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dosage contribute to agronomic trait variation in allopolyploid

wheat



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

In this manuscript, He and colleagues used diverse allohexaploid wheat accessions to map expression 

quantitative trait loci (eQTL) and evaluated their effects on the population-scale variation in 

homoeolog expression levels. Authors used association mapping to identify cis- and trans-acting 

variants that explain the variance in homoeologous gene expression, with gene expression treated as 

a phenotype. To study the effect of chromatin dynamics on regulatory variants, authors investigated 

the distribution of cis- and trans-acting eQTL across genomic regions showing distinct chromatin 

architecture or involved in 3D chromatin contacts. Finally, eQTL, GWAS and gene co-expression 

networks were analyzed jointly to investigate the role of variants linked with homoeologous gene 

regulation in shaping variation in major agronomic traits in wheat landraces and cultivars. Overall, the 

topic is interesting but the work is only descriptive and the part integrating chromatin dynamics and 

chromatin architecture is not convincing. 

Major Points: 

1. Authors showed that cis- and trans-eQTL were found enriched in the regulatory regions however it 

is not shown if any mutation can impact chromatin accessibility. Performing some ATAC-seq on 

contrasted wheat varieties to connect some genetic variation with variation in chromatin accessibility 

would really improve the manuscript. 

2. The analysis correlating histone modifications (H3K4me3, H3K4me1, H3K27ac, H3K27me3 and 

H3K9me2) and cis- and trans-eQTL des not add anything to the paper since no one of those histone 

marks is clearly associated to regulatory region. All of those marks are mainly associated to gene ORF 

or TE for H3K9me2. 

3. Authors showed that both cis- and trans-eQTL p-values positively correlate with the frequency of 

Hi-C contacts. A major point here is the resolution of the Hi-C data used that is not sufficient for a 

precise mapping of the interaction. In addition none of the interaction was validated by another 

method like FISH or 3C experiment. In addition to prove that some eQTL effects likely depend on the 

physical interaction between the regulatory elements and target genes, authors should at least 

demonstrate that some loops are destabilized in genetically diverse allohexaploid wheat. 

4. Authors raised the possibility that the effects of trans-eQTL on target genes located in the 

homoeologous regions could be mediated by chromatin loops but again here this is supported by only 

the correlation between trans-eQTL and both homoeologous and non-homoeologous chromosomes. To 

my view this is not enough (see point 3) 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In the manuscript entitled “The landscape of genetic effects on gene expression levels in allopolyploid 

wheat reveals the impact of homoeologous gene dysregulation on agronomic traits,” He et al. 

investigated the genetic control of gene expression (a.k.a. expression quantitative trait loci or QTLs) in 

allopolyploid wheat. They observed uneven distribution of genetic variations for gene expression in 

different homoeologous genomes, likely owing to polyploidization and selection. They showed an 

intriguing inverse relationship between genetic variance for the expression level of homoeologous 

genes and expression correlation between the homoeologous gene pairs. They also showed that 

homoeologous gene regions are depleted for both common and rare genetic variants but enriched for 

Hi-C contacts. They further demonstrated the integration of the eQTL data with GWAS data to discover 

functional genes for agronomic traits. The design of the experiment and the most methods used are 

sound. The manuscript is well written. However, I have a few major concerns regarding the method 

used for eQTL analysis and the choice of statistical significance level for claiming eQTLs. 

 

Major comments 

The authors used a linear model method implemented in the Matrix eQTL software for eQTL detection. 



First of all, and most importantly, it is unclear how the cryptic relatedness in the sample was 

accounted for and the extent to which the eQTL test statistics were inflated due to the cryptic 

relatedness. It is also unclear whether three eigenvectors are sufficient to control for population 

stratification. The authors may need to demonstrate the distribution of the genomic inflation factors 

for all the gene expression traits analyzed. One suggestion would be to use a linear mixed model 

method that can account for both relatedness and population stratification, as the authors did in 

GWAS analysis for the agronomic traits. 

 

Another critical issue is the choice of statistical significance level for claiming eQTLs. The authors 

chose an FDR threshold of 1e-5 without justification. However, the number of false positives in the 

reported eQTLs is unclear, especially considering that relatedness has not been accounted for in the 

eQTL analysis. 

 

This is reflected by the large number of eQTLs detected (after LD-based merging) from both the 

seedling and spike data sets, irrespective of the small sample sizes. Although the sample size of the 

seedling data is more than twice that of the spike data, the number of eQTLs detected from the former 

(36,898) is substantially smaller than the latter (65,117). Interestingly, after integrating the eQTL 

data with the GWAS, the number of trait-associated genes using the seedling eQTL data (329) was 

much larger than that using the spike eQTL data (95), consistent with the difference in sample size 

between the two data sets. 

 

Several observations might indicate that there are a substantial number of false-positive trans-eQTLs. 

1) One observation is related to the expression correlation. If genetic variations are expected to 

disrupt the expression correlation between homoeologous genes, then the expression correlation 

between homoeologous gene pairs that share eQTLs is expected to be smaller than that for random 

gene pairs (Figure 4). This is the case for genes that share cis-eQTLs but not for those that share 

trans-eQTLs. On the other hand, the bimodal distribution (e.g., the mode on the right-hand side) may 

indicate the enrichment of false positives. 2) The second observation is related to overlap between Hi-

C contacts and trans-eQTL-target gene pairs. As presented in Figure 5d, the density plot for trans-

eQTL-target gene pairs is highly similar to that for a random set of genes. BTW, I do not think the test 

has been done correctly in this case. A proper test should be a test of the mean (mode or median) of 

the number of Hi-C contacts for the trans-eQTL-target gene pair against the distribution of the mean 

(mode or median) values obtained from repeated sampling of random gene sets (rather than one 

random gene set). 3) The third observation is the lack of overlap between the trans-eQTLs and the 

QTLs for the agronomic traits. 4) The proportion of genes with trans-eQTLs that also have cis-eQTLs is 

surprisingly low, especially in the seedling data (1469 / 8315). Is it also an indication of the potentially 

elevated false-positive rate? 

 

Ln320-321. The observed negative correlation could be due to ascertainment. The statistical power to 

detect an eQTL is a function of n * 2p(1-p) * b^2 with n being the sample size, f being the allele 

frequency and b being the effect size so that the effect size of a lower MAF variant needs to be larger 

to be detected at a specific significance level. 

 

Ln855-857 and ln887-889. The authors may need to clarify the purpose of using BLUEs and BLUPs of 

the phenotypes for follow-up analyses and why they used BLUE for the 800 accessions and BLUP for 

the 400 accessions. 

 

Ln956 “Ten-fold cross-validation”. This method is only applicable to data where all the individuals are 

independent. 

 

Minor comments 

Ln197 “Only half of these genes”. Please be specific about “these genes”. 

 

Figure 2c. The authors may need to clarify how this plot was made because genetic variance is 



estimated for a single gene, whereas expression correlation is computed for a pair of genes. 

 

Ln560 Fig. 7f? 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors investigated the regulatory control of duplicated gene expression in hexaploid bread 

wheat from a popgen perspective and its relevance to agronomic traits: 

1. partitioning genetic variation of expression traits to evaluate regulatory control from the same (cis-

acting variants) or different (trans-acting) subgenomes, revealing stronger effects from former. Line 

244 concluded that "dysregulation of homoeologs is primarily associated with the cis-regulatory 

diversity": what does "cis-regulatory diversity" refer to and how is it connected with the cis-acting 

variants？ 

2. eQTL analysis identidied cis-eQTLs and trans-eQTLs, which were next annotated based on 

chromatin features: trans-eQTLs were further examined to explore the possibilities that homoeologous 

genes act upon each other in trans; cis-eQTLs were compared between homoeologs and singletons to 

ask whether duplicated genes are under more relaxed purifying selection; both were next considered 

together in four configuration to examine their effects onrelative levels of homoeolog expression. 

3. Agronomic traits analysis: this is where I had to stop due to the lack of clarity of the above two 

aspects, detailed below. 

 

So there are A LOT of good ideas and tests involved, and I do believe the authors are onto some quite 

novel aspects on the regulatory complexity in allopolyploid plants, but also because of such 

complexity, this manuscript is not easy to follow. The title is rather lengthy but doesn't have a clear 

point. The abstract appears to cover main results, but these results are disconnected to deliever a 

conhesive story. 

 

One major hurdle for me to understand this manuscript is the concept of "homoeolog dysregulation". 

According to Figure 1a, the authors used this term to describ homoeologs that are differentially 

expressed, which doesn't indicate any functional consequences like impairment in protein functions or 

metabolic process. In that case, there are already terms like "unequal expression" and "homoeolog 

expression bias" for that. But later, "dysregulation" was defined more specifically based one negative 

SCC. All these terminological and conceptual inconsistency brought by the new term make it difficult 

to connect this work with relevant literatures to comprehend new evidence and findings. 

 

Another issue is the use of cis and trans, more detailed comments are marked in the attached PDF. 

 

Methods seemed sound to me and carefully executed for each task. For example, I do appreciate the 

efforts the authors put in to assess transcript estimation, which employed simulated RNA-seq data to 

validate the high correlation between observed and expected reads. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

Overview: 

 

The authors investigate the causes and consequences of differential expression of homoeologs among 

lines from a wheat diversity panel and attempt to associate expression changes with genotype and 

trait variation. They make a number of findings. They identify balanced homoeologs as those that 

have the same subgenome contribution in all wheat lines and dysregulated ones as those with where 

subgenome contributions differ by line. For many homoeologs, expression is balanced. The authors 



find incomplete dosage compensation for dysregulated homoeologs. For genes on the A and B 

subgenomes, expression variance is largely attributed to the native subgenome whereas for genes on 

D, which arose after a bottleneck event, all three subgenomes contribute equally for expression 

variance. Balanced homoeologs are associated with fewer genetic differences among lines and share 

more eQTLs as expected for more consistent expression. Cis and trans eQTLs associated with 

expression variation have been attributed to functional and regulatory regions. Homoeologous gene 

regions also seem to have more contact with each other. Among many other findings, they also find 

that accumulation of low expressing alleles in dysregulated homoeologs is associated with trait 

differences between wheat lines. 

 

Previous work has identified cis and trans eQTLs polyploid species including polyploid Arabidopsis (Shi 

et al. 2012), potato (Zhang et al. 2020) and cotton (Bao et al. 2019) but this study would be the first 

to identify them in wheat and study how they interact to affect homoeolog expression. The study also 

attempts to associate dysregulated expression of homoeologs with trait values. However, this 

dysregulation-trait association is less robust compared to the genetic partitioning and eQTL analyses. 

 

Bao Y, Hu G, Grover CE, Conover J, Yuan D, Wendel JF. Unraveling cis and trans regulatory evolution 

during cotton domestication. Nature communications. 2019 Nov 27;10(1):1-2. 

 

Zhang L, Yu Y, Shi T, Kou M, Sun J, Xu T, Li Q, Wu S, Cao Q, Hou W, Li Z. Genome-wide analysis of 

expression quantitative trait loci (eQTLs) reveals the regulatory architecture of gene expression 

variation in the storage roots of sweet potato. Horticulture Research. 2020 Jun 1;7(1):1-2. 

 

Shi X, Ng DW, Zhang C, Comai L, Ye W, Chen ZJ. Cis-and trans-regulatory divergence between 

progenitor species determines gene-expression novelty in Arabidopsis allopolyploids. Nature 

communications. 2012 Jul 17;3(1):1-9. 

 

 

 

 

Major Comments 

 

Is the term “balanced” accurate for what is described in terms of homoeolog expression? Balanced in 

previous work (e.g. Ramirez-Gonzalez et al., 2018, Science) refers to similar expression levels of A, B 

and D homoeologs e.g. all three are expressed at 1 TPM. My understanding is that here by “balanced” 

the authors mean that the expression level of the homoeologs is correlated but not necessarily at the 

same expression level e.g. if the ratio between A:B:D is 4 TPM: 1 TPM: 1 TPM and that is consistent 

across the population (SCC will be positive) the relationship is considered “balanced”. This seems non-

intuitive based on the terminology. Would “positively correlated homoeologs” be a more suitable term 

to avoid confusion with previous work in this area? The graphic in Fig 1A should be updated using 

multiple possible relationships: currently the nuance about the correlated expression is lost when 

relying on that figure for definitions. (i.e. include a line at 1:1 and a line at e.g. 3:1 to show the 

expression level of A:B does not have to be equal). 

 

The term “dysregulated” might be more accurately described as “negatively correlated homoeologs”. 

This is what is described in the methods (line 393-942) which says a dysregulated homoeolog should 

have a negative correlation (SCC<0) with two homoeologs, and a strong negative correlation (SCC<-

0.4) with at least 1 homoeolog. However, the Figure 1 legend describes “dysregulated homoeologs 

show different levels of expression” which to me means something quite different (i.e. A expression is 

higher than B expression). The explanation of dysregulated homoeologs should be made clearer and 

consistent throughout the paper. 

 

Similarly, the definition and consistency of the 59 homoelogs identified as being dysregulated could be 

made clearer. Was the level of dysregulation and homoeolog expression exactly the same between 



seedlings and spikes for each line? More generally, how consistent are dysregulated homoeologs 

across tissue, time and biological replicate? It not evident that expression at this timepoint being 

studied is the only one affecting trait expression. If homoeolog contribution changes with 

development, it is possible other homoeologs are identified as dysregulated at a timepoint or tissue 

not investigated here and may have a more direct impact on trait values. Ideally, the tissues 

underlying the basis for a given trait should be studied (e.g. grain gene expression for a grain related 

trait) but this study provides a first pass attempt at trying to identify associations. This limitation 

should be discussed, and support for the approach used comes from work in maize which shows that 

several different tissues can be used to predict seed-weight (Kremling et al., 2018). 

