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SUPPLEMENTARY METHODS 
 
Participants 

The institutional review boards of both the University of Pennsylvania and the 
Children’s Hospital of Philadelphia approved all study procedures. From the original 
1,601 participants from the Philadelphia Neurodevelopmental Cohort (PNC) (1), 156 
were excluded due to the presence of gross radiological abnormalities distorting brain 
anatomy or due to medical history that might impact brain function; those with a history 
of psychiatric illness were retained. An additional 365 individuals were excluded because 
they did not pass rigorous manual and automated quality assurance for either their T1-
weighted scan or their diffusion scan (2,3). Finally, 12 participants were excluded owing 
to the presence of disconnected regions in their structural connectivity matrix. This 
process left a final sample of 1,068 participants. Note that this sample is larger than that 
commonly reported in previous studies of the PNC dataset (4–6) because, unlike previous 
reports, we did not exclude based on history of psychiatric illness. Indeed, previous work 
has illustrated that this broader coverage of the PNC yields prevalence rates of mental 
disorders consistent with population norms (7).  
 From the above sample of 1,068, a subsample of 926 participants was used to 
generate the principal functional gradient (see section titled Principal gradient of 
functional connectivity below) via resting-state functional connectivity analyses (8). 
These participants met quality control criteria for the resting-state functional magnetic 
resonance imaging (rs-fMRI) data in the PNC (see section titled Imaging data quality 
control below). 
 
Psychopathology dimensions 

In this study, we take a transdiagnostic dimensional approach to assessing 
variation in the symptoms of mental health (9–12). In particular, we extended a p-factor 
model that was previously developed based on the GOASSESS interview (13,14) and that 
has previously been used to study the brain (15–17). Briefly, the GOASSESS is an 
abbreviated and modified structured interview derived from the NIMH Genetic 
Epidemiology Research Branch Kiddie-SADS (18) that covers a wide variety of 
psychiatric symptomatology such as the occurrence of mood (major depressive episode, 
mania), anxiety (agoraphobia, generalized anxiety, panic, specific phobia, social phobia, 
separation anxiety, obsessive compulsive disorder), externalizing behavior (oppositional 
defiant, attention deficit/hyperactivity, conduct disorder), eating disorder (anorexia, 
bulimia), and suicidal thoughts and behaviors. GOASSESS was administered by trained 
and certified assessors. The original model used a combination of exploratory and 
confirmatory factor analysis to distill the 112 item-level symptoms from the GOASSESS 
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into five orthogonal dimensions of psychopathology. The original model included a factor 
common to all psychiatric disorders, referred to as overall psychopathology, as well as 
four specific factors: anxious-misery, psychosis, externalizing behaviors, and fear. 

Here, owing to emergent evidence that the positive and negative aspects of the 
psychosis spectrum elicit unique effects on the brain (19), we extended the above p-factor 
model in two ways. First, we included an additional five assessor-rated polytomous items 
(scored from 0-6, where 0 is ‘absent’ and 6 is ‘severe and psychotic’ or ‘extreme’ from the 
Scale of Prodromal Symptoms (SOPS) derived from the Structured Interview for 
Prodromal Syndromes (SIPS (20)) designed to measure the negative/disorganized 
symptoms of psychosis. These five items were (i) P5 disorganized communication, (ii) N2 
avolition, (iii) N3 expression of emotion, (iv) N4 experience of emotions and self, and (v) 
N6 occupational functioning. Including this additional set brought the total to 117 items. 
Second, we split the psychosis factor into two factors, one describing the delusions and 
hallucinations associated with the psychosis spectrum, which we call psychosis-positive. 
The second psychosis factor described disorganized thought, cognitive impairments, and 
motivational-emotional deficits, which we call psychosis-negative for simplicity. We used 
confirmatory factor analysis implemented in Mplus (21) to model five specific factors of 
psychopathology (anxious-misery, psychosis-positive, psychosis-negative, externalizing 
behaviors, and fear) as well as one common factor (overall psychopathology). Note that 
all dimensions derived from this model are orthogonal to one another. Here, we primarily 
studied the psychosis-positive and psychosis-negative dimensions, which represent the 
positive and negative domains of the PS, respectively (22). We also studied the overall 
psychopathology dimension. 
 
Imaging data acquisition 

MRI data were acquired on a 3 Tesla Siemens Tim Trio scanner with a 32-channel 
head coil at the Hospital of the University of Pennsylvania. Diffusion tensor imaging 
(DTI) scans were acquired via a twice-refocused spin-echo (TRSE) single-shot echo-
planar imaging (EPI) sequence (TR = 8100 ms, TE = 82 ms, FOV = 240mm2/240mm2; 
Matrix = RL: 128, AP: 128, Slices: 70, in-plane resolution of 1.875mm2; slice thickness = 
2mm, gap = 0; flip angle = 90°/180°/180°, 71 volumes, GRAPPA factor = 3, bandwidth = 
2170 Hz/pixel, PE direction = AP). Our sequence utilized a four-lobed diffusion encoding 
gradient scheme combined with a 90-180-180 spin-echo sequence designed to minimize 
eddy-current artifacts (1). The sequence consisted of 64 diffusion-weighted directions 
with b = 1000 s/mm2 and 7 interspersed scans where b = 0 s/mm2. The imaging volume 
was prescribed in axial orientation and covered the entire brain. 

