Molecular Plant, Volume 15

Supplemental information

Dual and opposing roles of EIN3 reveal a generation conflict during

seed growth

Juliane Heydlauff, Isil Erbasol Serbes, Dieu Vo, Yanbo Mao, Sonja Gieseking, Thomas Nakel, Theresa Harten, Ronny Völz, Anja Hoffmann, and Rita Groß-Hardt

SUPPLEMENTAL INFORMATION

Dual and opposing roles of EIN3 reveal a generation conflict during seed growth

Juliane Heydlauff^{1,3}, Isil Erbasol Serbes^{1,3}, Dieu Vo¹, Yanbo Mao¹, Sonja Gieseking², Thomas Nakel¹, Theresa Harten¹, Ronny Völz², Anja Hoffmann¹ and Rita Groß-Hardt^{1,*}

¹University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstr. 5, 28359, Bremen, Germany.

²ZMBP, University of Tübingen, Auf der Morgenstelle 32, 72076, Germany.

³These authors contributed equally to this work.

*Correspondence: gross-hardt@uni-bremen.de

List of Supplemental Information:

Supplemental Figure 1-4

Supplemental Table 1 and 2

Supplemental movie 1 and 2 legends

SUPPLEMENTAL FIGURES

Figure S1: Manipulation of EIN3 signaling suggests an inhibitory role of synergid-derived nuclei in endosperm expansion

(A-C) Incorporation of paternally introduced GFP into sdn. ein3eil1 seeds carrying both a maternally introduced endosperm marker pMEA::NLS_tdTomato expressed in endosperm and sdn, and a paternally introduced ubiquitous marker pRPS5A::NLS GFP expressed in zygote, endosperm and sdn (A), ein3eil1 seeds carrying only the maternally introduced pMEA::NLS tdTomato marker (B) and wild type (WT) seeds carrying only the paternally introduced pRPS5A::NLS GFP (C). Endosperm nuclei, yellow arrowhead; sdn, white arrowhead; zygote, asterisk. Paternal GFP signal was observed in 90% (n=48) of all tdTomato positive sdn (negative control (B), 6% (n=51)). (D) Frameshift CRISPR/Cas9 generated EIN3 allele ein3-c1. * indicates premature stop codon. (E) PCR and NIaII based detection of the ein3-c1 allele. WT indicates wild type. (F) Frequency of one, two or four sdn in wild type and ein3-c1 x WT seeds in the four- (4nES) and eight-nucleate endosperm stage (8nES) (n for 4nES: 261/335 and n for 8nES=292/397 for WT and ein3-c1/+ respectively). (G) Dorso-ventral endosperm diameter of wild type and of *pAtRbohD::EIN3_SRDX* x wild type young seeds at the four-nucleate endosperm stage. L1 and L2 indicate independent pAtRbohD::EIN3 SRDX lines (n=289/146/203 for WT/L1/L2 respectively). Two-tailed Student's t-test did not detect significant difference between WT and L1 for endosperm diameter. Scale bar, 20 µm. Data indicate mean ± SEM. Two-tailed student's t-test: *** p < 0.001 and **** p < 0.0001.

Figure S2: Sporophytic EIN3-dependent signaling represses endosperm and seed expansion.

(A) Size of wild type (WT) x WT and *ein3/-* x WT mature seeds (n=1392/297 for WT/*ein3/+*). (B) Size of WT x WT and WT x *ein3/-* mature seeds (n=198/192 for WT/*ein3/+*). (C) Size of WT x WT and *ein3-c1/-* x WT mature seeds (n=454/481 for WT/*ein3-c1/+*). (D) Endosperm diameter of WT x WT and *ein3/-* x WT seeds with no sdn extracted from live-cell imaging videos. We used nuclear disorganization as initiation points for mitotic divisions and defined the last picture frame, in which the GFP signal in the two- and four-nucleate endosperm stage was still nuclear localized as t1 and t3, respectively, while the first picture frame in the four-nucleated endosperm stage with condensed GFP signal is defined as t2. (t1; WT, n=64; *ein3/+* n=49, t2; WT, n=66; *ein3/+* n=51 and t3, WT, n=65; *ein3/+* n=51). (E) Frequency of WT x WT and *ein3-c1/-* x WT seeds in different developmental stages 25 hours after pollination: two-, four- and eight-nucleate endosperm stage (2nES, 4nES and 8nES, respectively). (n=691/838 for WT/*ein3-c1/+*). (F) Dorso-ventral endosperm diameter of WT x WT and *ein3-c1/-* x WT seeds in the four-nucleate endosperm stage. (n=253/45 for WT/*ein3-c1/+* with no sdn). Two-tailed student's t-test: * p < 0.05; *** p < 0.001.