 

Kremling, K., Chen, SY., Su, MH. et al. Dysregulation of expression correlates with rare-allele burden 

and fitness loss in maize. Nature. 2018. 555, 520–523 

 

The conclusion (line 243-245) that “our results suggest that the dysregulation of homoeologs (Fig. 1a) 

is primarily associated with the cis-regulatory diversity” is not fully supported by the evidence 

presented. The majority of the results do support that cis-genomic diversity is associated with 

homoeolog dysregulation, but this does not go as far as supporting “cis-regulatory diversity” because 

the analysis was done at a subgenome scale (e.g. A vs B vs D), rather than at a specific chromosome 

scale. Therefore, I find the current statement misleading because cis-regulatory would normally refer 

to a region close to the gene being regulated (or at the least on the same chromosome) but in this 

case most of the data shows the regulation comes from the same subgenome, but not necessarily the 

same chromosome. A way to improve this analysis, could be to re-run the partitioning of genetic 

variation per chromosome, rather than per subgenome, then the data could support this conclusion. 

Otherwise, the conclusion should be amended to “our results suggest that the dysregulation of 

homoeologs (Fig. 1a) is primarily associated with the cis-genomic diversity”. 

 

Three comments related to the assessment of purifying selection homoeologs and singletons in Fig 4d: 

 

a) There is no explicit test for purifying selection in Fig 4d. One way to do this, as done for many of 

the other analyses in this paper, is to permute the expression and genotype, separately for each MAF 

category, and establish the significant threshold. 

 

b) Related to the same analyses, the effect size for eQTLs with low MAF can be inflated for a number 

of reasons and detecting rare small effect QTLs in general is difficult. It would be worth repeating the 

analyses using a fixed contribution of two alleles by subsampling genotypes for the more common 

allele and repeating the effect size calculations. The results of Fig S2C suggests this is unlikely to alter 

conclusions regarding the comparison between singletons and homoeologs. 

 

c) Why not consider doublets and triplets separately? 

 

Methodological major comments: 

 

It would be important to know if the key conclusions still hold when excluding genes that show high 

levels of expression noise – variability between biological replicates. Since the three samples together 

were ground together, this current data does not allow one to assess this. 

 

Is Hi-C stable between lines? Hi-C data from CS is being used to infer relationships in all lines, yet 

they are very different genotypes which are likely to have large structural re-arrangements. Therefore, 

whilst interesting, these results are a bit speculative. How robust are comparisons when Hi-C datasets 

from different genotypes are used? One way to test this would be use the datasets generated 

Walkowiak et al. (2020) and test if the results hold under all conditions. 

 

Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, Brinton J, Ramirez-Gonzalez RH, Kolodziej MC, 

Delorean E, Thambugala D, Klymiuk V. Multiple wheat genomes reveal global variation in modern 



breeding. Nature. 2020 Nov 25:1-7. 

 

Line 117-119 “Transcripts Per Million (TPM) were estimated for high-confidence (HC) genes in RefSeq 

v.1.0, with 82,092 genes (66,333 genes) showing TPM > 0.5 in at least two wheat lines”. But this 

does not agree with what is stated in the methods (Lines 701-704) which states that “Gene models 

with expression standard deviation > 0.5 and expressed (TPM > 0.5) in at least three samples have 

been used in our analyses. This set of genes included 52,511 HC gene models, 29,226 LC gene 

models, and 13,861 de novo assembled transcripts.” Were only HC genes used, or were LC and de 

novo transcripts also included? 

 

Line 700. How were the de novo transcripts assembled? And which analyses were they used for? 

 

 

Data availability: 

Deposited RNA-seq data is private until 1st Nov 2023, this must be made public upon publication. 

Also, this is not the raw RNA-seq reads (is this is in the linked SRA record? I cannot access it to 

check). The raw fastq files should also be made available upon publication. Finally, these SRA and GEO 

accession numbers should be included in the main methods or in list of supplemental data so that 

others can find them. 

 

 

Minor comments: 

 

Title is very long. Could it be re-written to be shorter and more informative? 

 

Are the 2Mb regions defined surrounding gene always intergenic regions? If closer regions (500 bp 

and 1 MB) are less likely to intersect with neighbouring genic regions, they could be used instead. 

 

Text on figure 1 is too small to read. Figure 1B does not really add to the narrative and could be 

removed. 

 

In Fig 3A and B, what does deleterious mean? Missense can also be deleterious. 

 

Figure 5, text too small panel e). Explanation of tpm graphs on the right not clear. Also why is this 

panel inside a blue box? 

 

Figure 7C, the Y axis is misleading, it’s a count of low expression alleles for dysregulated homoeologs 

in each line, or so I think. 

 

Is Line 560 supposed to say Fig 7F? 

 

Line 593 “Previous studies in maize” – only 1 study is cited. 

 

Line 683. Which programme and parameters were used for read mapping? Which genome sequence 

was used as a reference? 

 

Line 784 “All SNP sites with missing rate > 75% or heterozygosity rate < 3% were removed”. Why 

remove SNPs with low heterozygosity? I would expect most wheat lines to be homozygous. (This is 

also the opposite of the stated filter on line 779) 

 

Line 926 to 928 there is a sentence repeated “If the absolute….” 

 

Supplementary table 2, the column named “GENE_ID (v.2.0)” should be called “Gene_ID (v1.1)”, 

consistent with IWGSC et al., 2018. 



 

Supplementary table 12 is labelled as Supplementary Table 13 in the excel file so needs to be 

corrected. 

 

Supplemental Fig 14. What are eGenes? 



 
Response to the Reviewers’ Comments 

 
 

Reviewer #1 (Remarks to the Author): 
 
 
Remark from the authors: We would like to thank this reviewer for the  critical comments. 
Although, nearly all of them are targeting only small secondary direction of analyses concerning 
chromatin, which was never intended to be something of central importance for our manuscript,  
these comments forced us to more critically re-assess the analyses we conducted to study the 
relationship between eQTL and chromatin. Based on this assessment, we have removed some of 
the Hi-C analyses from the manuscript and also restructured and revised our manuscript trying to 
present more careful interpretation of obtained results.  
 
 
Major Points: 
Comment 1: Authors showed that cis- and trans-eQTL were found enriched in the regulatory 
regions however it is not shown if any mutation can impact chromatin accessibility. Performing 
some ATAC-seq on contrasted wheat varieties to connect some genetic variation with variation 
in chromatin accessibility would really improve the manuscript. 
 
Response:  While we do agree that detecting eQTL that control gene expression by changing the 
chromatin states would be an interesting study, we do not believe that adding this new quite large 
datasets and associated results (please see below why mapping SNPs affecting chromatin states 
would require much larger scale research than just analyzing few contrasting lines with ATAC-
seq) would improve the main messages in our current manuscript. Though we have added a new 
analysis of the previously published ATAC-seq and RNA-seq data that points at possible 
connection among eQTL, chromatin states and gene expression (you may see Results and 
Methods section of the revised manuscript), we did it reluctantly. Below we provide our opinion 
about the new analyses proposed by the reviewer. 
 

1) Detection of eQTL variants that specifically act through mechanistic modification of 
chromatin to regulate expression is quite complicated research task that is surely outside 
of the scope of our current manuscript. In our manuscript, for the first time, we 
characterized a) eQTL and their effects on homoeologous gene expression in polyploid 
species, b) the role of the polyploid genome’s evolutionary history on the cis-/trans-
effects across homoeologous chromosomes, c) the relative role of cis-/trans-eQTL in 
homeolog expression bias, and d) the impact of homeolog expression dosage variation on 
agronomic traits targeted by breeding. We are concerned that addition of these new quite 
substantial analyses of eQTL/chromatin states/gene expression would not leave enough 
room to adequately describe these main findings, most of which reported for the first time 
in a polyploid species.  The other three reviewers found that our manuscript is already too 
complex and would benefit from simplification and shortening. We do not see how we 
could accomplish this by further expanding manuscript and supplementing it with 
additional data, which we would not be able to describe in sufficient details either.   



 
2) We also believe that this is misleading statement that it is easy to identify eQTL that act 

on genes by changing chromatin states by simple comparison of some contrasted wheat 
varieties. Essentially, this reviewer asks us to identify causal variants that are both eQTL 
and caQTL (chromatin accessibility QTL). While selection of several contrasting 
accessions and running ATAC-seq can help to find an eQTL allele located near genes 
showing different chromatin states, this design will not be able to prove that changes in 
chromatin states are due to this particular eQTL. Due to small sample size in this 
experimental design, we would not be able to rule out that chromatin accessibility is 
controlled by other variants located elsewhere on a chromosome and in LD with the 
chromatin state around the eQTL region. To separate the effects of eQTL from other 
variants on chromatin states, one would need to analyze much larger population, where 
LD range is much shorter than that captured within few wheat accession. Thus, mapping 
caQTL by ATAC-seq would require a panel of lines comparable in size to our eQTL 
mapping panel, at least 100 or more lines. Putting aside that this is not the main focus of 
our work, due to the size of the wheat genome (16 Gb) and simply the large cost of 
experiment and time needed to perform it, we do not feel that the characterization of 
caQTL-eQTL pairs should be the focus of this first eQTL mapping study in wheat. In 
addition, due to COVID-related issues that forced us and our genomics and cell-sorting 
facilities to limit in-person work in the laboratories, conducting additional genomics 
experiments such as ATAC-seq is nearly unfeasible. 

 
3) The enrichment analyses in genomics research are powerful tool and have specific 

purpose within the scope of large-scale variant mapping studies, such as eQTL mapping. 
The purpose of enrichment analysis per se is to statistically detect the existence of 
relationship between variables and, in eQTL mapping setting, also to serve as a quality 
control to confirm that methods applied for eQTL mapping could detect variants located 
in the regions of genome potentially involved gene expression regulation, which includes 
promoter regions upstream of genes that also tend to have open chromatin. As such, they 
do not normally include demonstrating that any given specific mutation changes 
chromatin state or not, which is the goal of more focused functional studies pursuing this 
specific objective. The fact that eQTL are over-represented in the regions of open 
chromatin compared to randomized set is sufficient to demonstrate that detected eQTL 
set, in general, is preferentially located in functionally active regulatory regions of 
genome. For example, the human GTEx consortium (Aguet et al. Genetic effects on gene 
expression across human tissues. Nature. 2017;550:204–13) used overlap with DHS 
regions to functionally annotate their detected eQTL. Thus, for one of the first eQTL 
mapping studies in wheat this specific enrichment analyses should have been performed. 
But more in depth analysis of the relationship between eQTL, chromatin state and gene 
expression is the topic of follow-up studies. Our study is already quite extensive in scope 
of reported analyses and, after obtaining comments from other reviewers who asked for 
shortening and simplifying the manuscript, we feel that we would do poor service to the 
research community by further expanding analyses to yet another direction.   

 
4) Though we believe that this does not substantially strengthen main conclusions in the 

manuscript, to partially satisfy this reviewer’s request, we tried to expand eQTL-



chromatin state analyses for a selected subsets of eQTL from our study into two cultivars 
for which we have published ATAC-seq data available: cv. Chinese Spring and Paragon, 
both were not part of the analyzed panel of lines. Our results indicate that about 17% of 
genes showing differential gene expression between these two cultivars with the eQTL 
allele effect directions consistent with the direction of expression change also show 
expected changed in chromatin accessibility of the promoter regions. The Results and 
Methods section are updated, and data is shown in Supplementary Table 6.   
 

Comment 2. The analysis correlating histone modifications (H3K4me3, H3K4me1, H3K27ac, 
H3K27me3 and H3K9me2) and cis- and trans-eQTL does not add anything to the paper since no 
one of those histone marks is clearly associated to regulatory region. All of those marks are 
mainly associated to gene ORF or TE for H3K9me2. 
 
Response: It is not clear to us why this reviewer states that H3K4me3, H3K4me1, H3K27ac and 
H3K27me3 are not associated with the regulatory regions? In the original version of the 
manuscript, we did provide in the Results section brief description of the generally accepted role 
of each mark in regulation. The H3K4me3, H3K4me1, H3K27ac marks are well known for 
being associated with enhancers and promoters of actively expressed genes. The H3K27me3 
marks are often linked with repressed chromatin and are enriched in the promoter regions of 
repressed genes. Only one of the epigenetic marks listed by the reviewer, H3K9me2, is not 
associated with the regulatory regions (and we did indicate this in the Results section too). Here 
we provide additional short citations (now added to the manuscript) from published studies that 
specifically mention association between H3K4me3, H3K4me1, H3K27ac and H3K27me3 and 
the regulatory regions: 1) “H3K4me1 is highly enriched at enhancers, … and H3K4me3 is a 
hallmark of the promoters of actively transcribing and poised genes” (DOI: 
https://doi.org/10.1038/emm.2017.11); 2) “Selected epigenomes also contain a subset of 
additional epigenomic marks, including: acetylation marks H3K27ac and H3K9ac, associated 
with increased activation of enhancer and promoter regions” (DOI: 10.1038/nature14248); 3) 
“… H3K27me3 was shown to be highly enriched at the promoters of thousands of genes that are 
responsible for embryonic development and differentiation” (DOI: 
https://doi.org/10.1038/emm.2017.11). 
 
In addition, irrespective of where eQTL are located in the genome, we believe that the 
enrichment or depletion of eQTL in the regions with distinct histone marks still provide useful 
information for the functional annotation of eQTL. We report the first eQTL map of the wheat 
genome and providing the research community information about the eQTL distribution across 
various genomic features identified so far in wheat is useful.  Thus, we would prefer to keep the 
enrichment analysis without changes. 
 
