mg/kg imatinib (CoV-2 + Ima) or 100 mg/kg methazolamide (CoV-2 + Met) through gavage once each day for 4 weeks after 6 weeks high-fat-diet treatment and were intranasally challenged with 4×10^4 FFU SARS-CoV-2. After 7 days post infection, all mice were fasted for 6 h and

sacrificed. Lungs were subjected to immunohistochemistry stainings for viral nucleocapsid protein (**NP**). (**B-C**) Vero E6 cells were pre-treated with 25 μ M imatinib, 100 μ M harpagoside or 100 μ M methazolamide for 6 h, followed by SARS-CoV-2 (MOI = 0.005) infection for 42 h, and focus formation assay for the titer of active virus in the supernatant was performed (**B**). (**C**) Infected Vero E6 cells were further subjected to real-time PCR (n = 6). (**D**) HEK293T cells expressing hACE2 were pre-treated with 25 μ M imatinib, 100 μ M harpagoside or 100 μ M methazolamide for 6 h, followed by pseudovirions treatment for 66 h and were examined with lactate dehydrogenase (LDH) assay (n = 5). (**E**) The binding free energy of spike to ACE2 protein with or without imatinib or methazolamide was shown. (**F**, **G**) The structural conformations of spike and ACE2 protein before and after binding to imatinib (**F**, arrow) or methazolamide (**G**, arrow) were shown. Spike and ACE2 in green (**F**) or blue (**G**) after binding. (**H**) meta-analysis of ACEi/ARB application and risk of severity and mortality in COVID-19 patients with hypertension were shown. CI, confidence interval. Error bars represent SEM. **p < 0.01 and ***p < 0.001.

