
 
Supplementary Fig. 1 | Poisson or shot-noise dominates single-pixel variance in two-photon 
microscopy. (A) An example single frame extracted from a two-photon imaging experiment. Scale bar is 
100 μm. (B) Fluorescence trace from 10 randomly selected pixels in the same movie as (A). (C) Variance 
against mean for all pixels in 4 different two-photon calcium imaging movies collected in vivo. The linearity 
indicates that poisson noise dominates individual pixel variation. The slope of the red line is the 
amplification gain of the microscope.  Scale bar is 100 μm.  



 
Supplementary Fig. 2 | Simulation of the relationship between mean absolute error and ground truth. 
(A) The normalized mean absolute error was simulated between an averaged two-photon image (Ground 
truth, see panel B) and various levels of shot noise. Shot noise was modulated by changing the peak number 
of photons detected in the image per pixel. Red curve was calculated assuming a homogeneous distribution 
of intensity and a shot noise limited SNR. (B) Example individual images associated with a specific 
normalized validation loss. Scale bar is 100 μm. 
 
  



 
Supplementary Fig. 3 | Correlation and mutual information of pairs of pixels before and after 
DeepInterpolation. (A, top row) Individual frames of a two-photon calcium movie before and after 
DeepInterpolation. Scale bar is 100 μm. (A, bottom row) Pairwise Pearson correlation of a random 
selection of 10,000 pixels from top movie. (B) Distribution of Pearson correlation for 40,000 pixels 
randomly selected from 4 different experiments (KS test comparing Raw with DeepInterpolation: p = 9e-

71, n = 1000 pixels randomly selected) (C) Schematic illustrating the spatial and temporal distances used in 
(D). (D, left, top row) Mutual information between a center pixel and consecutive frames as indicated in 
schematic (C). The mutual information at the origin is the pixel entropy, illustrating how many bits of 
information are necessary to encode an individual pixel independently. Inset highlights a small baseline 
mutual information between consecutive frames in raw data. (D, left, bottom row). Same as (D, top) but 
plotting the Pearson correlation. (D, right, top row). Mutual information between a center pixel and its 
neighboring pixel in the same frame along a horizontal axis as shown in (C ). (D, right, bottom row). Same 
as (D, top) but plotting the Pearson correlation.  



 
Supplementary Fig. 4 | Cell segmentation with Suite2p with and without DeepInterpolation. (A) 
Overlay of segmentation filters on top of a single frame of data with (left) and without DeepInterpolation 
(right).  Scale bar is 100 𝜇m. (B) Example cell-matched segmentation filters found by Suite2p with the 
same segmentation settings (default values) with and without DeepInterpolation. Scale bar is 10 𝜇m.  (C)  
2 examples matched calcium traces after segmentation with Suite2p.  



 

 
Supplementary Fig. 5 | Cell segmentation with CaImAn with and without DeepInterpolation. (A) 
Overlay of segmentation filters on top a single frame of data with (left) and without DeepInterpolation 
(right).  Scale bar is 100 𝜇m. (B) Example cell-matched segmentation filters found by CaImAn with the 
same segmentation settings (default values) with and without DeepInterpolation. Scale bar is 10 𝜇m. (C) 2 
examples matched calcium traces after segmentation with CaImAn. 



 
Supplementary Fig. 6 | Applying region-of-interests (ROIs) detected on noisy raw data also showcases 
increased signal and noise correlation. (A) 99 ROIs detected on the original, non-denoised, movie were 
overlaid on top of a single frame from the original movie as well as the same frame after DeepInterpolation. 
These ROI were used to extract traces in (B). Scale bar is 100 μm. (B) Example temporal response from 3 
neuronal somas to 10 repeats (one trace per repeat) of a natural movie presentation. Left: ROI filter was 
applied to the original movie. Right: ROI filter was applied to the denoised movie. (C, left) signal 
correlation (average correlation coefficient between the average temporal response of a pair of neurons) for 
all pairs of ROI in for both raw and denoised traces. (C, right) noise correlation (average correlation 
coefficient at all time points of the mean-subtracted temporal response of a pair of neurons) for all pairs of 
ROI in (A). Distributions were created from 4 separate experiments with a total of 44,977 pairs of neurons. 
(D) Pairs of neuronal somas with high noise correlation (>0.4) are connected with a straight line for the 
original two-photon data (37 pairs on the left) and after DeepInterpolation (329 pairs on the right).  



Supplementary Note | DeepInterpolation pseudocode for denoising two-photon Ca2+ imaging.  
 

1. Training 
a. Generate a randomized list of Ntraining frames from P separate two photon movies.  
b. Calculate a single pair of sample mean and pixel standard deviation for each movie using 

all pixels in the first 100 frames.  
c. Store randomized list of frame index, movie data storage location and associated sample 

mean and standard deviation in a json file.  
d. Repeat a,b, c for validation test data on a separate set of Ntest movies. 
e. Load json file associated with training samples and test samples. 
f. Load json file with training meta-parameters. 
g. Initialize training data generators for both training and testing data. Generator is pulled 

from a local library of generators based on training meta-data. Training generator is directly 
streamed from a network disk location during training by multi-threaded workers. 
Validation generator is pre-loaded in memory for caching.  

h. Initialize training network architecture. Architecture is pulled from a local python library 
based on a single string descriptor.  

i. Initialize training callbacks to save and monitor model progression throughout training. 
j. Initialize loss to “mean_absolute_error”. 
k. Initialize optimizer to RMSProp. 
l. Compile model for training. 
m. Start training loop on local GPUs 

i. For each batch of training, load 5 samples from the randomized list. Both input 
and output samples are z-scored using pre-computed mean and standard deviation 
(see b) 

ii. Monitor training and validation loss throughout training.  
iii. Save trained model every 12500 samples. 
iv. Interrupt training based on validation training convergence.  

2. Inference 
a. Select one movie for inference 
b. Calculate mean and standard deviation of 100 frames initial segment 
c. Load trained DeepInterpolation model 
d. For each frame in the movie (excluding Npre and Npost frames respectively at the onset and 

end of the movie): 
i. Z-score Npre and Npost  frames respectively before and after the selected frames, 

using pre-computed mean and standard deviation.  
ii. Predict the output frame using the DeepInterpolation model 

iii. Convert output frame back to original pixel values using precomputed mean and 
standard deviation.  

  



 

Experiment 

ID 

Probe ID Start time Brain Structures Used for training 

778998620 792626851 4665.8179 s VISl (LM), CA1, CA3 No 

787025148 792586842 4672.1967 s VISp (V1), SUB, LP No 

768515987 773549856 4672.2224 s VISrl (RL), CA1, DG, APN Yes 

794812542 810758787 4665.8332 s VISrl (RL), CA1, DG, APN No 

778998620 792626853 4665.8179 s VISal (AL), CA1, CA3, DG, 

LGv 

No 

767871931 773462997 4672.2352 s VISal (AL), CA1, CA3, DG, LT Yes 

 

779839471 792645501 4672.3841 s VIS, CA1, CA3, DG, LGd No 

771160300 773621948 4672.3791 s VISal (AL), CA1, CA3, DG, 

LGd 

Yes 

781842082 792586881 4672.1312 s VISp (V1), SUB, SGN No 

793224716 805124815 4675.2401 s VISrl (RL), CA1, DG, LP, APN No 

 

Supplementary Table 1. Details of Neuropixels data used for DeepInterpolation training and 

inference. 
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