In addition to the DTI scan, a B0 map of the main magnetic field was derived from 
a double-echo, gradient-recalled echo (GRE) sequence, allowing for the estimation and 
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correction of field distortions. Prior to DTI acquisition, a 5-min magnetization-prepared, 
rapid acquisition gradient-echo T1-weighted (MPRAGE) image (TR = 1810ms, TE = 
3.51ms, FOV = 180 x 240mm, matrix 256 x 192, voxel resolution of 1mm3) was acquired 
for each participant. 

Finally, approximately 6 minutes of rs-fMRI data was acquired using a blood 
oxygen level-dependent (BOLD-weighted) sequence (TR = 3000ms; TE = 32ms; FoV = 192 
x 192mm; resolution 3mm isotropic; 124 volumes). These data were used solely to 
generate the principal cortical gradient of functional connectivity discussed in the main 
text (8). 
 
Imaging data quality control 

All DTI and T1-weighted images underwent rigorous quality control by highly 
trained image analysts (see Refs. (2) and (3) for details on DTI and T1-weighted imaging, 
respectively). Regarding the DTI acquisition, all 71 volumes were visually inspected and 
evaluated for the presence of artifacts. Every volume with an artifact was marked as 
contaminated and the fraction of contaminated volumes was taken as an index of scan 
quality. Scans were marked as ‘poor’ if more than 20% of volumes were contaminated, 
‘good’ if more than 0% but less 20% of volumes were contaminated, and ‘great’ if 0% of 
volumes were contaminated. Regarding the T1-weighted acquisition, images with gross 
artifacts were considered unusable; images with some artifacts were flagged as ‘decent’; 
and images free of artifact were marked as ‘superior’. As mentioned above in the section 
titled Participants, 365 individuals were removed due to either ‘poor’ diffusion tensor 
images or ‘unusable’ T1-weighted images. In the main sample of 1,068, a total of 655 
participants had diffusion tensor images identified as ‘great’, with the remaining 
identified as ‘good’, and 924 participants had T1-weighted images identified as ‘superior’, 
with the remaining identified as ‘usable’. Regarding the rs-fMRI data, as in prior work 
(23,24), a participant’s rs-fMRI run was excluded if the mean relative root mean square 
(RMS) framewise displacement was higher than 0.2mm, or it had more than 20 frames 
with motion exceeding 0.25mm. 
 
Structural image processing 

Structural image processing was carried out using tools included in ANTs (25). The 
buildtemplateparallel pipeline from ANTs (26) was used to create a study-specific T1-
weighted structural template with 120 participants that were balanced on sex, race, and 
age. Structural images were processed in participant’s native space using the following 
procedure: brain extraction, N4 bias field correction (27), Atropos tissue segmentation 
(28), and SyN diffeomorphic registration (26,29). 
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Diffusion image processing 
For each participant, a binary mask was created by registering the standard 

fractional anisotropy mask provided by FSL (FMRIB58 FA) to the participant’s mean b=0 
reference image using FLIRT (30). To correct for eddy currents and head motion, this 
mask and the participant’s diffusion acquisition was passed to FSL’s eddy (31) (version 
5.0.5). Diffusion gradient vectors were subsequently rotated to adjust for the motion 
estimated by eddy. Distortion correction was conducted via FSL’s FUGUE (32) using the 
participant’s field map, estimated from the b=0 map. 

For each subject, whole-brain deterministic fiber tracking was conducted using 
DSI Studio (33) with a modified fiber assessment by continuous tracking (FACT) 
algorithm with Euler interpolation. A total of 1,000,000 streamlines were generated for 
each participant that were between 10mm and 400mm long. Fiber tracking was 
performed with an angular threshold of 45° and step size of 0.9375mm. For each subject, 
the number of streamlines intersecting region 𝑖𝑖 and region 𝑗𝑗 in a given parcellation (see 
section entitled Whole brain parcellation below) was used to weight the edges of an 
undirected adjacency matrix, 𝑨𝑨. Note, 𝑨𝑨𝑖𝑖𝑖𝑖 = 0 for 𝑖𝑖 = 𝑗𝑗. 

 
Limitations of tractography 

Tractography has limitations when it comes to measuring structural connectivity. 
Tractography is insensitive to both the directionality of, and the synaptic processes 
occurring along, white matter pathways. In our study, Network Control Theory assumes 
that signals originating at a given region propagate throughout the network based on the 
strength of inter-regional connectivity alone. Thus, in our model, insensitivity to 
directionality means that signals can traverse from one region to the next along both 
efferent and afferent connections equally, instead of being constrained to the efferent 
connections. Indeed, insensitivity to directionality may explain some of the divergence 
often observed between white matter paths derived from diffusion tractography and 
those derived from non-human tract-tracing experiments (34,35). However, we note that 
prior work has shown that controllability statistics generated from directional tract-
tracing data are similar to those derived from undirected data (36). Additionally, similar 
to previous work (37), we make the assumption that two regions not connected directly 
can communicate with each other polysynaptically via an intermediate region. However, 
without sensitivity to what is occurring at synapses, we are unable to determine whether 
signals that arrive at an intermediate region actually propagate along downstream 
connections or not. While there is evidence that regional strength (derived from diffusion 
tractography) correlates to comparable regional summaries of tract-tracing connectivity 
(38,39), this effect only accounts for direct connections. It remains unclear how, and to 
what extent, measures of indirect connectivity, like those studied herein (e.g., average 
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controllability), relate to summaries of tract-tracing connectivity that account for 
polysynaptic processes (40). Despite these limitations, diffusion-weighted tractography 
remains the only way to index structural connectivity in vivo, which is essential to 
studying how inter-individual differences in the human brain link to PS symptoms 
throughout development. 
 
