TbbAPRT1	1	MSLVEVLPNYFTLSKDSPLRKKFEKVYKWYSPAFSPHDVPRFAEVGNITENPEVMRGIRDFFVDRYKNLQQPITHIL	77
LdAPRT	1	MPFKEVSPNSFLLDDSHALSQLLKKSYRWYSPVFSPRNVPRFADVSSITESPETLKAIRDFLVQRYRAMSPAPTHIL	77
SCAPRT	1	MSIASYAQELKLALHQYPNFPSEGILFEDFLPIFRNPGLFQKLIDAFKLHLEEAFPEVKIDYIV	64
HumanAPRT	1	PADSELQLVEQRIRSFPDFPTPGVVFRDISPVLKDPASFRAAIGLLARHLKATHGG-RIDYIA	62
GIAPRT	1	VVV	58
TbbAPRT2	1	MSQYDAILTERHPHHFTLADTHPLAKELHAN-IFGESDLTHANCAHVYDISSLTEKPALFRKVIEFLKCRYETMGDTG-PTHII	82
TbbAPRT1	78	GFDSRGFLLGPMIAVELNVPFVLIRKANKIAGVIIKSEPYTKEYAAESEECMTVRFGSFDKNSRVVLIDDVIATGGTMLAGVQL	161
LdAPRT	78	GFDARGFLFGPMIAVELEIPFVLMRKADKNAGLLIRSEPYEKEYKEAAPEVMTIRYGSIGKGSRVVLIDDVLATGGTALSGLQL	161
SCAPRT	65	GLESRGFLFGPTLALALGVGFVPVRKAGKLPGECFKAT-YEKEYGSDLFEIQKNAIPAGSNVIIVDDIIATGGSAAAAGEL	144
HumanAPRT	63	GLDSRGFLFGPSLAQELGLGCVLIRKRGKLPGPTLWAS-YSLEYGKAELEIQKDALEPGQRVVVVDDLLATGGTMNAACEL	142
Glaprt	59	GIESRGFILGGIVANSLGVGFVALRKAGKLPGDVCKCT-FDMEYQKGVTIEVQKRQLGPHDVVLLHDDVLATGGTLLAAIEL	139
TbbAPRT2	83	GVESRGYIIGAPLAVALGIPFVTARVTKRFPSSFVPEG-DDLKYLPMSRSIRNDSIPPRARVLIVDDFIGTGSTMLAALRL	162
TbbAPRT1	162	VDACGATLVEVAGILGLTFLKGTQPAHTFAGGRYSNVPFVTLVDETVLSDENCGDPLHHKGSRIISCAEAKKLI	235
LdAPRT	162	VEASDAVVVEMVSILSIPFLKAAEKIHSTANSRYKDIKFISLLSDDALTEENCGDSKNYTGPRVLSCGDVLAEHPH	237
SCAPRT	145	VEQLEANLLEYNFVMELDFLKGRSKLN-APVFTLLNAQKEALKK	187
HumanAPRT	143	LGRLQAEVLECVSLVELTSLKGREKLAPVPFFSLLQYE	180
GIAPRT	140	CETAGVKPENIYINVLYEIEALKGREKVGQKCTRLFSVIRE	180
TbbAPRT2	163	ADIVAAQVVEVLTVCDVAS <mark>L</mark> GGIKIIRESDDEMFKETPIFTLIHFKLSPREAEEQLEFVNSYITR <mark>SRL</mark>	230

S11 Fig. Sequence alignment of APRT1, APRT2, and previously characterized APRTs. The amino acid residues conserved among all APRTs are highlighted in blue – reflecting the lower sequence conservation on the type I phosphoribosyltransferases family of enzymes. The β -phosphoryl binding sequence is underlined in black; the catalytic loop sequence is underlined in green, and the PRPP binding domain is underlined in red. The C-terminal extension characteristic of the long APRTs is underlined in gray. The C-terminal glycosomal signaling peptide on TbbAPRT2 is boxed in orange. The conserved residue arginine 82 (TbbAPRT1 numbering – black dot) participates on binding of PRPP's β -phosphoryl group. Arginine 102 (gray dot) composes the active site of the adjacent subunit – highlighting the importance of the dimeric quaternary structure for catalytic activity. Tyrosine 121 (red dot) is located on the tip of the loop that closes over the active site after both substrates are bound, being essential for APRTs to adopt their catalytic conformation. For more details on the amino acid residues identified as essential for APRTs substrates binding and catalysis, refer to [66, 94-95].