В

С

Α	Protein alignment		ACE2_HUMAN ACE2_MOUSE	1 1	MSS: MSS:	SSWI SSWI	LLLS	LV	AVT AVT	A A Q T A Q	STI SLT			FL		NHE	A E D A E D	LEY	(QS (QS	S L A S L A	SWI SWI	N Y N	TNI TNI	T E E T E E	
	Protein	Identity	ACE2 HUMAN	61	* * * NMN	NAG	 > KWS	× ×	* * *	QST	* LAQ	× × M Y F		= 1 Q	* N L T	VKL	0L0	* ALC		GSS	× ×	s e d	* * *	* * * R L N	* * TIL
	ACE2_HUMAN	100.0%	ACE2_MOUSE	61	KMS *	EAA	4 KWS	AF	YEĘ	QSK * *	TAQ	SFS	SLQE	EIQ	ΓΡΙ	I KR	Q L Q	ALC	QQ <mark>S</mark>	GSS	A L S	SAD	KNK *	Q L N	T I L
-	ACE2_MOUSE	82.1%	ACE2_HUMAN ACE2_MOUSE	121 121	N T M 3	STIN	YSTG YSTG * * * *	KV KV	C N P C N P * * *		QEC QEC			G L N I G L D I	E I M E I M * * *	ANS ATS	LDY TDY	NEF NSF	R L W R L W	AWE AWE	SWI GWI	R <mark>S</mark> E R A E	VGK VGK * * *	QLR QLR	P L Y P L Y * * *
			ACE2_HUMAN ACE2_MOUSE	181 181	EEY EEY * * *	VVLI VVLI	K N E M K N E M	IAR IAR	ANH AN <mark>N</mark> * *	YED YND	Y GD Y GD * * *	Y WF Y WF	RGDN RGDN	(E <mark>V</mark> (E <mark>A</mark>		DGY DGY	DYS NYN *	RG(RN(EDV EDV	EH ER	TFE TFA	E I K E I K * * *	P L Y P L Y * * *	EHL EHL
			ACE2_HUMAN ACE2_MOUSE	241 241	HAY HAY * * *	VRAI VRRI	KLMN KLMD	AY TY	P S Y P S Y * * *	S P S P * * *	I GC T GC	L P A L P A	4 H L L 4 H L L	GDI GDI	//WG //WG * * *	RFW RFW	T N L T N L	YSI YPI		PFG PFA	Q K I Q K I * *	P N I P N I * * *	DVT DVT * * *	D A M D A M * * *	VDQ MNQ *
			ACE2_HUMAN ACE2_MOUSE	301 301	AWD GWD	AQR AER	IFKE IFQE	AE AE * *	K F F K F F * * *	VSV VSV	GLP GLP	NMT HMT	TQGF TQGF	WE	NSM NSM * * *	L T D L T E	PGN PAD *	VQI GRI	<av< td=""><td>C H P C H P * * *</td><td>T A\ T A\ * *</td><td>ND L ND L</td><td>G<mark>K</mark>G GHG</td><td>D F R D F R * * *</td><td>I L M I K M * *</td></av<>	C H P C H P * * *	T A\ T A\ * *	ND L ND L	G <mark>K</mark> G GHG	D F R D F R * * *	I L M I K M * *
			ACE2_HUMAN ACE2_MOUSE	361 361	СТК СТК * * *		DDFL DNFL	ТА ТА * *	HH E HH E * * *	MGH MGH * * *	QY QY * * *	DM	4 Y A <mark>/</mark> 4 Y A F	QP QP * *	= L L = L L * * *	R N G R N G	A N E A N E * * *	GFH GFH		VGE VGE	M 3 M 3 * *	S L S S L S * * *	A A T A A T * * *	РКН РКН * * *	L K S L K S * * *
			ACE2_HUMAN ACE2_MOUSE	421 421	G L G L * * *	LSP[LPS[*	DFQE DFQE	DN DS	E T E E T E * * *	NF NF * * *	L L K L L K * * *	QAL QAL	_ T \ _ T \	/GT /GT	L P F L P F * * *	T Y M T Y M * * *	L E K L E K * * *	WRV WRV	VM V VM V	F <mark>K</mark> G F <mark>R</mark> G	E E * *	P K D P K E	QWM QWM	K K W K K W	WEM WEM
			ACE2_HUMAN ACE2_MOUSE	481 481	KRE KRE * * *	VG VG * * * *	VVEP VVEP * * * *	VP LP	HDE HDE	T Y C T Y C * * *	D P A D P A * * *	SLF SLF		SND' SND'	Y S F Y S F * * *	R Y R Y * * *	Y T R Y T R * * *	TLY TIY	(QF (QF	Q F Q Q F Q * * *	E A E A		A A K A A K * * *	HEG YNG	PLH SLH
			ACE2_HUMAN ACE2_MOUSE	541 541	KCD KCD	SN 8 SN 8	ST E A ST E A * * * * *	GQ GQ * *	KLF KLL	NML KML	RLG SLG	KSE NSE	EPW1 EPW1	「LA 「KA	L E N L E N * * *	V V G V V G * * *	AKN ARN	MN MD *	/ <mark>R</mark> P /KP	L L N L L N * * *	YF YF **	PL PL	FTW FDW	LKD LKE	QN <mark>K</mark> QN <mark>R</mark> * *
			ACE2_HUMAN ACE2_MOUSE	601 601	NSF NSF	VGW VGW	STDW NTEW	ISP ISP	Y A D Y A D * * *	Q S I Q S I * * *	K V R K V R * * *	S L S L * * *	_ K S A _ K S A	ALG ALG	DRA ANA	Y EW Y EW	NDN TNN	EM EM * *		RSS RSS * * *	V A Y V A Y	Y A M Y A M * * *	RQY RKY	F L K F S I *	V K N I K N * *
			ACE2_HUMAN ACE2_MOUSE	661 661	QMI QTV		EEDV EEDV	'RV 'RV	ANL SDL	KPR KPR	ISF VSF	NFF YFF	= V T / = V T { = V T {		VVS VVS * * *		PRT PRS	EVE EVE	KA DA	RM RM * * *	SR SR * *	SRI SRI	ND A ND V * *	FRL FGL	N D N N D N * * *
			ACE2_HUMAN ACE2_MOUSE	721 721	SLE SLE	F L G F L G	<mark>Q</mark> PT H PT * * *	LG LE	PP <mark>N</mark> PPY	Q P P Q P P * * *	V <mark>S</mark> I VTI	WL I WL I			MGV MAL *	I V V V V V * *	G V G * *	L L * *	FT VT	GI <mark>R</mark> GI <mark>K</mark> * *	DRI GRI	< K K < K K * * *	NKA NET	R SG KRE	E N P E N P * * *
			ACE2_HUMAN ACE2_MOUSE	781 781	YAS YDSI		SKGE SKGE	NN SN	PGF AGF	QNT QN <mark>S</mark>		QT S QT S	3 F 3 F												