rs-fMRI processing 
 State-of-the-art processing of functional data is critical for valid inference (41). 
Thus, functional images were processed using a top-performing preprocessing pipeline 
implemented using the eXtensible Connectivity Pipeline (XCP) Engine (24), which 
includes tools from FSL (32,42) and AFNI (43). This pipeline included (1) correction for 
distortions induced by magnetic field inhomogeneity using FSL’s FUGUE utility, (2) 
removal of 4 initial volumes, (3) realignment of all volumes to a selected reference 
volume using FSL’s MCFLIRT, (4) interpolation of intensity outliers in each voxel’s time 
series using AFNI’s 3dDespike utility, (5) demeaning and removal of any linear or 
quadratic trends, and (6) co-registration of functional data to the high-resolution 
structural image using boundary-based registration. Images were de-noised using a 36-
parameter confound regression model that has been shown to minimize associations with 
motion artifact while retaining signals of interest in distinct sub-networks (24,41,44). 
This model included the six framewise estimates of motion, the mean signal extracted 
from eroded white matter and cerebrospinal fluid compartments, the mean signal 
extracted from the entire brain, the derivatives of each of these nine parameters, and 
quadratic terms of each of the nine parameters and their derivatives. Both the BOLD-
weighted time series and the artifactual model time series were temporally filtered using 
a first-order Butterworth filter with a passband between 0.01 and 0.08 Hz (45).  
 
Whole brain parcellation 
 Studying whole-brain connectivity with neuroimaging data requires the 
separation of the brain into discrete regions via the use of a parcellation. Here, we 
primarily adopted a 200-region parcellation defined in a previous study by Schaefer et al. 
(46) using functional neuroimaging data; this parcellation is hereafter referred as the 
Schaefer200 parcellation. Our decision to adopt a functionally-defined parcellation to 
study structural connectivity was motivated by our goal to contextualize our predictive 
analyses against the functional cortical hierarchy (8). This choice is also consistent with 
our previous work that examined the coupling between structural and functional 
connectivity in the PNC (47). However, there exist a plethora of brain parcellations that 
vary both in their nature and in their spatial resolution. In light of this diversity, we 
repeated our analyses using three additional parcellations of the brain. First, we used a 
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higher resolution version of the Schaefer parcellation that included 400 regions covering 
the cortex (Schaefer400). Second, we used a parcellation wherein boundaries were 
defined according to neuroanatomy rather than function and that included 234 regions 
covering the cortex and subcortex (Lausanne234) (48). Third, we used a multi-modal 
parcellation developed in the Human Connectome Project data that included 360 regions 
covering the cortex (HCP-MMP) (49). 
 
Alternative graph-theoretic measures of indirect connectivity 
 As mentioned in the main text, average controllability is not the only way to 
probe indirect connections to a region. In order to examine the extent to which our 
analyses of individual differences were specific to average controllability, we included 
three additional graph-theoretic measures of centrality that also characterize indirect 
connections to a region (50), albeit in the absence of a dynamical model. These metrics 
were: (i) betweenness centrality, (ii) closeness centrality, (iii) and subgraph centrality. For 
extended discussion and definition of these metrics, we refer the interested reader to 
previous work by Oldham et al. (50). Briefly, betweenness centrality represents the 
extent to which a region is situated along shortest paths that link together other pairs of 
regions; a region with a high betweenness centrality value lies along more of these paths 
than a region with a low betweenness centrality value. Closeness centrality is the average 
of the shortest path lengths that run from a region to all other reachable regions in the 
network; a region with a high closeness centrality value has lower average shortest paths 
to other areas than a region with a low closeness centrality. Finally, a region with high 
subgraph centrality is involved in many closed walks (i.e., paths that begin and end at the 
same region). Together, these centrality metrics cover a broad spectrum of how indirect 
connections can influence a region, including paths that run through a region, paths that 
originate at a region, and paths that begin and end at a region. 
 
Nuisance covariates 
 In this study, we used age, sex (binary), total brain volume, and mean in-scanner 
motion as nuisance covariates. Total brain volume was generated from the T1-weighted 
images using ANTs. In-scanner head motion was estimated for each participant from their 
diffusion sequence as relative framewise displacement (2). Specifically, rigid-body motion 
correction was applied to the seven high quality b = 0 images interspersed throughout the 
diffusion acquisition. Once estimated, framewise displacement was averaged across time 
to create a single measure for each participant (see Figure S5). 
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Machine learning prediction models 
 As discussed in the main text, we generated five 1,068 × 200 matrices (𝑋𝑋) of 
regional structural connectivity features — strength (𝑋𝑋𝑠𝑠), average controllability (𝑋𝑋𝑎𝑎), 
betweenness centrality (𝑋𝑋𝑏𝑏𝑏𝑏), closeness centrality (𝑋𝑋𝑏𝑏𝑏𝑏), and subgraph centrality (𝑋𝑋𝑠𝑠𝑠𝑠𝑏𝑏) — 
that were used to iteratively predict symptom dimensions (𝑦𝑦) in a series of prediction 
models. Here, we describe these models in greater detail, including our use and 
comparison of both linear and nonlinear regression estimators (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) (see Figures S6 and 
S7 for results). 
 