Comment 3. Authors showed that both cis- and trans-eQTL p-values positively correlate with 
the frequency of Hi-C contacts. A major point here is the resolution of the Hi-C data used that is 
not sufficient for a precise mapping of the interaction. In addition none of the interaction was 
validated by another method like FISH or 3C experiment. In addition to prove that some eQTL 
effects likely depend on the physical interaction between the regulatory elements and target 
genes, authors should at least demonstrate that some loops are destabilized in genetically diverse 



allohexaploid wheat.  
 
Response:  We do agree with the reviewer that resolution of Hi-C analysis is limited and does 
not provide sufficient evidence for detecting interaction between individual eQTL and its target. 
For this reason, the results presented on Fig. 5e do require quite extensive experimental 
validation to be considered reliable. Because this specific analysis is not of central importance 
for main conclusions, we excluded this part of figure 5 as well as the related parts from the 
Results section of the revised manuscript.  However, the results that were presented in the former 
Fig. 5a-d (now part of Fig. 3d-f) are intended to demonstrate global relationship between the 
distribution of eQTL and their effects among regions showing elevated frequency of chromatin 
contacts. For the purposes of these analyses, the resolution of Hi-C data is sufficient to 
demonstrate global trends or enrichment of eQTL within chromatin loops. For example, eQTL 
over-representation analysis within chromatin loops was performed by the human GTEx 
consortium (Aguet et al. Genetic effects on gene expression across human tissues. Nature. 
2017;550:204–13). Their results demonstrated that eQTL are enriched within cis-regions: 
“However, similar to primary eVariant associations, secondary eVariants were enriched for 
chromosomal contact with target eGene promoters, as determined through Hi-C, compared to 
background variant–TSS pairs (Supplementary Information 6). This suggests that, despite their 
sequence-based distance from the TSS, primary and secondary eVariants are in close physical 
contact with their target gene promoters via chromatin looping interactions.” 
 

We have modified Results section and retained only part of the Hi-C analyses, which are 
now presented as a part of Fig. 3d-f. In this section, we mostly focused on assessing the 
enrichment of eQTL within the regions of Hi-C contacts. We also indicated that 1) Hi-C data has 
limited resolution and could not be used for detecting the interaction of eQTL region with its 
target gene, and 2) that in our study it was used to check for enrichment of eQTL-target gene 
pairs within the regions involved in chromatin interaction. The Results section was modified as 
shown here: “Although, the low resolution of wheat Hi-C data does not allow us to map 
precisely regulatory regions involved in interaction, it could be used to assess enrichment of 
eQTL-target gene pairs relative to randomized data. First, we found that both cis- and trans-
eQTL p-values positively correlate with the frequency of Hi-C contacts, suggesting that regions 
harboring eQTL-gene pairs showing strong association are also more likely to have higher 
frequency of chromatin contacts (Figs. 3d, 3e, Supplementary Table 7). Second, the regions 
harboring trans-eQTL between both homoeologous and non-homoeologous chromosomes 
showed elevated Hi-C contacts (log10[Hi-C] = 1.24) compared to a randomized distribution 
based on 100 samples (mean log10[Hi-C] = 0.92) (Fig. 3g). This result indicates that the 
probability of trans-eQTL-target gene pair occurrence within the regions forming chromatin 
loops is substantially higher than random. Among trans-eQTL-target gene pairs with a Hi-C 
contact frequency >50, 15% were located with the homoeologous chromosome regions involved 
in chromatin interaction more frequently than non-syntenic regions (Fig. 3f)”. 
 
And again, we would like to re-iterate that the goal of our study is to characterize genetic effects 
of variants on expression of duplicated genes in young polyploid genome and investigate their 
relationship to phenotype. Though comparison with chromatin states and chromatin loops was 
used in our study, the main purpose of these analyses was to confirm association of eQTL with 
functionally active region of the genome at the global scale.  The direction of research that 



reviewer is proposing is outside of the scope of our study, especially considering that the current 
manuscript is already quite complex. The other three reviewers suggested to simplify and shorten 
manuscript (please see response to comment 1). 
 
 
Comment 4. Authors raised the possibility that the effects of trans-eQTL on target genes located 
in the homoeologous regions could be mediated by chromatin loops but again here this is 
supported by only the correlation between trans-eQTL and both homoeologous and non-
homoeologous chromosomes. To my view this is not enough (see point 3) 
 
Response: Please see our responses to comments 1 and 3. These analyses were never intended to 
be the main focus of the manuscript. As we noted there, we have excluded a section in Results 
specifically devoted to Hi-C analyses, including a specific case of overlap between eQTL and 
Hi-C (former Fig. 5e) from the manuscript. We have retained only those analyses that are based 
on the comparison of global patterns of overlap between eQTL and Hi-C, as a way of validating 
functional relevance of detected eQTL (now on Fig. 3d-f) and demonstrating that chromatin 
loops are enriched in eQTL-target gene pairs detected in our study. These approaches were 
commonly used in other eQTL studies before, including model systems (e.g. Aguet et al. Genetic 
effects on gene expression across human tissues. Nature. 2017;550:204–13), to investigate the 
functional relevance of detected eQTL. 
 
 
 

Reviewer #2 (Remarks to the Author) 
 
 
Major comments 
 
Comment 1: The authors used a linear model method implemented in the Matrix eQTL software 
for eQTL detection. First of all, and most importantly, it is unclear how the cryptic relatedness in 
the sample was accounted for and the extent to which the eQTL test statistics were inflated due 
to the cryptic relatedness. It is also unclear whether three eigenvectors are sufficient to control 
for population stratification. The authors may need to demonstrate the distribution of the 
genomic inflation factors (GIF) for all the gene expression traits analyzed. One suggestion would 
be to use a linear mixed model method that can account for both relatedness and population 
stratification, as the authors did in GWAS analysis for the agronomic traits. 
 
Response: We controlled population structure by providing three PCs during the calculation of 
PEERs that was used for removing the effects of confounding factors, including the effect of 
population structure, on gene expression levels. The PEER residuals were then used in 
association mapping with Matrix eQTL followed by calculating the corresponding FDRs using 
BH correction. Overall, we applied the eQTL mapping procedure, which was used by the 
humans  Genotype-Tissue Expression consortium (doi:10.1038/nature24277) for mapping eQTL 
and shown to produce adequate results with low false positive rate. Based on the estimates of 
genomic inflation factor (GIF), this approach was effective in controlling population structure for 
nearly 61% of genes, which showed no evidence of inflation of test statistics (61% of genes had 



GIF<1.1). Per reviewers suggestion, we have included the distribution of GIF in our dataset 
(Supplementary Fig. 15).  
 
These results indicate that for the majority of genes, three PCs are sufficient for controlling the 
effect of population structure and does not require including relatedness matrix. While the 
remaining genes do show some effect of population structure on test statistic, but these effects 
are not dramatic and often observed in many GWAS studies. Selecting the optimal combination 
of PC numbers and/or relatedness matrix for inclusion into the model for every individual gene 
in eQTL mapping studies remains computationally challenging, and to our best knowledge was 
not performed in most of the eQTL studies in humans or model systems. For this reason, to 
reduce the chance of detecting false positive SNP-trait association, we have applied strict FDR 
correction (FDR <10^-5). The effect of this FDR threshold on false positive rate has been 
evaluated by permutation (now described in the Methods). For more detailed response related to 
permutation and applied p-value threshold please see the response to comment 2 below.  
 
Comment 2: Another critical issue is the choice of statistical significance level for claiming 
eQTLs. The authors chose an FDR threshold of 1e-5 without justification. However, the number 
of false positives in the reported eQTLs is unclear, especially considering that relatedness has not 
been accounted for in the eQTL analysis. 
 
Response: The effect of the selected FDR = 10-5 on proportion of false positive eQTL was 
investigated by performing permutation analysis. The expression values of each of the 52,060 
genes in our dataset were permuted relative to genotyping data (includes 2,021,937 SNPs) to 
generate 1000 randomized datasets. The SNP-gene expression association test statistic was 
calculated using the same approach described in the paper. By applying p-value threshold 
corresponding to FDR <= 10-5, on average, we detected 3,595 associations in the randomized 
datasets. In the real-life dataset, we have identified  11,421,859 associations passing this 
threshold indicating that only 3.2 x 10^-4 associations passing our threshold are false positives. 
The false positive rate calculated using the permuted data for spikes resulted in 0.8 x 10-3. This 
number of false positive associations suggest that the selected FDR thresholds and approaches 
used for eQTL mapping will unlikely result in elevated rate of false positives and will have 
major impact on the reported results. In the Methods section we provided detailed description of 
the performed permutation analyses.  
 
Comment 3: This is reflected by the large number of eQTLs detected (after LD-based merging) 
from both the seedling and spike data sets, irrespective of the small sample sizes. Although the 
sample size of the seedling data is more than twice that of the spike data, the number of eQTLs 
detected from the former (36,898) is substantially smaller than the latter (65,117). Interestingly, 
after integrating the eQTL data with the GWAS, the number of trait-associated genes using the 
seedling eQTL data (329) was much larger than that using the spike eQTL data (95), consistent 
with the difference in sample size between the two data sets. 
 
Response: Thank you for pointing out at this unexpected number of eQTL reported for spikes 
compared to those reported for seedlings. This helped us to identify a  problem with data 
processing and fix it. Overall, the excessive number of reported spike eQTL was not due to 



elevated false positive rate, but due to issues related to the LD-based clustering of SNPs 
significantly associated with variation in gene expression. 
 
We have assessed the proportion false positives in eQTL mapping results for spikes by 
performing eQTL mapping using permuted data. We have generated 1000 randomized datasets 
and applied p-value threshold corresponding to FDR <=10^-5. While in the original non-
permuted dataset, 1,336,626 SNPs pass this p-value threshold (before LD merging), in the 
permuted datasets, on average we had only 10,858 SNPs passing threshold, suggesting that in 
our experiment the false positive rate is around 0.8 x 10^-3. This rate is higher than in the 
seedling dataset (3.2 x 10^-4; see response to comment 2 above), however, it is well within the 
acceptable range for QTL mapping studies.  
 
Our further analysis of spike eQTL showed that the increased number of reported variants was 
not due to elevated number of false positives, as was suggested by the reviewer, but due to the 
reporting redundant set of SNPs that were not properly clustered based on the physical proximity 
or LD. We found that the LD- and distance-based clumping was not performed using the same 
criteria we applied for eQTL from seedling tissues. By applying the same criteria, we have 
obtained a set of 15,238 eQTL. This number of eQTL is consistent with the smaller size of the 
population used for eQTL mapping in spikes compared to population sies used for mapping in 
seedlings. The Result section has been updated and updated eQTL detected in spikes are 
provided in Supplementary Table 5.  
 
Comment 4: Several observations might indicate that there are a substantial number of false-
positive trans-eQTLs. 1) One observation is related to the expression correlation. If genetic 
variations are expected to disrupt the expression correlation between homoeologous genes, then 
the expression correlation between homoeologous gene pairs that share eQTLs is expected to be 
smaller than that for random gene pairs (Figure 4). This is the case for genes that share cis-
eQTLs but not for those that share trans-eQTLs. On the other hand, the bimodal distribution 
(e.g., the mode on the right-hand side) may indicate the enrichment of false positives.  
 
Response: It was not very clear to the authors why this reviewer assumed that the information 
shown on Fig. 4 suggests that we have false positive eQTL? It is likely coming from some not 
clearly formulated statements in the manuscript, and we do apologize for that. It is critical to note 
that cis-eQTL by definition could not be shared between homoeologs because cis-eQTL is linked 
only with the gene that is on the same chromosome, whereas homoeologs by definition are genes 
on different homoeologous chromosomes. Therefore, only trans-eQTL eQTL could be shared 
between homoeologs, and statement in the reviewer’s comment “This is the case for genes that 
share cis-eQTLs but not for those that share trans-eQTLs” could not be applied to data we 
reported in the manuscript. 
 
When we talk about disruptions of homoelogous gene regulation, we specifically talk only about 
cis-eQTL. The results on Fig. 4c are based on shared trans-eQTL, which appear do not disrupt 
correlation of expression. There are several pieces of data shown in the manuscript that explicitly 
link dysregulation (homoeolog expression bias) with cis-eQTL: 1) Figure 2d shows that density 
of SNPs around the gene (gene body +/- 10 kb) and correlation in the expression of homoeologs, 
declines with increase in the density of SNPs consistent with the presence of cis-regulatory SNPs 



as diversity around genes goes up. 2) Fig. 4e (third panel – Configuration 3) shows that presence 
of cis-eQTL in homoeologs (these cis-eQTL are not shared between homeologs because each 
regulate only corresponding homoelog in cis-configuration) shifts correlation to lower values 
with the mean SCC = 0.17.  
 
The reviewer likely points at Fig. 4c, where correlation between homeologs increases with 
increase in the number of shared eQTL. However, in this figure we present the effect of shared 
trans-eQTL, and these results have nothing to do with  cis-eQTL, which indeed dysregulate 
homeologs. In our study we did not found evidence that trans-eQTL dysregulating homeologs, as 
was shown on Fig.4d. In addition, the analysis of trans-eQTL shown on Fig. 4e (Configuration 2) 
also shows that homeologs affected by these trans-eQTL show high levels of expression 
correlation as evidenced by high mean SCC = 0.6 and presence of second density peak with the 
mean SCC ~ 0.8. 
 
Comment 5: 2) The second observation is related to overlap between Hi-C contacts and trans-
eQTL-target gene pairs. As presented in Figure 5d, the density plot for trans-eQTL-target gene 
pairs is highly similar to that for a random set of genes. BTW, I do not think the test has been 
done correctly in this case. A proper test should be a test of the mean (mode or median) of the 
number of Hi-C contacts for the trans-eQTL-target gene pair against the distribution of the mean 
(mode or median) values obtained from repeated sampling of random gene sets (rather than one 
random gene set).  
 