Figure S3: Expression pattern of ethylene biosynthesis genes in young seeds of wild type plants.

(A-C) Expression of *pSAMx::gSAMX_tdTomato* in young seeds of Col-0 plants (A), *pACOX::NLS_tdTomato* (B) and *pACSX::NLS_GUS* (C) in young seeds of L*er* plants two day after emasculation and one day after pollination. White arrow, persistent synergid nucleus; yellow arrow, degenerating synergid nucleus; asterisk, zygote; arrow head, endosperm nucleus; empty triangle, antipodal nuclei. Scale bar, 20µm.

Figure S4: Female gametophyte development and integument formation are impaired in acs octuple mutants.

(A) Fertility of wild type (WT) and different ethylene synthetic mutants after selfing. (B-C) Cleared whole mounts of wild type (B) and *acs* octuple embryo sacs (C) at the four-nucleated endosperm stage. 23% of the *acs* octuple seeds at the four-nucleate endosperm stage showed abnormal embryo sac at the micropylar end (n=103). (D) Cleared whole mounts of acs octuple ovules in 2DAE carpels indicate severe developmental abnormalities. Categories are as following. (I): Early arrest. This category indicates the ovules in a developmental stage between around 2-IV to 3-II (Schneitz et al., 1995). The figure represents 2-IV staged ovule. (II): Ovules containing swollen integuments and abnormally developed female gametophyte (III): Ovules containing undeveloped integuments and expelled female gametophyte (IV): Ovules containing small female gametophyte. (V): Wild type like ovules. This category indicates fully developed ovules with mature female gametophyte. The figure represents WT ovule. Synergid nucleus, arrow; egg cell nucleus, asterisk; central cell nucleus, triangle; nucellus, n; white line, estimated female gametophyte border; black line, estimated outer integument border; yellow line, inner integument border. Scale bars, 20µm. Error bars, mean ± SEM. Statistical significance was calculated by two-tailed Student's t-test (** p < 0.01, *** p < 0.001, **** p < 0.0001).

REFERENCE

Schneitz, K., Hülskamp, M., and Pruitt, R.E. (1995). Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. The Plant Journal 7:731-749. https://doi.org/10.1046/-j.1365-313X.1995.07050731.x.