Primary prediction model 

In order to elucidate whether the link between connectivity features (𝑋𝑋) and 
symptom dimensions (𝑦𝑦) was linear or nonlinear, we used both linear ridge regression 
(RR) and kernel ridge regression (KRR) with a radial basis function (51). Regression 
estimators were fit using scikit-learn (52) with default parameters (RR: α =  1; KRR: α =
 1, 𝛾𝛾 = 1/𝑛𝑛, where 𝑛𝑛 represents the number of brain regions). For each (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑋𝑋,𝑦𝑦) 
combination, we assessed out-of-sample prediction performance using 10-fold cross-
validation scored by root mean squared error (RMSE) and the correlation between the 
true 𝑦𝑦 and predicted 𝑦𝑦. Note, because symptom dimensions were standardized prior to 
prediction analysis as part of normalization, RMSE was consequently standardized such 
that values of <1 were within 1 standard deviation of 𝑦𝑦. Models were trained using all 
columns of a given 𝑋𝑋 matrix as input features and RMSE and the correlation between the 
true 𝑦𝑦 and predicted 𝑦𝑦 were each averaged across folds. We included age, sex, total brain 
volume, and in-scanner motion as nuisance covariates (see section titled Nuisance 
covariates above). All nuisance covariates, except for sex, were normalized using an 
inverse normal transformation. Nuisance covariates were controlled for by regressing 
their effect out of 𝑋𝑋 before predicting 𝑦𝑦. Within each fold, nuisance covariates were fit to 
the training data and applied to the test data to prevent leakage. Next, owing to evidence 
that prediction performance can be biased by the arbitrariness of a single split of the data 
(53), we repeated 10-fold cross-validation 100 times, each time with a different random 
10-fold split. Together, this process yielded a distribution of 100 mean RMSE values and 
100 mean correlations between true 𝑦𝑦 and predicted 𝑦𝑦 for each (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑋𝑋, 𝑦𝑦) combination. 
Schematic illustration of our primary prediction model is presented in Figure 1B in the 
main text. For each symptom dimension (𝑦𝑦), we compared prediction performance (e.g., 
RMSE distributions) across pairs of connectivity features (e.g., 𝑋𝑋𝑠𝑠 versus 𝑋𝑋𝑎𝑎) using an 
exact test of differences (54). 
 
 
 



Parkes et al.  Supplement 

9 

Secondary prediction model 
Our primary prediction model did not perform hyper-parameter optimization, 

instead relying on default settings for both regression estimators (α =  1). This decision 
was motivated by our desire to incorporate nuisance covariates into our prediction model 
while minimizing leakage; a problem that may spuriously improve prediction 
performance (55). While scikit-learn includes tools for conducting unbiased hyper-
parameter optimization via nested cross-validation (53), it is not set up to do both nested 
cross-validation and leakage-resistant nuisance regression concurrently. As such, we 
specified a secondary prediction model that did not include nuisance regression and 
instead performed hyper-parameter (α) optimization via 10-fold nested cross-validation 
(Figure S1). Specifically, for each fold of the test data, the remaining training data was 
once more subjected to 10-fold cross-validation in order to find the best performing α 
parameter (i.e., inner-loop cross-validation). The optimal α parameter from this inner 
loop was then fit to the full training data and used to predict the test data. This approach 
isolates the evaluation of model performance from the optimization of α. As above, 
prediction performance was compared across pairs of connectivity features (e.g., 𝑋𝑋𝑠𝑠 versus 
𝑋𝑋𝑎𝑎) using an exact test of differences (54). 
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Figure S1. Secondary prediction model. The variable 𝑋𝑋 (e.g., strength, 𝑋𝑋𝑠𝑠; average controllability, 𝑋𝑋𝑎𝑎) was 
used to predict 𝑦𝑦 via 100 repeats of nested 10-fold cross-validation; each repeat used a different random 
split of the data. Hyper-parameters were optimized in the inner-loop and the best performing hyper-
parameter was fed back to the outer-loop to assess performance on the test set. 
 
Null prediction model 
  Both our primary and secondary prediction models generated robust estimates of 
prediction performance for a given (𝑟𝑟𝑟𝑟𝑟𝑟,𝑋𝑋,𝑦𝑦) combination but they did not examine 
whether prediction performance was in itself significant. Thus, in order to test whether 
prediction performance was better than chance, we compared point estimates of each of 
our scoring metrics (e.g., RMSE) to the distribution of values obtained from permuted 
data. Specifically, we trained each (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑋𝑋, 𝑦𝑦) combination on a single cross-validation 
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split, stratified on 𝑦𝑦, and then subjected the corresponding point estimates to 100,000 
random permutations, wherein the rows (i.e., participants) of 𝑦𝑦 were randomly shuffled. 
The associated p-values were assigned as the proportion of permuted scores that were 
greater than or equal to our true scores and corrected for multiple comparisons over 
connectivity features and symptom dimensions (5 x 3 = 15 tests) via the Benjamini and 
Hochberg False Discovery Rate (FDR, q = 0.05) procedure (56). We refer to this model as 
our null prediction model (Figure S2). Note, as per scikit-learn defaults, for RMSE, models 
were trained and evaluated using a negative sign so as to ensure that greater RMSE 
corresponded to better performance. This, in turn, ensured that p-values were computed 
correctly using the above procedure. However, for ease of interpretation, we present 
unsigned RMSE throughout the results. 
 