Supplementary Figure 5

Meta-	ACEi/Al	RB group	Non-ACEi	/ARB group	Heter	ogeneity	Odds Ratio		
analysis	Total events	Total patients	Total events	Total patients	 ²	Р	95% CI		
Severity	452	1501	673	2022	48%	0.69	0.95 [0.74, 1.22]		
Mortality	2969	15483	2935	14089	70%	0.0003	0.74 [0.63, 0.87]		

Oligo name		Sequence (5'-3')	Purpose
Mouse G6pc	Forward	AGGTCGTGGCTGGAGTCTTGTC	aPCR
I I I I I I I I I I I I I I I I I I I	Reverse	GTAGCAGGTAGAATCCAAGCGC	aPCR
Mouse <i>Glut</i> 2	Forward	GTTGGAAGAGGAAGTCAGGGCA	aPCR
	Reverse	ATCACGGAGACCTTCTGCTCAG	aPCR
Mouse $Pacla$	Forward	TGCCTGCATGAGTGTGTGTGCT	aPCR
Mouse I gera	Reverse	GGCTGGTCCTCACCAACCAG	aPCR
Mouse Ppara	Forward	GAGTGCAGCCTCAGCCAAG	aPCR
Mouse I puro	Reverse	TCCAGAGCTCTCCTCACCGA	aPCR
Mouse Pnam	Forward		aPCR
Wouse I pur y	Reverse	TGCGAGTGGTCTTCCATCACG	aPCR
Mouse Tufa	Forward	GGTGCCTATGTCTCAGCCTCTT	aPCR
Wouse Thya	Reverse	GCCATAGAACTGATGAGAGGGAG	aPCR
Mouse $II_{-}1\beta$	Forward	TGGACCTTCCAGGATGAGGACA	aPCR
	Reverse	GTTCATCTCGGAGCCTGTAGTG	aPCR
Mouse II-6	Forward	TACCACTTCACAAGTCGGAGGC	aPCR
Mouse II o	Reverse	CTGCAAGTGCATCATCGTTGTTC	aPCR
Mouse Pck1	Forward	GGCGATGACATTGCCTGGATGA	aPCR
Wouse I exi	Reverse	TGTCTTCACTGAGGTGCCAGGA	aPCR
Mouse Gval	Forward	CCAGAGTTTCTGAACCTGTGGTG	aPCR
Mouse Oyg1	Reverse	CCAAAGGACAGGTCTGACAAGG	aPCR
Mouse Salt1	Forward		aPCR
Wouse Sgill	Reverse	TTCTTGGCCGAGAGGCATCG	aPCR
Mouse Daat?	Forward	CTGTGCTCTACTTCACCTGGCT	aPCR
Wouse Dgui2	Reverse	CTGGATGGGAAAGTAGTCTCGG	aPCR
Mouse Fash	Forward	CACAGTGCTCAAAGGACATGCC	aPCR
Wouse Fush	Reverse	CACCAGGTGTAGTGCCTTCCTC	aPCR
Mouse Col3al	Forward	GACCAAAAGGTGATGCTGGACAG	aPCP
Wouse Colsul	Reverse	CAAGACCTCGTGCTCCAGTTAG	aPCR
Mouse Cntl	Forward		aPCP
Wouse Opi1	Poverse		aPCP
Mouse Srehnl	Forward	CGACTACOCACOCICATCAOI	aPCP
Wouse Steep1	Poverse		aPCP
Mouse Vim	Forward	CGGAAAGTGGAATCCTTGCAGG	aPCP
Wouse vin	Poverse		aPCP
Mouse C136	Forward	GGACATTGAGATTCTTTTCCTCTG	aPCP
Wouse Cu50	Poverse	GCAAAGGCATTGGCTGGAAGAAC	aPCP
Mouse Manl	Forward	GCTACAAGAGGATCACCAGCAG	aPCP
Wouse mepi	Reverse	GTCTGGACCCATTCCTTCTTGG	aPCR
Mouse Marl	Forward	CGCACGTTCAATGACAGCATCC	aPCR
Wouse Wist I	Reverse	GCAAACACAAGGAGGTAGAGAGC	aPCR
Mouse Lorl	Forward	GTCATCCTCTGCCTGGTGTTGT	aPCR
Wouse Loan	Reverse	TGCCTTCTGCTGGGCTAACATC	aPCR
Mouse Mmn?	Forward	CAAGGATGGACTCCTGGCACAT	aPCR
Wouse Wmp2	Reverse	TACTCGCCATCAGCGTTCCCAT	aPCR
Mouse Srb1	Forward		aPCR
Mouse 5771	Reverse	CCGTTGGCAAACAGAGTATCGG	aPCR
Mouse Ace?	Forward	CACTCTGGGAATGAGGACACGG	aPCR
11003071002	Reverse	TTTCCCCGTGCGCCAAGAT	aPCR
Mouse Gandh	Forward	CATCACTGCCACCCAGAAGACTG	aPCR
Mouse Supun	Reverse	ATGCCAGTGAGCTTCCCGTTCAG	aPCR
Human G6PC	Forward	AGGTCGTGGCTGGAGTCTTGTC	aPCR
	Reverse	GTAGCAGGTAGAATCCAAGCGC	aPCR
Human GLUT2	Forward	TGCCACACTCACACAAGACCTG	aPCR
	Reverse	TGGAAGGAACCCAGCACAGC	aPCR
Human PGC1a	Forward	ATTGGAGCCCCATGGATGAAGG	aPCR
Human P O'C'I'	Reverse	ATTCGCCAGCGGCTGTTACT	aPCR
Human $PPAR\alpha$	Forward	AGCTGTCACCACAGTAGCTTG	aPCR
	Reverse	ATGACCGAGCCATCTGAGCC	aPCR
Human PPARv	Forward	AGCCTGCATTCTGCATTCTGC	aPCR
	Reverse	CCACGGAGCTGATCCCAAAGT	aPCR
Human TNFa	Forward	GAGGCGCTCCCCAAGAAGAC	aPCR
	Reverse	CAGGCTTGTCACTCGGGGGTT	qPCR
Human <i>IL-18</i>	Forward	TCGAGGCACAAGGCACAACA	qPCR
I ⁻	Reverse	TCACTGGCGAGCTCAGGTACT	qPCR
Human IL-6	Forward	GCAAGGGTCTGGTTTCAGCCT	qPCR
	Reverse	TCGCTCCCTCTCCCTGTAAGT	qPCR
Human IL-10	Forward	TGCAAAACCAAACCACAAGACAG	qPCR