Response: We compared the overlap of trans-eQTL-target gene pairs between observed 
randomized data was suggested by the reviewer. The results clearly indicated substantially 
higher level of chromatin interaction between the regions harboring the  trans-eQTL-target gene 
pairs compared to chromatin interaction in the randomized data (calculated from 100 random 
samples). The results are updated and now presented on Fig. 3g, and the respective section of the 
results.   
 
The Results section is modified as shown here: “Second, the regions harboring trans-eQTL 
between both homoeologous and non-homoeologous chromosomes showed elevated Hi-C 
contacts (log10[Hi-C] = 1.24) compared to a randomized distribution based on 100 samples 
(mean log10[Hi-C] = 0.92) (Fig. 3g). This result indicates that the probability of trans-eQTL-
target gene pair occurrence within the regions forming chromatin loops is substantially higher 
than random.” 
 
Comment 6: 3) The third observation is the lack of overlap between the trans-eQTLs and the 
QTLs for the agronomic traits.  
 
Response: We believe that the reviewer mis-interpreted the reported results for overlap between 
trans-eQTL and eQTL for agronomic traits. The lack of enrichment (as was reported in the 
manuscript) does not mean that there is no overlap, and does not indicate that trans-eQTL 
detected in our study are false. Using even quite strict criteria for overlap, we observe 36 marker-
trait associations for major agronomic traits overlapping with trans-eQTL. We simply do not 
observe enrichment, indicating that for most traits variation is preferentially controlled by cis-
regulatory variants rather than by trans-regulatory variants. These results are consistent with 



other studies performed in humans. For example, in an early eQTL study in humans, it was 
shown that SNPs associated with Crohn’s disease show enrichment for cis-eQTL, but do not 
show enrichment for trans-eQTL: “The enrichment was preserved in the SNPs classified as cis-
regulators but was not evident in the SNPs classified as trans-regulators, suggesting that cis-
regulatory effects were more likely to be present among the Crohn’s associated SNPs” (cited 
from 10.1371/journal.pgen.1000888).  We have added a sentence to the Results section 
interpreting these results: “Consistent with an earlier study, these results suggest that the trait-
associated SNPs are more likely to be cis-regulatory rather than trans-regulatory variants”. 
 
Comment 7: 4) The proportion of genes with trans-eQTLs that also have cis-eQTLs is 
surprisingly low, especially in the seedling data (1469 / 8315). Is it also an indication of the 
potentially elevated false-positive rate? 
 
Response: Based on the permutation analysis (see responses to previous comments), we have 
established that our study does not suffer from extremely high false positive rate. Thus, we do 
not believe that the reported overlap between cis- and trans-eQTL is an indication of elevated 
false positive rate.  
 
Theoretically, every trans-eQTL could also be a cis-eQTL for some genes that act as regulators 
of distant targets. However, based on our knowledge, this is not the case in any eQTL study so 
far published. For example, in a study performed in humans, only 18.5% of trans-eQTL were 
also declared as cis-eQTL (doi: 10.1371/journal.pgen.1004461). The overlap between cis- and 
trans-eQTL is mostly defined by the parameters used to classify eQTL into cis- and trans-acting 
variants, and also by the genomic distribution of SNPs, rate of LD decay etc. Wheat is a young 
(10,000 years old) hexaploid species with huge genome (17 Gb, or ~5.6 Gb per constituent 
genome). It experienced recent domestication bottleneck leading to low overall genetic diversity, 
especially in the D genome. Nearly 2/3 of each chromosome arm show extremely low 
recombination rate and slow rate of LD decay with LD blocks spanning tens of megabases of 
DNA. As result of these factors, many eQTL could be located far away from their associated 
genes.  In our study, we defined cis-eQTL as those that are located within 2-Mb window around 
associated genes. The trans-eQTL were declared only when they are associated with the 
expression of genes on other chromosomes (the approach often used in humans eQTL studies; 
for example in Aguet et al. Genetic effects on gene expression across human tissues. Nature. 
2017;550:204–13). Considering these factors, it is possible to have many trans-eQTL that are not 
cis-eQTL because they are located outside of the 2 Mb boundary from genes. Thus, we believe 
that the reported overlap between cis- and trans-eQTL is not something alarming and certainly is 
not an indicator of high false positive rate (as was demonstrated by the permutation analyses). 
 
 
Comment 8: Ln320-321. The observed negative correlation could be due to ascertainment. The 
statistical power to detect an eQTL is a function of n * 2p(1-p) * b^2 with n being the sample 
size, f being the allele frequency and b being the effect size so that the effect size of a lower 
MAF variant needs to be larger to be detected at a specific significance level. 

 
Response: Thank you for pointing out at this relationship of which we were aware from the 
published eQTL studies in other species. However, we should note, that all these studies indicate 



that even though decreased power to detect rare eQTL could contribute to the observed trend, it 
does not account for all observed negative relationship between the allele frequency and effect 
size (doi: https://doi.org/10.1534/genetics.118.301833). Our results are consistent with prior 
findings. One of the approaches to assess the effect of selection on eQTL is to investigate eQTL 
with relatively large effect sizes that could be detected at all frequencies. We used eQTL that had 
effect sizes equal to or greater than the minimum effect of eQTL at frequency equal to or less 
than 0.05. We end up with 82 cis-eQTL for singletons and 2,324 cis-eQTL for homoeologous 
gene triplets. The analysis of correlation between MAF and effect size for homoeologous triplets 
showed significant negative relationship (p-value = 0.001). Similar analysis performed using 
single copy genes showed lack of significant correlation. However, we attribute the lack of 
correlation in this case to small sample size for singleton cis-eQTL that increase contribution of 
rare large-effect QTL on the distribution of effect sizes across different MAF classes. Thus, this 
analysis using the filtered data does not exclude the possibility that cis-eQTL of the 
homoeologous triplets are under selection, in spite of genetic redundancy created by 
polyploidization. We have updated Results section and added  Supplementary Fig. 7 to 
incorporate these analyses into the manuscript.   
 
“The negative relationship between frequency and effect size was observed in homoeologs even 
for the subset of cis-eQTL whose effects are detectable at all frequencies (Supplementary Fig. 
7)”. 
 
Comment 9: Ln855-857 and ln887-889. The authors may need to clarify the purpose of using 
BLUEs and BLUPs of the phenotypes for follow-up analyses and why they used BLUE for the 
800 accessions and BLUP for the 400 accessions. 
 
Response: BLUEs were taken from the previously published study 
(https://doi.org/10.1038/s41588-019-0382-2). While in the current study we used BLUPs, we 
also estimated BLUEs for 400 accessions and showed that correlation b/w BLUEs and BLUPs is 
0.994, suggesting that both sets of values are similar.  
 
 
Comment 10: Ln956 “Ten-fold cross-validation”. This method is only applicable to data where 
all the individuals are independent. 
 
Response: The panel used in the study is composed of unrelated accessions from worldwide 
collection of lines, which makes the subsets of individuals from the panel used as training dataset 
and testing dataset being independent of each other. This technique is commonly used for testing 
the phenotypic prediction accuracy in breeding. The implementation of cross validation approach 
used in our study is similar to one used for predicting traits in maize using expression values of 
5,000 genes (http://dx.doi.org/10.1038/nature25966). We have added the reference to this study 
in the Methods section. 
 
 
Minor comments 
Comment 11: Ln197 “Only half of these genes”. Please be specific about “these genes”. 
 



Response: Thank you for noting this. Corrected as follows: “Only 47.8% of these 6,173 genes 
were located in the D genome…”. 
 
 
Comment 12: Figure 2c. The authors may need to clarify how this plot was made because 
genetic variance is estimated for a single gene, whereas expression correlation is computed for a 
pair of genes. 
 
Response: The plot was prepared by calculating correlation coefficients (SCC) for all possible 
pairs of homoeologs and plotting it against the proportion of genetic variance for these 
homoeologs. The mean and standard error of genetic variance was calculated for data binned 
based on the ranked SCC values. The figure legend was updated. 
 
Comment 13: Ln560 Fig. 7f? 
 
Response: We have excluded this figure from the revised manuscript. This analyses require 
more detailed description and presentation in the manuscript, and we decided to focus this last 
section of the manuscript on testing the association between homeolog expression bias and 
phenotypes. 
 
 
 
 

Reviewer #3 (Remarks to the Author): 
 
The authors investigated the regulatory control of duplicated gene expression in hexaploid bread 
wheat from a popgen perspective and its relevance to agronomic traits:  

 
Comment 1: 1. partitioning genetic variation of expression traits to evaluate regulatory control 
from the same (cis-acting variants) or different (trans-acting) subgenomes, revealing stronger 
effects from former. Line 244 concluded that "dysregulation of homoeologs is primarily 
associated with the cis-regulatory diversity": what does "cis-regulatory diversity" refer to and 
how is it connected with the cis-acting variants？ 
 
Response: We used these two terms interchangeably in manuscript. Both terms refer to cis-
eQTL that have regulatory effect on the expression of target genes. The usage of this 
terminology appear to be common, and for example was used with the same meaning by the 
human GTEx consortium (Aguet et al. Genetic effects on gene expression across human tissues. 
Nature. 2017;550:204–13). 

 
Comment 2: So there are A LOT of good ideas and tests involved, and I do believe the authors 
are onto some quite novel aspects on the regulatory complexity in allopolyploid plants, but also 
because of such complexity, this manuscript is not easy to follow. The title is rather lengthy but 
doesn't have a clear point. The abstract appears to cover main results, but these results are 
disconnected to deliver a cohesive story. 



One major hurdle for me to understand this manuscript is the concept of "homoeolog 
dysregulation". According to Figure 1a, the authors used this term to describe homoeologs that 
are differentially expressed, which doesn't indicate any functional consequences like impairment 
in protein functions or metabolic process. In that case, there are already terms like "unequal 
expression" and "homoeolog expression bias" for that. But later, "dysregulation" was defined 
more specifically based one negative SCC. All these terminological and conceptual 
inconsistency brought by the new term make it difficult to connect this work with relevant 
literatures to comprehend new evidence and findings. 
 
Response: In the revised manuscript, we decided to stick with previously used terminology that 
appear to be sufficient to describe our results. To describe unequal expression of homoeologs at 
the individual accession’s level, we used “homoeolog expression bias” or “homoeologs with 
biased expression”. We used “negatively correlated homoeologs” term to describe cases of 
homeologous gene pairs where increased frequency of accessions with biased gene expression 
leads to negative expression correlation in the panel.   
 
 
Comment: Another issue is the use of cis and trans, more detailed comments are marked in the 
attached PDF. 
 
Remark: Below, starting from Comment 3, we have provided detailed responses to the 
comments from the PDF file. 
 
 
Comment 3: Methods seemed sound to me and carefully executed for each task. For example, I 
do appreciate the efforts the authors put in to assess transcript estimation, which employed 
simulated RNA-seq data to validate the high correlation between observed and expected reads. 
 
Response: Thank you. 
 
 
Comment 4: Lengthy title hard to grasp the key finding, possible to make it concise? 
 
Response: We tried to shorten title and make it more informative. The current title is “The 
genetic architecture of homoeologous gene expression dosage variation and its impact on 
agronomic traits in allopolyploid wheat”. 
 
Comment 5: Do you mean to test this hypothesis, or is this a finding? This is related to L.45-48 
in Abstract “We hypothesize that these cis-acting variants have likely been exploited for 
improving productivity traits in wheat, and depending on their effects on component phenotypes, 
were either purged from or accumulated in the population.”  
 
Response: The abstract was revised for clarity. For example, this sentence now reads as follows: 
“We hypothesize that the frequency of these cis-acting variants has likely been impacted by 
breeding for increased productivity.”. 
 



 
Comment 6 related to L. 74-75: “ In addition, many regulatory variants linked with one of the 
homoeologs have the potential to dysregulate a gene’s expression and change its dosage relative 
to other homoeologs (Fig. 1a).”  how to define dysregulation? does it have any functional 
consequences or simply refer to changes in expression levels？ 
 
Response: We would like to thank reviewer for raising concerns related to the terminology used 
to describe the patterns of expression we observed in the wheat panels. During writing the 
manuscript, we also felt that the usage of “homeolog dysregulation” term might be confusing and 
also complicate connecting our findings to existing body of work on regulation of polyploid gene 
expression. In the revised manuscript, we decided to stick with previously used terminology that 
appear to be sufficient to describe our results. To describe unequal expression of homoeologs at 
the individual accession level, we used “homoeolog expression bias” or “homoeologs with 
biased expression”. We used “negatively correlated homoeologs” term to describe cases of 
homeologous gene pairs where increased frequency of accessions with biased gene expression 
leads to negative expression correlation in the panel.     
 
Comment 7 to L. 109-110: all bread wheat? 
 
Response: Yes, all are bread wheat accessions. We modified the sentence to indicate that.  
 
Comment 8 to L. 115: “A simulation-based estimate suggested 98% correct read mapping (see 
Methods).” After reading the method section, it kinda makes sense to me. But this sentence here 
needs clarification, for example, what is the purpose of such test, and how does this simulation 
result validate the mapping of real data. 
 
Response: Such kind of simulations have been extensively applied in studies involving analyses 
of NGS data. Usually this was done to assess the impact of software settings on the accuracy of 
read mapping. For these reason we did not provide detailed description of reasons why we 
performed them assuming that readers are well familiar with this approach. In many our prior 
genomic studies we used simulations to show that we can accurately map reads to distinct 
subgenomes.  Because simulated data is derived from real-life genomic data by subsampling, it is 
not that different with regard to the quality of reads and their distribution across genome 
compared to real-life data. The advantage of using simulated data is that simulated reads are 
randomly selected from the genomic regions with known locations within the reference 
sequence. As a result, we could assess the accuracy of read mapping because we know where 
each read should be mapped within the reference.  
 
We modified sentence: “A simulation-based estimate suggested that the alignment settings used 
in our study provide 98% correct read mapping to the polyploid wheat genome”. 
 