Supplemental Table 1: List of primers used for molecular cloning in this study

Primer	Primer Sequence (5'-3')	Details
name		
IE216s	A <u>GGCGCGCC</u> TGGGCCTTATTGGCTATGTAT (Asci)	Amplification of promoter SAM1
IE216as	CC <u>TTAATTAA</u> TCTGCTACAAAGAATAGAACAAAAA (Paci)	
IE199s	CC <u>TTAATTAA</u> ATGGAGACTTTTCTATTCACATCTGAGTC (Paci)	Amplification of SAM1
IE218as	ATT <u>CCTAGG</u> AGCTTGAGGTTTGTCCCACTTGAG (AvrII)	
IE217s	A <u>GGCGCGCC</u> GGCACCTCCCGGTTTGTTACATT (Asci)	Amplification of promoter SAM2
IE217as	CC <u>TTAATTAA</u> TTCTTAAAGCTATAACAACAAAAAGAAAAATTGAATC (Paci)	
IE203s	CC <u>TTAATTAA</u> ATGGAGACTTTCCTATTCACATCTGAG (Paci)	Amplification of SAM2
IE219as	ATT <u>CCTAGG</u> AGCTTGAGGTTTGTCCCACTTG (Avril)	Amplification of SAMZ
IE209s	A <u>GGCGCGCC</u> TTTTGCAGGTAATTTCTCCTTCGTTGC (Asci)	Amplification of promotor SAM2
IE209as	CCTTAATTAATTTCCGATCTGATTCACGAAAGAAACC (Pacl)	Amplification of promoter SAM3
IE211s	CC <u>TTAATTAA</u> ATGGAATCTTTTTTGTTCACATCTGAATCC (Paci)	Amplification of SAM2
IE220as	ATTCCTAGGAGCTTGGACCTTGTTAGACTTGAG (Avril)	Amplification of SAM3
SG12s	AT <u>GGCGCGCCCTCGAG</u> GACATGATCACTGTGAAGTCG (Ascl-Xhol)	Amplification of promotor ACS2
SG12as	AT <u>CGATCG</u> TTGCTGTGTCAATTCTCACTTC (Pvul)	Amplification of promoter AC32
RV283s	ATGGCGCGCCAACTTAATGTTTATGTAATGATTAATATG (AscI)	Amplification of promotor ACS4
RV283as	AT <u>CGATCG</u> TTCTTTGTTCTTGTTTTTTTTTTTAA (Pvul)	Amplification of promoter AC34
RV284s	AT <u>GGCGCGCC</u> ACCGAAATATATGGCTTCATC (Asci)	Amplification of promotor ACS5
RV284as	AT <u>CGATCG</u> TCTCTGTTTTTAAAGTCAAGAG (Pvul)	Amplification of promoter ACS5
SG37s	AT <u>GGCGCGCC</u> AAAAATAGACCGCCTTTACAG (Asci)	Amplification of promotor ACC6
RV285as	ATTAATTAATTIGTTTGTTTCTTCTTTAATATAGGTTTC (Pacl)	Amplification of promoter ACS6
RV274s	ATGGCGCGCCACTCACTATTAATTGCGATATGTGG (AscI)	Amplification of promotor ACS7
RV274as	AT <u>CGATCG</u> TTTTTTCTTAGAGCTTCGAACCTG (Pvul)	Amplification of promoter AC37
SG38s	AT <u>GGCGCGCC</u> ATATGTGTGTGTGTGTATTAAATTAATATGG (AscI)	Amplification of promotor ACS9
SG14as	AT <u>CTCGAG</u> TTTCTTAATTAGCTCTAGAGATAGAG (Xhoi)	Amplification of promoter ACS6
SG15s	AT <u>GGCGCGCC</u> GCAAGTTCTGTTTTCAGAAGAAG (Asci)	Amplification of promoter ACS9
SG15as	AT <u>CGATCG</u> TTTTTGATATAAAAATCAAAAAGAATGTTTGG (Pvul)	
SG17s	AT <u>GGCGCGCC</u> GTCATTTTCACTTTTAAGATGG (Asci)	Amplification of promoter ACS11
SG17as	AT <u>TTAATTAA</u> TTTTTTTAAATGCTATAACTTGGTG (Paci)	
JH119s	AT <u>GGCGCGCC</u> GTGTGTTAAGAACACGCGCC (Asci)	Amplification of promoter ACO1
JH119as	GC <u>TTAATTAA</u> CTCTTTTTATTTACTTTTTCTCACACACAG (Paci)	
JH120s	AT <u>GGCGCGCC</u> CAAACACATACAGTGCGTCGG (Ascl)	Amplification of promoter ACO2
JH120as	GC <u>TTAATTAA</u> CTTTCTTTCTCTCTCTCTTTTGAAAG (Paci)	

JH123s	AT <u>GGCGCGCC</u> GTGAATATATACTCTGACCCAAGGG (Asci)	Amplification of promotor ACO2
JH123as	GC <u>TTAATTAA</u> CTCTCTCTCTCTCTCTAACTAGC (Paci)	Amplification of promoter ACO5
JH124s	AT <u>GGCGCGCC</u> GATCATTTCCTTATGGGGTTCTG (Asci)	
JH124as	GC <u>TTAATTAA</u> TTCAGATCCGCAAAGAGAGAGAG (Paci)	amplification of promoter ACOS
YM13-F	ATTGAATATCCCGGGGATTCATGA (BbsI)	
YM14-R	AAACTCATGAATCCCCGGGATATT (BbsI)	Syring of ellis-ci

Supplemental Table 2: List of primers used for PCR based genotyping in this study.