Table S4. Oligos used in this study, Related to STAR Methods.

	Reverse	TTCACTCTGCTGAAGGCATCTCG	qPCR
Human ICAM-1	Forward	TGCCCTGATGGGCAGTCAAC	qPCR
	Reverse	TCTCTCCTCACCAGCACCGT	qPCR
Human VCAM-1	Forward	TGGTCGTGATCCTTGGAGCC	qPCR
	Reverse	GATGTGGTCCCCTCATTCGT	qPCR
Human MMP9	Forward	TGTGCCTTTGAGTCCGGTGG	qPCR
	Reverse	AAGACCGAGTCCAGCTTGCG	qPCR
Human ACE2	Forward	TGAGGACACTGAGCTCGCTT	qPCR
	Reverse	TTGAACTTGGGTTGGGCGCT	qPCR
Human GAPDH	Forward	GCCATGTTGCAACCGGGAAG	qPCR
	Reverse	TAGCCTCGCTCCACCTGACT	qPCR
SARS-CoV-2 Spike	Forward	TCCTGGTGATTCTTCTTCAGGT	qPCR
	Reverse	TCTGAGAGAGGGTCAAGTGC	qPCR
pcDNA3.1-Flag-GFP	Forward	CTTGGTACCGAGCTCGGATCC	Cloning
-ACE2(human)		GCCACCATGTCAAGCTCTTCCTGGCT	
	Reverse	GAAGGGCCCTCTAGACTCGA	Cloning
		GAAAGGAGGTCTGAACATCATCAGTG	
siACE2(human)		GAAGACCTGTTCTATCAAA	siRNA
siACE2(mouse)		GAGATAAACTTCCTAACTGAAA	siRNA
shACE2(mouse)		CCGATCATCAAGCGTCAAC	shRNA
		TACTCGAGTAGTTGACGCTT	
		GATGATCGGTTTTT	