Comment 9 to L. 117: what do these two gene numbers refer to, transcripts and gene loci? 
 
Response: Thank you for noticing this error. Another reviewer also pointed at inconsistency of 
these numbers and those that are reported in the Methods section. We amended this sentence as 



follows: “Expression levels measured as Transcripts Per Million (TPM) were estimated for high-
confidence (HC) genes in RefSeq v.1.0, with 52,511 transcripts (47,274 genes)….” 
 
 
Comment 9 to L. 143 (Fig. 1c legend) and L. 161-163: Do you mean if the expressions are 
3,4,0.1 for a triplet, the X and Y values are (3+4+0.1)/3 and (3+4)/2, respectively? Or do you 
mean the 198  means of a triplet were split into two different groups, with one group met the 
above two conditions and the other group didn't? In either case, this sentence and figure legend 
need to be rephrased to be clear. 
 
Response: We tried to clarify the method of analysis used for generating Fig. 1c. The text was 
modified as follows: “…we selected a set of 1,443 gene triplets that met two criteria: 1) one out 
of three homoeologs was downregulated (TPM < 0.1) in at least two wheat lines, and 2) at least 
two wheat lines have all three homoeologs expressed (TPM > 2). We applied this criteria to each 
triplet to split 198 accessions into two groups, one group composed of accessions with one of the 
homoeologs downregulated and another group including accessions with all three homoeologs 
expressed. The sum of expression values from all three homoeologs (A+B+D) was calculated for 
each accession and used to derive the mean of total homoeologs’ expression for each group. . In 
most cases, the mean expression ratio between these two groups across gene triplets (Fig. 1d) 
was below 1:1,….” 
 
The Fig. 1c legend was amended as follows: “The mean of the sum of the total triplet expression 
(A+B+D) in groups of accessions with (y-axis) and without (x-axis) one of the gene copies 
downregulated.” 
 
 
Comment 10 related to L. 187 which refers to Suppl. Figs. 2a and 2b. Is this correct? They don't 
seem to compare cis and trans. 
 
Response: Thank you for noticing this error. The reference to Suppl. Figs. 2a and 2b is wrong 
and it was removed from this sentence. 
 
Comment 11 related to L. 196-197 “This observation is likely associated with the lack of cis-
regulatory diversity around these genes (Fig. 2b).”: Very interesting. What about the % of total 
variance can be explained between genes mostly explained by cis and by trans? If comparable, 
that will suggest that trans effects are truely dominant and do not require cis diversity. If trans < 
cis, that means the lack of cis diversity contributes to weak cis effect, while trans alone cannot 
explain enough variance. 
 
Response: As suggested, we have performed additional analyses and added information about 
the mean total expression variance explained for genes whose expression is mostly explained by 
cis-genic (SNPs 2 Mb around genes) or by trans-genic (SNPs from outside of 10 Mb region 
around genes and also located on all other wheat chromosomes) variants. The means in these two 
groups genes were similar (47.0% vs. 46.4%). 
 



The following paragraph was added: “We further split all SNPs into cis-genic (SNPs within +/- 1 
Mb region around genes) and trans-genic (SNPs outside of +/- 5 Mb region around genes and 
SNPs located on other wheat chromosomes) subsets. After partitioning variance for gene 
expression, we compared the means of total variance explained for two sets of genes: 1) genes 
with variance explained only by cis-genic SNP, where trans-genic SNPs contribute <1% to 
variance, and 2) genes with variance explained only trans-genic SNPs, where cis-genic SNPs 
contribute <1% to variance. The means in these two groups of genes were similar (47.0% vs. 
46.4%), suggesting that in the cases of cis-genic diversity loss, the contribution of trans-genic 
effects in allopolyploid genome to expression variance could be similar to the contribution of cis-
genic effects.” 
 
This comment also prompted us to rethink the results of analyses presented in Fig. 2c, where we 
plotted the total proportion of gene expression variance for individual homoeologs and 
correlation coefficients between the pairs of homeologs. We have re-analyzed gene expression 
variation data using SNPs that were partitioned into cis-genic and trans-genic sets as described 
above. In the updated Fig. 2c, we plotted the proportions of genetic variance explained by these 
two groups of SNPs. This analysis allowed us to clearly separate cis-effects from trans-effects, 
and shows that negative or lack of expression correlation between homeologs is associated with 
increased proportion of cis-acting variants. The contribution of trans-acting variants to homeolog 
expression correlation was more or less inform across different expression correlation levels. We 
observed increase in the contribution of trans-acting variants relative to contribution cis-acting 
variants to gene expression variation with increase in the levels of expression correlation, which 
is consistent with the results of eQTL that were presented later in the manuscript. For example, 
Fig. 3c shows that increase in the number of shared eQTL between homoeologous gene pairs 
coincides with the increase in the expression correlation levels. 
 
The figure 2c legend was revised as follows: “The relationship between the proportion of genetic 
variance explained by cis- and trans-genic SNPs calculated for individual homoeologs and the 
levels of expression correlation (SCC) between the pairs of homoeologs in the wheat panel. The 
mean of genetic variance was calculated for data binned based on the SCC values.” 
 
The following modifications are made in the Results: 1) Section title changed to “The effects of 
cis- and trans-acting variants on expression correlation between homoeologs” ; 2) First paragraph 
of this section is modified as follows: “The combined effect of trans- and cis-acting variants on 
individual homoeologs defines the relative expression of homoeologs. We compared the 
proportions of expression variance in individual homoeologs explained by cis- and trans-genic 
SNPs among homoeologous gene pairs showing distinct levels of expression correlation (SCC) 
(Fig. 2c). An increase in SCC was accompanied by a decrease in the total expression variance 
explained, with the largest proportion of explained variance observed for homoeologs showing 
SCC < 0 (Fig. 2c). While SCC increase was accompanied by 3-fold decrease in variance 
explained by trans-genic SNPs, more substantial 11-fold decrease in explained variance was 
observed for cis-genic SNPs, reaching 1.6% for homoeologs showing high correlation in the 
expression levels (SCC > 0.90) (Fig. 2c). These results suggest that discordant expression of 
homoeologs is largely associated with the presence of cis-acting variants in homoeologous 
genes.” 
 



 
Comment 12 to L. 207-212 (legend for 2a): Description for the seedling panel? It need to be 
clarified, maybe adding "As shown in the seedling panel" 
 
Response: The figure legend was modified as suggested. 
 
 
Comment 13 to L. 223-224 “…. we examined the relationship between the variance in 
homoeolog expression explained by genome-wide SNPs (Fig. 2a) and the levels of expression 
correlation (SCC)….”: In fig2a, variance explained by genome-wide SNPs is for each gene 
(homoeolog), correct? For a pair of homoeologs, how is the variance determined to be examined 
with SCC? Or do you indicate some measure of genetic difference between homoeologs? 
 
Response: We did not specifically estimated the genetic variance for difference in gene 
expression between homeologs. Along the y-axis we plotted the genetic variance calculated for 
individual homoeologs from pairs used to calculate correlation coefficients (in other words, for 
each measure of SCC on the x-axis of the plot we had the values of genetic variance for two 
homoeologs on the y-axis). We have modified the text to clarify this point. 
 
 
Comment 14 to L. 231-233 “This conclusion is consistent with a decrease in the number of 
common and rare SNPs around the homoeologs with an increase in their levels of expression 
correlation (Fig. 2d).”: I don't understand the reasoning here. Do the numbers of SNPs represent 
cis divergence between homoeologs? So lower cis diversity could contribute to higher SCC 
between homoeologs? Then isn't it in conflict with the next sentence suggesting "no or weak 
relationship"? Is it possible to directly partition cis and trans contributions to this negative 
correlation? Also what is the difference between common and rare alleles? 
 
Response: Variants that distinguish two genomes (and homoeologs) from each other are 
divergent sites inherited from diploid ancestors, and cannot be referred to as “SNPs”. In this 
case, we considered common and rare SNPs that are true polymorphisms segregating within 
individual genomes.  We looked for the total number of SNPs at and around homoeologs (+/- 10 
kb) and found that the decrease in SNP number coincides with increase the level of expression 
correlation. This conclusion is also consistent with the new analysis, were we partitioned 
expression levels of individual homoeologs using cis-genic (+/- 1 Mb around genes) and trans-
genic (SNPs 10 Mb outside of genes plus SNPs from all other chromosomes) SNPs (Fig. 2c). We 
could see also that the contribution of cis-genic SNPs for expression variance of individual 
homoeologs decrease in homoeologous gene pairs that show the high levels of expression 
correlation.  
 
We apologize for unclearly formulated statements in the next sentence that refers to 
Supplementary Fig. 3. We wanted to note that this negative correlation between the number of 
rare/common SNPs and SCC persists even if SNPs from different genomes are analyzed 
separately. The main reason for repeating this analysis for genome-specific sets of SNPs is that 
in wheat D genome shows dramatically lower level of diversity (due to severe population 
bottleneck associated with polyplodization) compared to the A and B genomes, and we wanted 



to see if this negative trend between diversity and SCC could be found in distinct genomes 
(Supplementary Fig. 3a and 3b). We indeed found that this trend is consistent across all three 
genome, and in that sense, negative correlation is independent of the overall genome-specific 
levels of genetic diversity and related to local cis-diversity around every gene.  
 
The testing of the dependence between inter-homoeolog divergence and SCC was performed to 
assess to what extent the levels of expression correlation between homoeologs are defined by the 
levels of sequence divergence between the wheat genomes. If we would observe the negative 
correlation between inter-homoeolog divergence and SCC, similar to the one observed between 
cis-diversity and SCC (Fig. 2d), then we would have to attribute this negative correlation to 
inter-genomic divergence at the regulatory regions that came from the diploid ancestors. 
However, we did not observe strong negative correlation divergence and SCC, and therefore, our 
assumption that local cis-diversity is the main factor driving expression correlation between 
homeologs still holds.  
 
To clarify these points, we have modified the text in this paragraph as follows: “These trends 
were consistent across all three wheat genomes (Supplementary Fig. 3a and 3b), indicating that 
negative relationship between cis-diversity and SCC is independent of genome-specific levels of 
genetic diversity.  The lack of strong relationship between the inter-homoeolog sequence 
divergence and SCC suggests that inter-genomic divergence at the regulatory regions does not 
have global effect on homoeolog co-expression (Supplementary Fig. 3c)”. 
 
We have indicated in the text the criteria used to separate SNPs into rare (MAF <0.05) and 
common (MAF>=0.05) based on their population frequency. The rationale for splitting variants 
into these two groups is grounded on previous studies, which showed that rare variants around 
genes could have much stronger cumulative effect on expression variation, often resulting in 
extreme deviation from population mean expression, compared to more common alleles. 
 
 
Comment 15 to L. 237-238 “… from lowest to highest expression levels across wheat 
accessions, and the rare allele load in the upstream…”: Not clear to me what is the purpose to 
analyze rare allele load. 
 
Response: As was mentioned in the response to the previous comment, the cumulative effect of 
rare alleles (MAF < 0.05) on gene expression variation could be much higher than the effects of 
common alleles (for example, see ref. Kremling et al. Nature. 2018;555:520–3, 
http://dx.doi.org/10.1038/nature25966). Quantifying rare allele load in the upstream promoter 
regions and relating it to gene expression levels is one of the methods for assessing the effect of 
rare allele load on gene expression levels. By performing this analysis we wanted to assess the 
possible impact of rare allele load (excluded due to low frequency from the eQTL mapping) on 
the level of homeolog expression correlation. 
 
We modified sentence : “To assess the impact of rare cis-variants on the homoeolog expression 
levels, we investigated the relationship between the expression ranks of each homoeolog….”. 
 



Comment 16 to L. 244-245 “….the dysregulation of homoeologs (Fig. 1a) is primarily 
associated with the cis-regulatory diversity.”: So far I can understand that differential expression 
of homoeologs can be attributed to genetic variance from the same subgenome. 
 
Response: Based on the results of new analyses performed in response to this reviewer’s 
comments and presented on Fig. 2c and 2d, and described in the corresponding sections on 
Results, our conclusion still holds and we do observe association of differential homeolog 
expression with the accumulation of cis-variants. 
 
Comment 17 to L. 252-254 “A conservative criterion was applied to define trans-eQTL as eQTL 
located in different genomes or chromosomes relative to the target gene, and cis-eQTL as eQTL 
located within 2 Mb of a target gene. According”: Was distant cis-eQTL excluded from 
following analysis, and why? 
 
Response: Because it is usually difficult to clearly separate true distant cis-eQTL from true 
trans-eQTL. The recombination rate in wheat, overall quite low compared to many other species, 
also varies dramatically across large 16 Gb-genome, where recombination is severely suppressed 
in pericentromeric 2/3 of each chromosome arm. As a result it is quite complicated to come up 
with fail-proof criteria to separate distant cis-eQTL from trans-eQTL. As a result, we opted to 
use conservative approach to define cis- and trans-eQTL. Similar approach for defining cis- and 
trans-eQTL was previously used by the Human GTEx consortium (see ref. Aguet et al. Genetic 
effects on gene expression across human tissues. Nature. 2017;550:204–13).  Besides, based on 
the criteria used in the large maize genome to define distant cis-regulatory elements, most of 
which overlap with eQTL, are located less than 1 Mb away from a gene (see Fig 1c, 1d in ref 
with DOI: 10.1038/s41477-019-0547-0), we should have already included many distant cis-
regulatory region within the analyzed 2 Mb region around genes. 
 
Comment 18 to L. 286 in the legend of Fig. 3: What about MSF vs MRF, the differential 
enrichment test? How is different from MSF and MRF test? 
 
Response: We have added additional explanation to the legend of figure 3: “Enrichment was 
assessed relative to genome-wide patterns, except for MSF vs MRF, where enrichment was 
tested for eQTL located within MSF relative to MRF.” 
 