 
Figure S2. Null prediction model. The variable 𝑋𝑋 (e.g., strength, 𝑋𝑋𝑠𝑠; average controllability, 𝑋𝑋𝑎𝑎) was used to 
predict 𝑦𝑦, controlling for age, sex, brain volume, and in-scanner motion, via a single split of the data 
stratified on 𝑦𝑦. This model was subjected to 100,000 random permutations (of 𝑦𝑦) to test for statistical 
significance. 
 

Binned-regions prediction model 
Finally, the KRR prediction estimator that we used above was nonlinear, which 

meant we were unable to extract interpretable regional coefficients from our prediction 
models when using this estimator. Thus, we sought an approach to examining each 
region’s contribution to prediction performance that was agnostic to the nonlinear nature 
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of our KRR. As above, we trained a given (𝑋𝑋,𝑦𝑦) combination on a single cross-validation 
split, stratified on 𝑦𝑦. However, instead of training on all columns of 𝑋𝑋, we trained on non-
overlapping subsets of five columns sampled along the principal cortical gradient of 
functional connectivity (8). The principal cortical gradient separates the transmodal 
cortex from unimodal cortex in a continuous fashion, which allowed us to characterize 
gradual changes in prediction performance of each connectivity feature as a function of 
the cortical hierarchy. We derived the cortical gradient in our own data (see section 
entitled Principal gradient of functional connectivity below). As above, we assessed 
prediction significance using a permutation test, wherein the rows of 𝑦𝑦 were randomly 
shuffled 100,000 times. Empirical nulls were generated separately for each bin of five 
regions. We refer to this final model as our binned-regions prediction model (Figure 1C). 
 
Principal gradient of functional connectivity 
 Here, we characterized whole-brain resting-state functional connectivity 
according to a gradient that situates unimodal sensorimotor cortex at one end and 
transmodal association cortex at the other. The details of this approach are explained in 
prior work by Margulies et al. (8). Conceptually, this approach amounts to a 
dimensionality reduction technique that positions regions with similar functional 
connectivity profiles near to one another and distant from those with dissimilar 
connectivity profiles. Here, for each participant, processed rs-fMRI timeseries (see section 
titled rs-fMRI processing above) were averaged regionally and regional timeseries were 
correlated pairwise to generate functional connectomes. Correlations were estimated via 
Pearson’s correlation coefficient and connectomes were normalized using Fisher’s r-to-z 
transform before being averaged over participants. The principal cortical gradient was 
generated from this group-average connectome with the BrainSpace toolbox (57), using 
the DiffusionMaps approach and normalized_angle kernel. We selected the first gradient 
output from this approach, which closely aligned to that observed by Margulies et al. (8) 
(see Figure 3 in the main text). Thus, this process resulted in a 200 × 1 vector for the 
Schaefer200 that described each region’s position along the principal gradient. 
 
Varying the contribution of indirect connectivity to average controllability 
 In the main text, we discussed the normalization of participant’s 𝑨𝑨 matrices (Eq. 3) 
prior to estimating average controllability (Eq. 4). Increasing the 𝑐𝑐 parameter from 1 
(default) to 10000 increases the rate of decay of the system, causing the system to stabilize 
at zero (i.e., no activity) more rapidly (58). It follows that energy distributed from a 
region of interest (i.e., average controllability) will be limited in its capacity to spread 
throughout a fast-decaying system compared to a (relatively) slow-decaying system. In 
turn, we reasoned that increasing 𝑐𝑐 would increasingly restrict average controllability’s 
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capacity to access indirect aspects of regional structural connectivity profiles, limiting the 
spread of activity beyond direct connections.  

Here, in the Supplement, we illustrate the effect of tuning 𝑐𝑐 using a simple toy 
network. In particular, we define a toy network of 5 regions with randomly generated 
connection weights (Figure S3A). Then, we use this network to simulate the spread of 
activity from a single region of interest. We repeated this simulation to test the impact of 
(i) lesioning indirect connections (Figure S3B) and (ii) varying the 𝑐𝑐 parameter [1 
(default), 10, 100, 1000, 10000] (Figure S3C). For the former, lesioning involved turning 
off the connection weights of edges that were not directly connected to our region of 
interest (i.e., the indirect connections). All code to reproduce these simulations can be 
found on the first author’s GitHub page: 
https://github.com/lindenmp/linear_system_demos/blob/master/impulse_response.ipynb. 
 Figure S3B shows that average controllability diminished as we lesioned stronger 
indirect connections. Note, because all direct connections remained intact, strength is by 
definition unaffected. Next, Figure S3C (top) shows that activity spread the furthest 
throughout the toy network when 𝑐𝑐 = 1. Moreover, average activity (over nodes) 
diminished to zero more rapidly over time at higher 𝑐𝑐 (Figure S3C, bottom). Together, 
these simulations demonstrate how average controllability is sensitive to the indirect 
connections to a region, and that increasing 𝑐𝑐 limits average controllability’s capacity to 
access these properties. As such, in the main text, we examined the impact of varying the 
𝑐𝑐 parameter on prediction performance by repeating our binned-regions prediction model 
(Figure 1C) for each of the aforementioned values of 𝑐𝑐. 
 