Primer name	Primer Sequence (5'-3')	Details
IE53s RV130as	GAACTAGT GTTTAATGAGATGGGAATGTG (Spel) TTAGCAATATCAGGAAACATATGC	<i>ein3^c</i> line confirmation (PCR product was digested by NIaIII)
IE222s	CCACTCAAGTGGGACAAACCTCAAGC	Genomic fragment of <i>SAM1</i> (IE222s+IE222as)
IE222as	CAATTTGCCAAAGATCACATTGCCCTAACTC	T-DNA verification for <i>sam1</i> (IE222as+LBa1) - (SALK-073599)
IE223s	GAATCGAATCTCTTTGGATGAGATGCGTC	Genomic fragment of <i>SAM2</i> (IE223s+IE223as)
IE223as	GGTCACCAGCTCCAATGTCTTCTGG	T-DNA verification for <i>sam1</i> (IE223as+LBa1) - (SALK-097197)
IE210s	CTGTCAAGTTGTACTCGCACGCGG	T-DNA verification for <i>sam3</i> (IE210s+LBa1) - (SALK-052289)
IE209as	CC <u>TTAATTAA</u> TTTTCCGATCTGATTCACGAAAGAAACC (Paci)	Genomic fragment of <i>SAM3</i> (IE210s+IE209as)
IE266s	TGAGGCCTGATGGTAAGACAC	Genomic fragment of <i>MAT3</i> (IE266s+IE266as)
IE266as	TAAAGGGACATCGACAAGTGCC	T-DNA verification for <i>mat3</i> (IE266as+LBb1.3) - (SALK-019375)
IE38s	GCAAATGAGACGATCATGTTCTG	Genomic fragment of <i>ACS1</i> (IE38s+IE38as)
IE38as	CGACGAGCCAGGAGAGAC	T-DNA verification for <i>acs1-1</i> (IE38as+NN186as)
NN186as	CCATATTGACCATCATACTCATTGC	GABI-Kat T-DNA LB primer
IE39s	GGTGGCGGACAGGTGTCGAG	T-DNA verification for <i>acs2-1</i> (IE39s+LBa1)
IE39as	CCATCCAGGTTCCGTGCAACGGAAG	Genomic fragment of <i>ACS2</i> (IE39s+IE39as)
IE41s	CGAAGAAGCCTACGAGCAAGCCAAG	T-DNA verification for <i>acs4-1</i> (IE41s+LBa1)
IE41as	CGTCTTCTTCCTCGAACCGTTTAGTC	Genomic fragment of <i>ACS4</i> (IE41s+IE41as)

RV378s	CCAGCTATGTTTCGATCTAATCGAGTCATGGTTAAC	Genomic fragment of <i>ACS5</i> (IE378s+IE378as)
RV378as	TCCATGAAACCCGGAAAACCCAGTTAGAGACTGTC	T-DNA verification for <i>acs5-2</i> (IE378as+LB1)
IE42s	GGTGGCTTTTGCAACAGAGAAGAAGCAAGATC	T-DNA verification for <i>acs6-1</i> (IE42s+LB1)
IE42as	CGATCTCCTCGATTACTTCCGCAACAC	Genomic fragment of <i>ACS6</i> (IE42s+IE42as)
IE43s	CTACAAATTGCCTTTTCTTATCGAC	FLAG T-DNA LB primer
IE44s	CGTTTGATCTTCTTGAAACTTAC	T-DNA verification for <i>acs7-1</i> (IE44s+IE43s)
IE44as	GGTATCGTACCGTCTTCTAAG	Genomic fragment of <i>ACS7</i> (IE44s+IE44as)
RV381s	GGATGGGAAGAATACGAGAAGAACCC	T-DNA verification for <i>acs9-1</i> (RV381s+LBa1)
IE45as	GGAGACTTCGCTGTTCTCGAGG	Genomic fragment of <i>ACS9</i> (RV381s+IE45as)
RV350s	GACACCCCCGGCTAAGGAGACTTTCACAGGTCGTGATATG	Verification of miRNA319a targeting ACS8 and
CK138as	GCGGATAACAATTTCACACAGGAAACAG	ACS11
LB1	GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC	SAIL T-DNA LB primer
LBa1	TGGTTCACGTAGTGGGCCATCG	SALK T-DNA LB primer
LBb1.3	ATTTTGCCGATTTCGGAAC	SALK T-DNA LB primer
JH125s	CCTCAAACAGTCAAACTAAACG	T-DNA verification for <i>aco1</i> (JH125s+Lbb1.3) - (SALK-127963)
JH119as	GC <u>TTAATTAA</u> CTCTTTTTATTTACTTTTTCTCACACACAG (Paci)	Genomic fragment of ACO1 (JH125s+JH119as)
AH13s	CAAAGGACCATTACAAGACATG	T-DNA verification for <i>aco2</i> (AH13s+Lbb1.3) - (SALK-027311)
AH13as	CTCTTACCAAAGTCTTTCATGG	Genomic fragment of ACO2 (AH13s+AH13as)
AH10s	CGACGATGCTTGTCAAAACTGG	Genomic fragment of <i>ACO3</i> (AH10s+AH10as)
AH10as	CATTTGACATATCAGGGATGTCG	T-DNA verification for <i>aco3</i> (AH10as+LBa1) - (SALK-082132)