Comment 19 to L. 700 “… as well as de novo, assembled transcripts were combined…”: Part of 
RefSeq v 1.0 or elsewhere? Please clarify. 
 
Response: In the revised manuscript, we have excluded mentioning of de novo assembled 
transcript data. Though we have assembled unmapped reads, they have not been used for eQTL 
mapping or included into any other analysis.  
 
Comment 20 to L. 823-824 ” eQTL located more than 2 Mbp away from an eGene were used to 
define distant cis-eQTL.”: This sentence needs work. 
 
Response: Thank you. This sentence should have been removed even from the original 
submission of the manuscript. It appears that mentioning about this group of eQTL was left in 



the Methods. Based on the reasons provided in response to an earlier comment (comment 17) 
from this reviewer, due to difficulty of separating distant cis-eQTL from trans-eQTL, we end up 
not using this group of cis-eQTL in our analyses. We removed this sentence from the Methods 
section. 
 
 
 

Reviewer #4 (Remarks to the Author) 
 

Comment 1: Previous work has identified cis and trans eQTLs polyploid species including 
polyploid Arabidopsis (Shi et al. 2012), potato (Zhang et al. 2020) and cotton (Bao et al. 2019) 
but this study would be the first to identify them in wheat and study how they interact to affect 
homoeolog expression. The study also attempts to associate dysregulated expression of 
homoeologs with trait values. However, this dysregulation-trait association is less robust 
compared to the genetic partitioning and eQTL analyses. 
 
Bao Y, Hu G, Grover CE, Conover J, Yuan D, Wendel JF. Unraveling cis and trans regulatory 
evolution during cotton domestication. Nature communications. 2019 Nov 27;10(1):1-2. 
 
Zhang L, Yu Y, Shi T, Kou M, Sun J, Xu T, Li Q, Wu S, Cao Q, Hou W, Li Z. Genome-wide 
analysis of expression quantitative trait loci (eQTLs) reveals the regulatory architecture of gene 
expression variation in the storage roots of sweet potato. Horticulture Research. 2020 Jun 
1;7(1):1-2. 
 
Shi X, Ng DW, Zhang C, Comai L, Ye W, Chen ZJ. Cis-and trans-regulatory divergence 
between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids. 
Nature communications. 2012 Jul 17;3(1):1-9. 
 
Response: Thank you for suggesting these references. One of them (Bao et al., 2019) was 
already cited in the manuscript. However, we would like to note that only Zhang et al., 2020 
study actually mapped the genomic location of eQTL. The remaining two studies investigated 
cis-  and trans-regulatory effects using F1 hybrids, but did not perform eQTL mapping. Out of 
these two studies we cited Bao et al., 2019 study because it was performed in natural 
allopolyploid species. While the focus of Shi et al., 2012 study on newly synthesized 
allopolyploid is very interesting, the processes occurring in these new allopolyploids are more 
related to regulatory changes at the early phases of evolution after polyploidization, rather than 
to regulation of genes in established polyploids. We cited all three papers in the Introduction.  
 
 
Major Comments 
 
Comment 2: Is the term “balanced” accurate for what is described in terms of homoeolog 
expression? Balanced in previous work (e.g. Ramirez-Gonzalez et al., 2018, Science) refers to 
similar expression levels of A, B and D homoeologs e.g. all three are expressed at 1 TPM. My 
understanding is that here by “balanced” the authors mean that the expression level of the 
homoeologs is correlated but not necessarily at the same expression level e.g. if the ratio between 



A:B:D is 4 TPM: 1 TPM: 1 TPM and that is consistent across the population (SCC will be 
positive) the relationship is considered “balanced”. This seems non-intuitive based on the 
terminology. Would “positively correlated homoeologs” be a more suitable term to avoid 
confusion with previous work in this area? The graphic in Fig 1A should be updated using 
multiple possible relationships: currently the nuance about the correlated expression is lost when 
relying on that figure for definitions. (i.e. include a line at 1:1 and 
a line at e.g. 3:1 to show the expression level of A:B does not have to be equal).  
 
Response: Thank you for comments on the usage of terminology. In response to comment 6 
from reviewer 3, we have modified manuscript. During writing the manuscript, we also felt that 
the usage of “homeolog dysregulation” term might be confusing and also complicate connecting 
our findings to existing body of work on regulation of polyploid gene expression. In the revised 
manuscript, we decided to stick with previously used terminology that appear to be sufficient to 
describe our results. To describe unequal expression of homoeologs at the individual accession 
level, we used “homoeolog expression bias” or “homoeologs with biased expression”. We used 
“negatively correlated homoeologs” term to describe cases of homeologous gene pairs where 
increased frequency of accessions with biased gene expression leads to negative expression 
correlation in the panel.      
 
The term “balanced” expression is not specific to wheat and was used in early studies of 
aneuploid and polyploid plants of different ploidy level (for review see Birchler and Veitia, The 
gene balance hypothesis: from classical genetics to modern genomics. Plant Cell. 2007;19:395–
402). This term is also used to describe the relative expression dosage of tandemly duplicated 
paralogs (10.1126/science.aad8411).  In relation to early studies of homeolog expression in 
allopolyploid wheat, indeed balanced expression was referred to 1:1:1 expression of the A, B and 
D genome homoeologs, with some deviation from this ratio. However, these early studies are 
focused on a single accession of wheat, which does not allow to assess the actual population 
mean of the expression of each homeolog. In our study, we compared the mean expression of 
each pair of homoeologs calculated using ~200 accessions. This comparison indicates that the 
vast majority of homeologs have equal population-scale expression means (essentially 1:1 
expression), and the usage of the term “balanced expression” seems appropriate here. Besides, 
we did not state that these homoeologs are balanced. We concluded that strong positive 
correlation indicates that there are a lot of accessions in population with balanced homoeologs. 
To avoid confusion with the previously used terminology, we have modified this sentence to 
replace “balanced homoelogs” with “homoeologs with matching expression” as follows: “While 
a strong positive correlation would be indicative of matching homoeolog expression levels (Fig. 
1a) in most accessions in the panel, an increase in the proportion of accessions with biased 
homeologs would decrease SCC (Fig. 1a).”  
 
We also did not observed in our data cases  provided by the reviewer, where expression follows 
the 4:1 ratio across all accessions. 
 
Comment 3: The term “dysregulated” might be more accurately described as “negatively 
correlated homoeologs”. This is what is described in the methods (line 393-942) which says a 
dysregulated homoeolog should have a negative correlation (SCC<0) with two homoeologs, and 
a strong negative correlation (SCC<-0.4) with at least 1 homoeolog. However, the Figure 1 



legend describes “dysregulated homoeologs show different levels of expression” which to me 
means something quite different (i.e. A expression is higher than B expression). The explanation 
of dysregulated homoeologs should be made clearer and consistent throughout the paper.  
 
Response: Please see response to comment 6 from reviewer 3 and response to previous comment 
2 from this reviewer.  
 
During writing the manuscript, we also felt that the usage of “homeolog dysregulation” term 
might be confusing and also complicate connecting our findings to existing body of work on 
regulation of polyploid gene expression. In the revised manuscript, we decided to stick with 
previously used terminology that appear to be sufficient to describe our results. To describe 
unequal expression of homoeologs at the individual accession level, we used “homoeolog 
expression bias” or “homoeologs with biased expression”. We used “negatively correlated 
homoeologs” term to describe cases of homeologous gene pairs where increased frequency of 
accessions with biased gene expression leads to negative expression correlation in the panel.     
 
 
Comment 4: Similarly, the definition and consistency of the 59 homoelogs identified as being 
dysregulated could be made clearer. Was the level of dysregulation and homoeolog expression 
exactly the same between seedlings and spikes for each line? More generally, how consistent are 
dysregulated homoeologs across tissue, time and biological replicate? It not evident that 
expression at this timepoint being studied is the only one affecting trait expression. If homoeolog 
contribution changes with development, it is possible other homoeologs are identified as 
dysregulated at a timepoint or tissue not investigated here and may have a more direct impact on 
trait values. Ideally, the tissues underlying the basis for a given trait should be studied (e.g. grain 
gene expression for a grain related trait) but this study provides a first pass attempt at trying to 
identify associations. This limitation should be discussed, and support for the approach used 
comes from work in maize which shows that several different tissues can be used to predict seed-
weight (Kremling et al., 2018).  
 
Kremling, K., Chen, SY., Su, MH. et al. Dysregulation of expression correlates with rare-allele 
burden and fitness loss in maize. Nature. 2018. 555, 520–523 

 
Response: As was described in the response to the previous comment, we use  term “negatively 
correlated homoeologs” to define these 59 homoelogs.  
 
Thank for pointing out at these aspects of analyses, which were not well presented in the 
previous version of the manuscript. Overall, we observed good consistency in the levels of 
homoeolog expression correlation across two tissues analyzed in our study (seedlings and 
spikes). This was indicated in the Results, section “Population-scale homoeologous gene 
expression variation”: “The SCCs calculated for the same sets of homoeologs using RNA-seq 
data from both the seedlings and spike tissues28 collected from a distinct set of accessions were 
generally similar, suggesting that tissue-specific factors do not substantial affect co-expression 
of the majority of homoeologs at the population scale (Supplementary Fig. 1c).”  
 



On average, the same set of homoeologs in the spikes also showed the lack of coordinated 
expression, although not as severe as in the seedlings. We added this statement into the Results, 
section “Joint eQTL and GWAS analysis detects genes ….”: “In the RNA-seq data from spikes, 
these homoeologs also showed the lack of coordinated expression (mean SCC = 0.03 ± 0.05), 
although not as substantial as in the seedlings.” 
 
As was suggested by the reviewer, we have also tested correlation between the trait variation and 
dysregulated homoeologs identified using similar strategy in the spikes. In total, we have 
identified 67 homoeologs showing evidence of dysregulation (negatively correlated). We used 
matching phenotyping data published in the same study (Wang et al. 
2017, 10.1104/pp.17.00694) reporting the RNA-seq data from spikes. We found that the SCC 
between the seed number and number of spikelets per spike also show negative correlation with 
the number of dysregulated genes (SCC = -0.25 and SCC = -0.16, respectively). These 
correlations are lower than SCC = -0.35 observed between dysregulated homoelogs in seedlings 
and number of spikelets per spike.  
 
We have added these results into the Results section: “Similar analysis performed using the 
negatively correlated homoeologs detected in the spikes and the number of grains and the 
number of spikelets per spike also revealed negative correlation between the low-expressing 
homoeologous alleles and traits (SCC = -0.25 and SCC = -0.16, respectively).” 
 
Overall, comparison of relationship between trait expression and homoeolog dysregulation 
across tissues suggests that dysregulated homeologs detected in both seedlings and spikes 
correlate with the trait values. 

 
 
Comment 5: The conclusion (line 243-245) that “our results suggest that the dysregulation of 
homoeologs (Fig. 1a) is primarily associated with the cis-regulatory diversity” is not fully 
supported by the evidence presented.  

The majority of the results do support that cis-genomic diversity is associated with 
homoeolog dysregulation, but this does not go as far as supporting “cis-regulatory diversity” 
because the analysis was done at a subgenome scale (e.g. A vs B vs D), rather than at a specific 
chromosome scale.  

Therefore, I find the current statement misleading because cis-regulatory would normally 
refer to a region close to the gene being regulated (or at the least on the same chromosome) but 
in this case most of the data shows the regulation comes from the same subgenome, but not 
necessarily the same chromosome.  

A way to improve this analysis, could be to re-run the partitioning of genetic variation per 
chromosome, rather than per subgenome, then the data could support this conclusion. Otherwise, 
the conclusion should be amended to “our results suggest that the dysregulation of homoeologs 
(Fig. 1a) is primarily associated with the cis-genomic diversity”.  

 
Response: We have performed additional analyses presented on Fig. 2c now, which show that 
our conclusion was largely correct and that main difference between homoeologs that show high 
and low levels of expression correlation is the proportion of variance explained by cis-variants 
near genes rather than trans-variants. 



 
 
Comment 6: Three comments related to the assessment of purifying selection homoeologs and 
singletons in Fig 4d: 
 
a) There is no explicit test for purifying selection in Fig 4d. One way to do this, as done for many 
of the other analyses in this paper, is to permute the expression and genotype, separately for each 
MAF category, and establish the significant threshold.  
 
b) Related to the same analyses, the effect size for eQTLs with low MAF can be inflated for a 
number of reasons and detecting rare small effect QTLs in general is difficult. It would be worth 
repeating the analyses using a fixed contribution of two alleles by subsampling genotypes for the 
more common allele and repeating the effect size calculations. The results of Fig S2C suggests 
this is unlikely to alter conclusions regarding the comparison between singletons and 
homoeologs. 
 
c) Why not consider doublets and triplets separately? 
 
Response: The main goal of this analysis was to test whether selection is relaxed in duplicated 
genes compared to singletons or not. This comparison of the effect size versus allele frequency 
provides simple approach to test this hypothesis, and was used previously in other systems (plant 
example DOI: 10.1073/pnas.1503027112; human example DOI: 10.1534/genetics.118.301833). 
There are a number of other studies that investigated the mode of selection acting on gene 
expression and demonstrated that expression is under purifying selection.  
 
We do agree with the reviewer that effect size of alleles with low frequency could be inflated. 
This was also the concern raised by another reviewer. To address this issue, we have performed 
analyses using a subset of eQTL whose effects could be detected at all frequencies in population 
(see response to the comment 8 from Reviewer 2). Using this subset of eQTL, we show that 
negative relationship between allele frequency and effect size in homoeologous gene triplets still 
persists. We have updated Results section and added  Supplementary Fig. 7 to incorporate these 
analyses into the manuscript.   
 