https://github.com/lindenmp/linear_system_demos/blob/master/impulse_response.ipynb
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Figure S3. Simulating the linear dynamical system and manipulating the normalization parameter (𝒄𝒄). A, A 
fully connected and weighted toy network comprising 5 regions was used to simulate the linear dynamical 
system. While all edges were weighted, only the direct connections to our region of interest are illustrated 
for simplicity. B, Average controllability was calculated for this region of interest multiple times, each time 
lesioning one of the indirect connections from the region of interest. Lesioning the strongest indirect 
connections yielded the smallest estimate of average controllability. Note that the direct connections were 
never lesioned in this analysis. C, Using the full network, we simulated the linear system over a restricted 
set of time steps (n=10) as a function of increasing 𝑐𝑐 (columns). The top row shows activity at each region at 
each timepoint, represented as a heatmap. The bottom row shows activity averaged over regions at each 
timepoint. Greater values of 𝑐𝑐 caused the spread of activity to diminish to 0 increasingly quickly. This 
decreased activity spread corresponded to a reduction in average controllability (ac) from 25.37 to 1.0. Note 
that average controllability at 𝑐𝑐 = 1 is high (25.47) owing to the size and fully connected nature of the toy 
network. Once a single connection is lesioned, average controllability drops dramatically. 
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SUPPLEMENTARY RESULTS 
 
Dimensional measures of the psychosis spectrum 
 Males in our sample had significantly higher psychosis-positive (t = 2.34, p < 
0.05FDR) and psychosis-negative (t = 3.41, p < 0.05FDR) scores compared to females. Age 
correlated significantly with higher overall psychopathology (r = 0.29, p < 0.05FDR) and 
lower psychosis-positive (r = -0.09, p < 0.05FDR) scores. Below we illustrate model statistics 
(Table S1) and factor loadings (Table S2) for our bifactor model of psychopathology from 
which positive and negative PS symptoms were extracted.  
 
 
Table S1. Factor determinacy and Omega-H scores for bifactor model of psychopathology dimensions. 

Item 
General 

(‘p’) 
Psychosis-

positive 
Psychosis-
negative 

Anxious-
misery Externalizing Fear 

Factor 
determinacy 0.9927 0.9600 0.9683 0.9548 0.9661 0.9502 

 
OmegaHsubscale 0.9213 0.0154 0.0056 0.0004 0.0276 0.0192 

 
 
Table S2. Factor loadings from bifactor model of psychopathology dimensions. 