AH32s	GATCTCGACGACGATTACAG	T-DNA verification for <i>aco4</i> (AH32s+LBb1.3) - (SALK-014965)
AH32as	GAAAAATAACAGAGTCGCTTCCC	Genomic fragment of <i>ACO4</i> (AH32s+AH32as)
AH12s	GTCAGAAGATGGACTAACTG	Genomic fragment of <i>ACO5</i> (AH12s+AH14as)
AH14as	CTAGCTTCTCGCCAGAGTTC	T-DNA verification for <i>aco5-2</i> (AH14as+AH16) - (GK-119A07)
AH16		GABI-Kat T-DNA LB primer
JH235as	TCTTTGATGACCTCCTCGCC	Verification primer for C-terminally tagged tdTomato
IE214s	A <u>GGCGCGCC</u> GAAAACGTTTTCCTTATCTCACTTG (Asci)	Verification primer for <i>pSAM1::gSAM1_tdTomato</i> fragment (IE214s+JH235as)
IE207s	GATCTGCGATAGTGTGTGACTATTG	Verification primer for <i>pSAM2::gSAM2_tdTomato</i> fragment (IE207s+JH235as)
IE210s	CTGTCAAGTTGTACTCGCACGCGG	Verification primer for <i>pSAM3::gSAM3_tdTomato</i> fragment (IE210s+JH235as)
IE343s	CTTGTGATCACATGGTTGTATGG	Verification primer for <i>pACO1::NLS_tdTomato</i> fragment (IE343s+JH235as)
IE344s	CTATGACTCGCACATATTTTCTCAG	Verification primer for <i>pACO2::NLS_tdTomato</i> fragment (IE344s+JH235as)
IE345s	GCACACACAAATACAACTTCC	Verification primer for <i>pACO3::NLS_tdTomato</i> fragment (IE345s+JH235as)
IE347s	GGTTGTACTTATGCATGCTTAGC	Verification primer for <i>pACO5::NLS_tdTomato</i> fragment (IE347s+JH235as)
IE300as	CGAACTGATCGTTAAAACTGCC	Verification primer for C-terminally tagged GUS
IE324s	GGGAGATTGATGCTAGCAAAAC	Verification primer for <i>pACS2::NLS_GUS</i> fragment (IE324s+IE300as)
IE326s	CCATGTTGGTAAATCGGATAATG	Verification primer for <i>pACS4::NLS_GUS</i> fragment (IE326s+IE300as)
IE327s	GATTTATTGCTGTATGTGTGAATGC	Verification primer for <i>pACS5::NLS_GUS</i> fragment (IE327s+IE300as)
IE328s	CAAATACTGAAATTGGACTTAATGTTATG	Verification primer for <i>pACS6::NLS_GUS</i> fragment (IE328s+IE300as)
IE329s	CGATCTCCTAAAGATGAACCAC	Verification primer for <i>pACS7::NLS_GUS</i> fragment (IE329s+IE300as)

IE330s	GCTCAATTTTGAGTGTGTTTCAG	Verification primer for <i>pACS8::NLS_GUS</i> fragment (IE330s+IE300as)
IE331s	GAGATAGGAAGAGAGATTTTCTTTAG	Verification primer for <i>pACS9::NLS_GUS</i> fragment (IE331s+IE300as)
IE333s	CACTATAGCTAATAATGTCGGGA	Verification primer for <i>pACS11::NLS_GUS</i> fragment (IE333s+IE300as)

SUPPLEMENTARY MOVIE LEGENDS

Movie S1, related to Fig. 1A: Live cell imaging of early endosperm nuclei divisions in *ein3/*+ seeds without sdn.

Pictures were taken every 10 minutes. The last frame before nuclear decondensation in the two-nucleate endosperm stage was set to 0. Frame-numbers are indicated in the video.

Movie S2, related to Fig. 1B: Live cell imaging of early endosperm nuclei divisions in *ein3/*+ seeds with sdn.

Pictures were taken every 10 minutes. The last frame before nuclear decondensation in the two-nucleate endosperm stage was set to 0. Frame-numbers are indicated in the video.