“The negative relationship between frequency and effect size was observed in homoeologs even 
for the subset of cis-eQTL whose effects are detectable at all frequencies (Supplementary Fig. 
7)”. 
 
Unfortunately, the number of duplets with detected eQTL is not sufficiently large to perform this 
test using duplets as a separate group.  
 
 
Methodological major comments: 
 
Comment 7: It would be important to know if the key conclusions still hold when excluding 
genes that show high levels of expression noise – variability between biological replicates. Since 



the three samples together were ground together, this current data does not allow one to assess 
this. 
 
Response: The pooling strategy has been used in many studies aimed at eQTL mapping or 
studying effect of selection of gene expression, for example, including maize (1 - Kremling et al. 
Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature; 
2018;555:520–3; 2 - Liu S et al. Genome Biol. 2020;21:1–22) and C. grandiflora (Josephs et al. 
Proc Natl Acad Sci U S A. 2015;112:15390–5). In our study, we used two RNA-seq datasets 
derived from different sets of accessions and different tissues. One RNA-seq dataset was derived 
from wheat seedlings, another RNA-seq dataset was taken from the previously published study 
(www.plantphysiol.org/cgi/doi/10.1104/pp.17.00694). Conclusions derived in the paper hold in 
both datasets, and in most cases consistent with the expectations or conclusions reached in other 
studies. Considering these results, and the fact that many conclusions reached in our study are 
based on methods and analyses previously also applied to datasets generated for pooled RNA, 
make us believe that pooling had little impact on the results of our analysis. The biological 
replicate pooling could affect comparison of gene expression between a pair of individuals from 
population. Indeed, as reviewer pointed, in this case, one could lose the ability to take into 
account the effect of genes showing extreme levels of variability in expression. However, in our 
eQTL mapping study, we report associations detected using SNPs with MAF >=0.05 (out of 200 
accessions). This means that any of these mapped eQTL is based on association tests conducted 
between a genetic variant and expression values from at least 10 accessions. In other words, any 
expression statistics derived in our study is based on at least 10 independent expression values 
(200 accessions * 0.05 MAF = 10). And even if each value is based on pooled sample, combined 
together they should provide quite accurate estimate of expression differences for any gene 
between the groups of individuals combined based on the genotype at eQTL locus. 
 
Comment 8: Is Hi-C stable between lines? Hi-C data from CS is being used to infer 
relationships in all lines, yet they are very different genotypes which are likely to have large 
structural re-arrangements. Therefore, whilst interesting, these results are a bit speculative. How 
robust are comparisons when Hi-C datasets from different genotypes are used? One way to test 
this would be use the datasets generated Walkowiak et al. (2020) and test if the results hold 
under all conditions.  
 
Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, Brinton J, Ramirez-Gonzalez RH, 
Kolodziej MC, Delorean E, Thambugala D, Klymiuk V. Multiple wheat genomes reveal global 
variation in modern breeding. Nature. 2020 Nov 25:1-7.  
 
Response: There are some conclusions in the manuscript based on Hi-C analyses could be 
affected by structural variation among accessions. Based on the comments from other reviewers, 
we decided to retain in the manuscript only enrichment analyses of eQTL in the regions on 
chromatin contacts. The analysis of eQTL and Hi-C contacts is an attractive direction of further 
research, but it is outside of the scope of our already quite extensive analyses performed in our 
study (please see responses to comments 1, 3 and 4 from Reviewer 1). Following advice from 
other reviewers, we have shortened manuscript to provide more focused and concise story. 
Besides, since these enrichment analyses are based on genome-wide data and seek to show over-
representation of eQTL in the regions of high contact frequency, there are less affected by local 



structural variation. The Results section and Fig. 3 (the Fig. 5 was removed and parts of this 
figure were moved to Fig. 3) have been modified to reflect these changes.  
 
 
Comment 9: Line 117-119 “Transcripts Per Million (TPM) were estimated for high-confidence 
(HC) genes in RefSeq v.1.0, with 82,092 genes (66,333 genes) showing TPM > 0.5 in at least 
two wheat lines”. But this does not agree with what is stated in the methods (Lines 701-704) 
which states that “Gene models with expression standard deviation > 0.5 and expressed (TPM > 
0.5) in at least three samples have been used in our analyses. This set of genes included 52,511 
HC gene models, 29,226 LC gene models, and 13,861 de novo assembled transcripts.” Were 
only HC genes used, or were LC and de novo transcripts also included? 
 
Response: Thank you for noticing this inconsistency. These numbers are incorrect and came 
from earlier analyses performed using the StringTie program. The Methods section provides 
correct information based on the calculations of gene expression using Kallisto. We have 
updated this section. Also, because all our analyses are based on gene models predicted in the 
reference genome, we have removed information about de novo transcripts. In all further 
analyses, only HC gene models were used “… were estimated for high-confidence (HC) genes in 
RefSeq v.1.0, with 52,511 transcripts (47,274 genes) showing TPM > 0.5 in at least three wheat 
lines…”. 
 
Comment 10: Line 700. How were the de novo transcripts assembled? And which analyses were 
they used for? 
 
Response: De novo assembled transcript have not been used in this manuscript. The description 
of de novo transcriptome assembly was removed. 
 
Comment 11: Data availability: 
Deposited RNA-seq data is private until 1st Nov 2023, this must be made public upon 
publication. Also, this is not the raw RNA-seq reads (is this is in the linked SRA record? I cannot 
access it to check). The raw fastq files should also be made available upon publication. Finally, 
these SRA and GEO accession numbers should be included in the main methods or in list of 
supplemental data so that others can find them.  
 
Response: Both RNA-seq and TMP data were deposited to NCBI and will be released along 
with the published manuscript. The reviewers could get access to data using information that was 
provided to the Nature Communications during the submission (see below). 
 
SRA: 
https://dataview.ncbi.nlm.nih.gov/object/PRJNA670223?reviewer=o5h7sh4bb3j7ntmguk02as41
hg 
 
GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE167479 
Enter GEO token into the box:  gfwveaumvbghlwb 
 
 



 
Minor comments:  
 
Comment 12: Title is very long. Could it be re-written to be shorter and more informative? 
 
Response: We tried to shorten title and make it more informative. The current title is “The 
genetic architecture of homoeologous gene expression dosage variation and its impact on 
agronomic traits in allopolyploid wheat”. 
 
Comment 13: Are the 2Mb regions defined surrounding gene always intergenic regions? If 
closer regions (500 bp and 1 MB) are less likely to intersect with neighbouring genic regions, 
they could be used instead. 
 
Response: We used 2 Mb interval just to define cis-eQTL – a variant most strongly associated 
with the expression of a target gene. The selection of this distance threshold is based on the fact 
that wheat has large genome and the rate of LD decay is slow across most of the genome (50% 
decay within 5-10 Mb, see for example: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701291/). Both 1 Mb and 0.5 Mb intervals are 
too short for appreciable decrease in LD for wheat. Within the 2 Mb interval, we selected most 
significant SNP. In most cases, these most significant cis-eQTL were much closer to a gene (~1-
10 kb) than 2Mb, as could be seen from the eQTL density distribution in Supplementary Fig. 6b, 
suggesting relatively small overlap with the neighboring genic regions. 
 
Comment 14: Text on figure 1 is too small to read. Figure 1B does not really add to the narrative 
and could be removed.  
 
Response: Fig 1. was modified as suggested. We used font size 6, which is allowed by the 
publisher. In case if manuscript will be published, we believe that text will be readable.  
 
 
Comment 15: In Fig 3A and B, what does deleterious mean? Missense can also be deleterious. 
 
Response: We used conservative criteria to define deleterious as those mutations that lead to 
premature termination codons due to nonsense and splice-site disruption mutations annotated 
using SNPEffect program. For clarification, we have added the following sentence in the 
methods: “SNPs resulting in splice-site disruption and premature termination codons were 
considered as putatively deleterious.” 
 
Comment 16: Figure 5, text too small panel e). Explanation of tpm graphs on the right not clear. 
Also why is this panel inside a blue box? 
 
Response: Fig. 5 has been modified in response to other reviewers’ comments and parts of the 
figure 5 under question are removed. The remaining parts of former Fig. 5 are now included into 
Fig. 3.  
 
 



Comment 17: Figure 7C, the Y axis is misleading, it’s a count of low expression alleles for 
dysregulated homoeologs in each line, or so I think. 
 
Response: Thank you for pointing at this part of the figure. Yes, this is the count of low-
expressing alleles. This figure with modified legend is now part of Fig. 6c.  
 
Comment 18: Is Line 560 supposed to say Fig 7F? 
 
Response: This part of the figure was removed. 
 
 
Comment 19: Line 593 “Previous studies in maize” – only 1 study is cited.  
 
Response: This typo was corrected 
 
Comment 20: Line 683. Which programme and parameters were used for read mapping? Which 
genome sequence was used as a reference? 
 
Response: The requested details are added into the Methods. 
 
Comment 21: Line 784 “All SNP sites with missing rate > 75% or heterozygosity rate < 3% 
were removed”. Why remove SNPs with low heterozygosity? I would expect most wheat lines to 
be homozygous. (This is also the opposite of the stated filter on line 779) 
 
Response: Thank you for noticing this typo, which was corrected. It should be “>3%”. 
 
 
Comment 22: Line 926 to 928 there is a sentence repeated “If the absolute….” 
 
Response: Corrected. 
 
 
Comment 23: Supplementary table 2, the column named “GENE_ID (v.2.0)” should be called 
“Gene_ID (v1.1)”, consistent with IWGSC et al., 2018.  
 
Response: Corrected 
 
Comment 24: Supplementary table 12 is labelled as Supplementary Table 13 in the excel file so 
needs to be corrected.  
 
Response: Corrected. 
 
 
Comment 25: Supplemental Fig 14. What are eGenes? 
 



Response: The term eGene was initially used in the manuscript to describe a gene that is 
associated with eQTL. The eGene is replaced by “target gene” across the manuscript. 
 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 



 
The authors have addressed most of my concerns and improved the manuscript. 
I still have one point which mostly involves text editing. 
Authors wrote in the main text line 293 “The cis- and trans-eQTL showed similar levels of enrichment 
across the various epigenetic marks, with both types of eQTL enriched for epigenetic modifications 
associated with enhancers (H3K4me1), transcription (H3K36me3), activation or regulation of gene 
expression (H3K27ac, H3K4me3). 
Authors also wrote in their Response to the Reviewers’ Comments  
“The H3K4me3, H3K4me1, H3K27ac marks are well known for being associated with enhancers and 
promoters of actively expressed genes. […] 1) “H3K4me1 is highly enriched at enhancers, … and 
H3K4me3 is a hallmark of the promoters of actively transcribing and poised genes” (DOI: 
https://doi.org/10.1038/emm.2017.11); 2) “Selected epigenomes also contain a subset of additional 
epigenomic marks, including: acetylation marks H3K27ac and H3K9ac, associated with increased 
activation of enhancer and promoter regions” (DOI: 10.1038/nature14248); 3) “… H3K27me3 was shown 
to be highly enriched at the promoters of thousands of genes that are responsible for embryonic 
development and differentiation” (DOI: https://doi.org/10.1038/emm.2017.11).”  
This is how it is in animal but not in plant and the paper cited refer to  animals. In plant H3K4me3 and 
H3K27ac are mainly associated to the first nucleosome after the TSS whereas H3K4me1 is mainly 
associated to the gene body (see figure below for maize from (https://doi.org/10.1038/s41467-019-
10602-5 and rice from DOI: 10.1093/mp/sst018 ) 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

In this context, to my view authors must edit the text since most of the data proved that in plants neither 
H3K4me1 nor H3K27ac marked enhancers. (see also https://doi.org/10.1038/s41467-019-09513-2 in this 
paper it is clearly demonstrated that H3K27ac is not a hallmark of enhancers in Arabidopsis.)  

https://doi.org/10.1038/emm.2017.11)
https://doi.org/10.1038/s41467-019-10602-5
https://doi.org/10.1038/s41467-019-10602-5
https://doi.org/10.1093/mp/sst018
https://doi.org/10.1038/s41467-019-09513-2


Reviewer #2: 

Remarks to the Author: 

I thank the authors for the additional work in response to my previous comments. Most of my earlier 

concerns have been addressed. However, I have a few additional comments. 

 

Comment 1 

PEER factors are often used to account for structure in gene expression data (e.g., systematic 

differences in gene expression among subsets of individuals), and principal components (PCs) derived 

from genetic data are often used to account for population stratification (i.e., different subsets of the 

sample come from different populations). Genetic PCs are effective in accounting for population 

stratification but not cryptic relatedness. In the GTEx data, related donors were identified using 

genetic data and removed from the eQTL mapping analysis so that the GTEx eQTL results are less 

likely to be affected by cryptic relatedness. In this study, however, the level of relatedness is unclear. 

Although it is reassuring to see that the mean of GIFs across genes is close to unity, the large 

variability is of concern, which reflects a small effective number of independent markers, an indication 

of a possibly high level of relatedness. 

 

Comment 2 

Regarding my comment on the choice of significance level, the authors responded that “The false 

positive rate calculated using the permuted data for spikes resulted in 0.8 x 10-3”. This value should 

be interpreted as is the false discovery rate (proportion of false positives in the positive results) rather 

than the false positive rate (proportion of false positives in all the tested results). 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors have extensively revised the manuscript which is much improved in my opinion. Below 

are my comments: 

 

Throughout the manuscript, were p-values considered for SCC? Were those negative correlation 

significant? For example in Fig 5C, are the grey points supposed to indicate negative correlation? L502 

indicated SCC = -0.18, but the plot looks weakly positive. 

 

L195 - "only 47.8%" why say "only"? Shouldn't 47.8% indicate a higher than 1/3 expectation in D 

genome, in order to speculate that bottleneck decreased the diversity in the D genome more than in A 

and B genomes? 