  Loadings 

Item 
General 

(‘p’) 
Psychosis-

positive 
Psychosis-
negative 

Anxious-
misery Externalizing Fear 

psy001 0.657 0.442 0.000 0.000 0.000 0.000 
psy029 0.606 0.411 0.000 0.000 0.000 0.000 
psy050 0.632 0.220 0.000 0.000 0.000 0.000 
psy060 0.666 0.316 0.000 0.000 0.000 0.000 
psy070 0.637 0.285 0.000 0.000 0.000 0.000 
psy071 0.721 0.187 0.000 0.000 0.000 0.000 
sip003 0.598 0.522 0.000 0.000 0.000 0.000 
sip004 0.422 0.616 0.000 0.000 0.000 0.000 
sip005 0.593 0.605 0.000 0.000 0.000 0.000 
sip006 0.557 0.559 0.000 0.000 0.000 0.000 
sip007 0.584 0.608 0.000 0.000 0.000 0.000 
sip008 0.519 0.628 0.000 0.000 0.000 0.000 
sip009 0.615 0.502 0.000 0.000 0.000 0.000 
sip010 0.437 0.666 0.000 0.000 0.000 0.000 
sip011 0.623 0.607 0.000 0.000 0.000 0.000 
sip012 0.639 0.596 0.000 0.000 0.000 0.000 
sip013 0.605 0.593 0.000 0.000 0.000 0.000 
sip014 0.715 0.489 0.000 0.000 0.000 0.000 
sip027 0.487 0.000 0.288 0.000 0.000 0.000 
sip028 0.517 0.000 0.305 0.000 0.000 0.000 
sip032 0.758 0.000 0.188 0.000 0.000 0.000 
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sip033 0.681 0.000 0.205 0.000 0.000 0.000 
sip038 0.396 0.000 0.795 0.000 0.000 0.000 
sip039 0.483 0.000 0.631 0.000 0.000 0.000 
SIP030 0.524 0.000 0.383 0.000 0.000 0.000 
SIP035 0.714 0.000 0.302 0.000 0.000 0.000 
SIP037 0.387 0.000 0.395 0.000 0.000 0.000 
SIP041 0.459 0.000 0.846 0.000 0.000 0.000 
SIP043 0.496 0.000 0.678 0.000 0.000 0.000 
SIP001 0.461 0.000 0.328 0.000 0.000 0.000 
add011 0.473 0.000 0.000 0.000 0.745 0.000 
add012 0.458 0.000 0.000 0.000 0.749 0.000 
add013 0.490 0.000 0.000 0.000 0.596 0.000 
add014 0.442 0.000 0.000 0.000 0.606 0.000 
add015 0.499 0.000 0.000 0.000 0.565 0.000 
add016 0.510 0.000 0.000 0.000 0.678 0.000 
add020 0.497 0.000 0.000 0.000 0.543 0.000 
add021 0.448 0.000 0.000 0.000 0.599 0.000 
add022 0.468 0.000 0.000 0.000 0.603 0.000 
agr001 0.611 0.000 0.000 0.000 0.000 0.474 
agr002 0.635 0.000 0.000 0.000 0.000 0.489 
agr003 0.651 0.000 0.000 0.000 0.000 0.421 
agr004 0.550 0.000 0.000 0.000 0.000 0.422 
agr005 0.523 0.000 0.000 0.000 0.000 0.469 
agr006 0.620 0.000 0.000 0.000 0.000 0.457 
agr007 0.621 0.000 0.000 0.000 0.000 0.286 
agr008 0.621 0.000 0.000 0.000 0.000 0.453 
cdd001 0.573 0.000 0.000 0.000 0.407 0.000 
cdd002 0.548 0.000 0.000 0.000 0.219 0.000 
cdd003 0.621 0.000 0.000 0.000 0.462 0.000 
cdd004 0.468 0.000 0.000 0.000 0.334 0.000 
cdd005 0.606 0.000 0.000 0.000 0.477 0.000 
cdd006 0.613 0.000 0.000 0.000 0.384 0.000 
cdd007 0.635 0.000 0.000 0.000 0.372 0.000 
cdd008 0.637 0.000 0.000 0.000 0.348 0.000 
dep001 0.760 0.000 0.000 0.220 0.000 0.000 
dep002 0.724 0.000 0.000 0.187 0.000 0.000 
dep004 0.791 0.000 0.000 0.031 0.000 0.000 
dep006 0.775 0.000 0.000 0.034 0.000 0.000 
gad001 0.506 0.000 0.000 0.377 0.000 0.000 
gad002 0.554 0.000 0.000 0.404 0.000 0.000 
man001 0.743 0.000 0.000 -0.517 0.000 0.000 
man002 0.744 0.000 0.000 -0.567 0.000 0.000 
man003 0.732 0.000 0.000 -0.523 0.000 0.000 
man004 0.771 0.000 0.000 -0.456 0.000 0.000 
man005 0.767 0.000 0.000 -0.460 0.000 0.000 
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man006 0.689 0.000 0.000 -0.487 0.000 0.000 
man007 0.808 0.000 0.000 -0.241 0.000 0.000 
ocd001 0.844 0.000 0.000 0.197 0.000 0.000 
ocd002 0.807 0.000 0.000 0.125 0.000 0.000 
ocd003 0.709 0.000 0.000 0.209 0.000 0.000 
ocd004 0.826 0.000 0.000 0.060 0.000 0.000 
ocd005 0.822 0.000 0.000 0.115 0.000 0.000 
ocd006 0.843 0.000 0.000 0.107 0.000 0.000 
ocd007 0.665 0.000 0.000 0.143 0.000 0.000 
ocd008 0.766 0.000 0.000 0.131 0.000 0.000 
ocd011 0.712 0.000 0.000 0.196 0.000 0.000 
ocd012 0.721 0.000 0.000 0.134 0.000 0.000 
ocd013 0.699 0.000 0.000 0.119 0.000 0.000 
ocd014 0.763 0.000 0.000 0.061 0.000 0.000 
ocd015 0.732 0.000 0.000 0.092 0.000 0.000 
ocd016 0.714 0.000 0.000 0.150 0.000 0.000 
ocd017 0.719 0.000 0.000 0.090 0.000 0.000 
ocd018 0.629 0.000 0.000 0.095 0.000 0.000 
ocd019 0.561 0.000 0.000 0.073 0.000 0.000 
odd001 0.588 0.000 0.000 0.000 0.436 0.000 
odd002 0.573 0.000 0.000 0.000 0.515 0.000 
odd003 0.532 0.000 0.000 0.000 0.568 0.000 
odd005 0.553 0.000 0.000 0.000 0.486 0.000 
odd006 0.634 0.000 0.000 0.000 0.397 0.000 
pan001 0.621 0.000 0.000 0.275 0.000 0.000 
pan003 0.692 0.000 0.000 0.156 0.000 0.000 
pan004 0.779 0.000 0.000 0.159 0.000 0.000 
phb001 0.276 0.000 0.000 0.000 0.000 0.309 
phb002 0.340 0.000 0.000 0.000 0.000 0.350 
phb003 0.422 0.000 0.000 0.000 0.000 0.282 
phb004 0.270 0.000 0.000 0.000 0.000 0.355 
phb005 0.186 0.000 0.000 0.000 0.000 0.263 
phb006 0.456 0.000 0.000 0.000 0.000 0.314 
phb007 0.418 0.000 0.000 0.000 0.000 0.388 
phb008 0.365 0.000 0.000 0.000 0.000 0.199 
scr001 0.494 0.000 0.000 0.000 0.163 0.000 
scr006 0.487 0.000 0.000 0.000 0.357 0.000 
scr007 0.651 0.000 0.000 0.210 0.000 0.000 
scr008 0.545 0.000 0.000 0.000 0.255 0.000 
sep500 0.462 0.000 0.000 0.000 0.000 0.168 
sep508 0.413 0.000 0.000 0.000 0.000 0.202 
sep509 0.433 0.000 0.000 0.000 0.000 0.226 
sep510 0.525 0.000 0.000 0.085 0.000 0.000 
sep511 0.310 0.000 0.000 0.000 0.000 0.108 
soc001 0.444 0.000 0.000 0.000 0.000 0.638 
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soc002 0.436 0.000 0.000 0.000 0.000 0.557 
soc003 0.383 0.000 0.000 0.000 0.000 0.708 
soc004 0.449 0.000 0.000 0.000 0.000 0.685 
soc005 0.486 0.000 0.000 0.000 0.000 0.661 
sui001 0.647 0.000 0.000 0.185 0.000 0.000 
sui002 0.740 0.000 0.000 0.260 0.000 0.000 

 
 
 
 
 
 

 
Figure S4. Mean psychopathology symptom dimensions as a function of psychopathology groups. Groups 
are the same as those presented in Table 1 in the main text. Only groups where n≥50 are shown here. 
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In-scanner motion 
In Figure S5 we report the distribution of our estimate of in-scanner motion, 

which was used as a nuisance covariate in our predictive models (see the section entitled 
Machine learning prediction models in the main text). In-scanner motion was estimated 
as the mean over relative framewise displacement values derived from rigid-body motion 
correction applied to each participant’s DTI scan (see Roalf et al., (2) for details). 
 

