

Supplementary Data

We compared our scDCT measurement results in homogenous tissue phantoms at exposure times of 1, 2, and 5 ms (see **Supplementary Fig. 1**). Means \pm standard deviations of relative flow values were $99 \pm 13\%$, $95 \pm 26\%$, $102 \pm 30\%$ in 5ms, 2 ms, 1 ms, respectively, in 2-8 mm. Data obtained with the exposure time of 5 ms (blue curve) generate the most stable/constant relative flow values at effective S-D separations of 2 to 8 mm.

Supplementary Figure 1: Boundary flow distributions over the selected source (S_2) and left detector array with S-D separations ranging from 0.5-12 mm in a homogenous tissue phantom (see the S-D configuration in **Fig. 3**). Flow indices were normalized to their mean value to generate relative flow values for presentation.

To test the dependence of effective S-D separations on phantom optical properties, we used the scDCT to measure Intralipid particle flow changes due to varied temperatures (25°C, 40°C, and 55°C; **Supplementary Fig. 2a**) and varied tissue absorption coefficient μ_a by adding Indian ink (0.03, 0.07, and 0.10 cm⁻¹; **Supplementary Fig. 2b**). The means \pm standard deviations of relative flow were 111 \pm 10%, 102 \pm 11%, 101 \pm 15% respectively with varied temperatures and 103 \pm 12%, 108 \pm 14%, 105 \pm 16% respectively with varied μ_a . Results verify that data obtained at effective S-D separations of 2 to 8 mm are relatively constant and stable.

Supplementary Figure 2: Boundary flow distributions over the selected source (S₂) and left detector array with S-D separations of 0.5-12 mm on homogenous tissue phantoms (see the S-D configuration in Fig. 3). (a) Intralipid particle flow variations with varied temperatures of 25°C, 40°C, and 55°C. (b) Intralipid particle flow variations with varied μ_a of 0.03, 0.07, and 0.10 cm⁻¹.