 

Fig2D and L254 - Please introduce why analyzing common and rare alleles when first mentioned, not 

untill Later in page24. 

 

L317-328 - This new analysis using external ATAC-seq dataset is unconvincing. Multiple steps of data 

manipulation was conducted to search for what the authors wanted to find, but the association 

betwween eQTL effect and promoter accesibility was not well surpported. The authors' reasoning 

about not to include such analysis works for me, expecially after the removal of Hi-C section. 

 

L345-348 - It is not clear to me how to obtain these information from Fig 3f. 

 

L365 should be "is supported by the finding" 

 

How to measure "effective size" of eQTL should be explained. 

 

Fig. 7: title still used dysregulation; d&e were not mentioned or explained in results 

 



L622: Isn't it possible that the lack of cis-regulatory diversity is ancestral? Any evidence showing the 

diversity was actually lower in breadwheat than tetraploid wheat and D genome？ 

 

 

 

Reviewer #4: 

Remarks to the Author: 

The authors have addressed the majority of the comments and the paper has been improved. I 

believe this is an interesting piece of work which adds value to the field. 

 

Major comments: 

1. In the new analysis, why were cis-genic SNPs defined as ±1 Mb around genes (line 200) but cis-

acting variant defined as those occurring within 2 Mb of a gene for the eQTL analyses (line 273)? 

2. Line 334. Add a statement to make it clear that the Hi-C data is from Chinese Spring, a cultivar that 

was not in the eQTL panel, to aid reader interpretation (as is done for the ATAC-seq on line 319-320 

which helps a lot) 

3. Double check everything due to large datasets and some minor typos and errors that have come 

through in this revised version. 

 

Minor comments: 

1. Line 89 “To functionally characterize variants associated with homoeolog expression variation”. 

Functional characterisation seem a bit strong because there is no direct causation shown (e.g. by gene 

editing). Same comment for line 282. 

2. Line 120-121 makes it sound like what gene are in two distinct states- triplets or singletons. 

However there are many different combinations possible (e.g. 2 A copies with 1 B copy etc. as in 

IWGSC et al., 2018). The sentence should be updated to reflect this. 

3. Figure 1a. What do the red and green colours mean in the top part of panel a) directly under 

“homoeologs with biased expression”? 

4. Lines 161 and 164 Fig 1d is now 1c 

5. Figure 3 – order of g and f is inverted 

6. Figure 7- remove reference to dysregulation in figure title because it is not used in rest of 

manuscript 



RESPONSE TO REVIEWER COMMENTS 

 

Reviewer #1: The authors have addressed most of my concerns and improved the manuscript. 

 

Comment 1: I still have one point which mostly involves text editing. … In plant H3K4me3 and 

H3K27ac are mainly associated to the first nucleosome after the TSS whereas H3K4me1 is mainly 

associated to the gene body (see figure below for maize from (https://doi.org/10.1038/s41467-019-10602-

5 and rice from DOI: 10.1093/mp/sst018 ). In this context, to my view authors must edit the text since 

most of the data proved that in plants neither H3K4me1 nor H3K27ac marked enhancers. (see 

also https://doi.org/10.1038/s41467-019-09513-2 in this paper it is clearly demonstrated that H3K27ac is 

not a hallmark of enhancers in Arabidopsis.)  

Response: Thank you for pointing out at the differences in the enrichment of epigenetic marks in plant 

and mammalian genomes, and providing relevant references. We cited those references that report maize 

and rice data, as these monocot species are more closely related to wheat than Arabidopsis (dicot). We 

corrected a senescence in Results: ―….with both types of eQTL enriched for epigenetic modifications 

associated with gene body (H3K4me1), transcription (H3K36me3), and active expression (H3K27ac, 

H3K4me3) (Figs. 3e, 3f)[refs: 27, 38, 39].‖ 

 

Reviewer #2: I thank the authors for the additional work in response to my previous comments. Most 

of my earlier concerns have been addressed. However, I have a few additional comments. 

 

Comment 1: PEER factors are often used to account for structure in gene expression data (e.g., 

systematic differences in gene expression among subsets of individuals), and principal components (PCs) 

derived from genetic data are often used to account for population stratification (i.e., different subsets of 

the sample come from different populations). Genetic PCs are effective in accounting for population 

stratification but not cryptic relatedness. In the GTEx data, related donors were identified using genetic 

data and removed from the eQTL mapping analysis so that the GTEx eQTL results are less likely to be 

affected by cryptic relatedness. In this study, however, the level of relatedness is unclear. Although it is 

reassuring to see that the mean of GIFs across genes is close to unity, the large variability is of concern, 

which reflects a small effective number of independent markers, an indication of a possibly high level of 

relatedness.  

Response:  It is quite unlikely that our sample carries significant number of highly related accessions. 

The selection procedure applied in our study would rather lead to extremely diverse sample of accessions 

rather than accessions sharing significant recent ancestry.  We should apologize for not providing more 

detailed information related to sample selection, which is now added to the Methods section. Briefly, our 

panel was selected from a worldwide sample including more than 2,000 lines previously genotyped using 

the 9K iSelect SNP assay (Cavanagh et al., 2013) and having previously collected data on resistance to 

multiple races of stem rust.  During selection we tried to maximize: 1) genetic diversity, 2) representation 

of diverse geographic regions, and 3) representation of phenotypic response to distinct strains of fungal 

pathogen. We believe that this should provide adequate protection against choosing highly related 

individuals. The low false-discovery rate estimated by permutation supports this conclusion indicating 

that the high-level of line relatedness unlikely should be a major issue in our mapping study.  

 

Comment 2: Regarding my comment on the choice of significance level, the authors responded that ―The 

false positive rate calculated using the permuted data for spikes resulted in 0.8 x 10-3‖. This value should 

be interpreted as is the false discovery rate (proportion of false positives in the positive results) rather than 

the false positive rate (proportion of false positives in all the tested results). 

Response:  Thank you for pointing out at this error. Two sentences describing the permutation results in 

Methods have been corrected. 

 

https://doi.org/10.1038/s41467-019-10602-5
https://doi.org/10.1038/s41467-019-10602-5
https://doi.org/10.1038/s41467-019-09513-2


Reviewer #3: The authors have extensively revised the manuscript which is much improved in my 

opinion. Below are my comments: 

 

Comment 1: Throughout the manuscript, were p-values considered for SCC? Were those negative 

correlation significant? For example in Fig 5C, are the grey points supposed to indicate negative 

correlation? L502 indicated SCC = -0.18, but the plot looks weakly positive. 

Response: P-values were calculated for negatively correlated homoeologs using expression values from 

all 198 accessions, and only those that are significant were reported. In Fig. 5c, p-value based on 198 

pairs of expression values was significant (p-value = 0.01, now added to the text). The green and yellow 

data points show expression values for wheat lines without or with terminal deletion on chr. 1D, 

respectively.  

 

Comment 2: L195 - "only 47.8%" why say "only"? Shouldn't 47.8% indicate a higher than 1/3 

expectation in D genome, in order to speculate that bottleneck decreased the diversity in the D genome 

more than in A and B genomes? 

Response: Thank you for the suggestion. We have modified this sentence. 

 

Comment 3: Fig2D and L254 - Please introduce why analyzing common and rare alleles when first 

mentioned, not untill Later in page24.  

Response: Thank you for the suggestion. We have added introductory sentences in the Results section: 

―The effects of cis- and trans-acting variants on expression correlation between homoeologs‖. 

 

Comment 4: L317-328 - This new analysis using external ATAC-seq dataset is unconvincing. Multiple 

steps of data manipulation was conducted to search for what the authors wanted to find, but the 

association between eQTL effect and promoter accessibility was not well supported. The authors' 

reasoning about not to include such analysis works for me, especially after the removal of Hi-C section. 

Response: We do agree with the reviewer, and decided to exclude this analysis from the manuscript. 

 

Comment 5: L345-348 - It is not clear to me how to obtain these information from Fig 3f. 

Response: This information could be obtained from Supplementary Table 7, which was cited in the same 

section of Results. We have added the reference to this table. 

 

Comment 6: L365 should be "is supported by the finding" 

Response: Corrected. 

 

Comment 7: How to measure "effective size" of eQTL should be explained. 

Response: The effect size of eQTL is a linear regression slope estimated by Matrix eQTL for each variant 

tested. We have added this clarification to the Methods section. 

 

Comment 8: Fig. 7: title still used dysregulation; d&e were not mentioned or explained in results. 

Response: Thank you for noticing this error. Also, we mistakenly kept this figure labeled as Fig. 7, 

whereas it is Fig. 6.  The title is corrected: ―Figure 6. Biased expression of homoeologous genes is linked 

with variation in productivity traits.‖ Both panels ―6d‖ and ―6e‖ have already been described in the 

Results. 

 

Comment 9: L622: Isn't it possible that the lack of cis-regulatory diversity is ancestral? Any evidence 

showing the diversity was actually lower in breadwheat than tetraploid wheat and D genome？ 

Response: There is strong evidence that bread wheat experienced significant genome-wide loss of genetic 

diversity compared to its tetraploid and diploid ancestors. The most severe loss happened in the D 

genome (now it has 2-3 times lower diversity than the A and B genomes), which is consistent with nearly 



50% of the trans-only regulated genes being located in the D genome, and remaining trans-only genes 

(~25% per genome) being located in the A and B genomes. We have cited several studies in the 

manuscript that specifically investigated the impact of domestication and selection on diversity in wheat. 

See references 60, 63, 65-67. Comparison of genetic diversity between genes regulated only by trans-

eQTL with cis—only genes in wheat showed significant difference (see Fig. 2b). However, comparison of 

the same genes in tetraploid wild emmer using our previously published 1000 exome data (He et al, Nat. 

Genetics, 2019) showed no difference, suggesting that preferential trans-regulation in wheat is linked with 

loss of diversity during improvement. We have added this information to the results: ―…no significant 

reduction of diversity between cis- and trans-only regulated genes (Wilcoxon rank sum test p-value = 0.1) 

was found in wild emmer using data from the previously published study‖.  

 

Reviewer #4: The authors have addressed the majority of the comments and the paper has been 

improved. I believe this is an interesting piece of work which adds value to the field.  

 

Major comments: 

Comment 1: In the new analysis, why were cis-genic SNPs defined as ±1 Mb around genes (line 200) but 

cis-acting variant defined as those occurring within 2 Mb of a gene for the eQTL analyses (line 273)? 

Response: In both cases we used ±1 Mb around a gene. For consistency, we replaced ―2 Mb of a gene‖ to 

―±1 Mb around gene‖.  

 

Comment 2: Line 334. Add a statement to make it clear that the Hi-C data is from Chinese Spring, a 

cultivar that was not in the eQTL panel, to aid reader interpretation (as is done for the ATAC-seq on line 

319-320 which helps a lot). 

Response: The note that cultivar Chinese Spring is not part of the diversity panel is added to this 

sentence. 

 

Comment 3: Double check everything due to large datasets and some minor typos and errors that have 

come through in this revised version.  

Response: Thank you. We checked datasets and manuscript for errors and typos. 

 

Minor comments: 

Comment 1: Line 89 ―To functionally characterize variants associated with homoeolog expression 

variation‖. Functional characterisation seem a bit strong because there is no direct causation shown (e.g. 

by gene editing). Same comment for line 282.  

Response: Thank you. We have re-worded these parts of the sentences. 

 

Comment 2: Line 120-121 makes it sound like what gene are in two distinct states- triplets or singletons. 

However there are many different combinations possible (e.g. 2 A copies with 1 B copy etc. as in IWGSC 

et al., 2018). The sentence should be updated to reflect this.  

Response: Thank you for the suggestion. We clarified that homeologs could be present in one, two or 

three genomes.  

 

Comment 3: Figure 1a. What do the red and green colours mean in the top part of panel a) directly under 

―homoeologs with biased expression‖?  

Response: We have added clarification to the figure legend: ―Red and green colors show low-expressing 

homoeologs in the A and B genomes, respectively‖. 

 

Comment 4: Lines 161 and 164 Fig 1d is now 1c 

Response: Thank you! Corrected. 



 

Comment 5: Figure 3 – order of g and f is inverted 

Response: Corrected. 

 

Comment 6: Figure 7- remove reference to dysregulation in figure title because it is not used in rest of 

manuscript 

Response: Corrected. 



Reviewers' Comments: 

 

Reviewer #2: 

None 

 

Reviewer #3: 

Remarks to the Author: 

The authors have addressed my previous concerns. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

The authors have now addressed all my comments. Thank you. 



Comment: In particular, Reviewer #2 points out that there are no direct evidences to show the degree of 
relatedness of the sampled accessions, especially given the large variation across transcripts and genes in 
terms of genomic inflation factors provided in Supplementary Figure 15. In this revision, we ask you to 
do the analysis by using the available SNP data to estimate the relatedness and make a histogram of off-
diagonal elements of the genetic relatedness matrix. 
 
 
Response: We have calculated the distribution of genetic relatedness between all possible pairs of 
accessions in our sample using an algorithm implemented in PLINK. This analysis (Supplementary Fig. 
15) clearly shows that our panel of lines does not have highly related accessions (relatedness approaching 
1.0) with nearly all pair-wise showing relatedness levels between -0.2 and 0.2. We have added a new 
supplementary figure showing the distribution of off-diagonal relatedness in the matrix generated by 
PLINK. The description of this data is added to the Methods: “The genetic relatedness analysis of this 
subset of lines was performed using an algorithm implemented in PLINK v.1.9. For this purpose, we have 
used genome-wide SNPs generated by the regulatory sequence capture and sequence-based genotyping 
approaches. This analysis shows that our panel does not contain highly related accessions, which 
otherwise might increase the chances of detecting spurious associations in GWAS (Supplementary Fig. 
15).” 



Reviewers' Comments: 

 

Reviewer #2: 

None 