 
Figure S5. Descriptive statistics for in-scanner motion from participants’ DTI scans. Distribution of in-
scanner motion over participants estimated as the mean over relative framewise displacement values. For 
each DTI scan, relative framewise displacement was calculated by rigid-body motion correction. In-scanner 
motion was used a nuisance covariate in all prediction models. 
 
 
Nonlinear regression outperforms linear regression in predicting psychosis symptoms 

We sought to determine whether the mapping from structural connectivity 
features to symptom dimensions was best characterized by nonlinear or linear regression 
functions. For both our primary prediction model (Figure S6; nuisance regression without 
hyper-parameter optimization), and secondary prediction model (Figure S7; hyper-
parameter optimization without nuisance regression), kernel ridge regression (KRR) 
unambiguously outperformed ridge regression (RR) for all combinations of connectivity 
features and symptom dimensions. Given this unequivocal result, KRR was used as the 
sole regression estimator in all subsequent analyses. 
  



Parkes et al.  Supplement 

20 

 

 
Figure S6. Nonlinear kernel ridge regression outperforms linear ridge regression at out-of-sample prediction 
of PS symptoms and overall psychopathology. Prediction performance, measured via root mean squared 
error (RMSE; lower = better), for each connectivity feature predicting each symptom dimension under our 
primary prediction model. For all connectivity features and all symptom dimensions, kernel ridge 
regression unambiguously outperformed ridge regression demonstrating that nonlinear regression functions 
better map the relationship between regional structural connectivity and symptoms. 
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Figure S7. Nonlinear kernel ridge regression outperforms linear ridge regression at out-of-sample prediction 
under our secondary prediction model. Prediction performance, measured via root mean squared error 
(RMSE; lower = better), for each connectivity feature predicting each symptom dimension under our 
secondary prediction model. For all connectivity features and all symptom dimensions, kernel ridge 
regression unambiguously outperformed ridge regression demonstrating that nonlinear regression functions 
better map the relationship between regional structural connectivity and symptoms. 
 
 
Examining indirect regional structural connectivity with network control theory enables 
better prediction of positive psychosis spectrum symptoms 
 In the main text, we reported that average controllability was able to predict 
psychosis-positive scores beyond chance levels. Figure S8 illustrates prediction 
performance measured via RMSE (Figure S8A) and the correlation between true 𝑦𝑦 and 
predicted 𝑦𝑦 (Figure S8B) alongside the corresponding empirical nulls from our null 
prediction model. 
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Figure S8. Empirical nulls for average controllability predicting psychosis-positive scores as well as a 
scatterplot depicting true versus predicted scores. A, Null observed for root mean squared error (RMSE; 
lower = better). B, Null observed for the correlation between true 𝑦𝑦 and predicted 𝑦𝑦 (higher = better). C, 
True versus predicted psychosis-positive scores (𝑦𝑦). Individuals on the psychosis spectrum (n=303; see Table 
1) are colored according to their psychosis-positive scores. The remainder of the cohort (n=765) are shown 
as smaller gray points. 
 

In addition, we also retrained our model on the 303 individuals in our sample that 
expressed either subclinical or clinical PS symptoms (see Table 1 and Figure S4).  These 
individuals are highlighted above in Figure S8C colored according their scores on the 
psychosis-positive dimension (mean and variance of psychosis-positive scores was 0.69 and 
0.997 for these 303 individuals and -0.28 and 0.729 for the remaining individuals). In 
retraining our prediction model, we found prediction performance of RMSE = 0.992 and r 
= 0.16, which was slightly better than performance from the full cohort (see Figure S8). 
Finally, we also retrained our model on 100 subsets of 303 individuals randomly sampled 
(without replacement) from the full cohort. This process yielded prediction performance 
of RMSE = 1.004±0.032 and r = 0.04±0.07. This prediction performance was, on average, 
lower than performance from the full cohort and from the 303 PS individuals. We note, 
though, that performance was quite variable in this smaller subset. These results show that, 
compared to the rest of the PNC, PS individuals had positive symptoms that were better 
predicted from average controllability. Additionally, Figure S8C demonstrates that the 303 
PS individuals were not unambiguously separable from the rest of the sample, instead 
appearing as an extreme extension of normative psychosis-positive scores. Thus, this data 
suggests that the psychosis-positive dimension is linked to abnormalities in average 
controllability that spans both those with PS symptoms and those without. 
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Comparison of prediction performance across connectivity features for each symptom 
dimension. 
 In Figure 2 in the main text, we reported the results of exact tests of differences 
that compared predictive performance from our primary prediction model (nuisance 
regression without hyper-parameter optimization) between pairs of connectivity features 
for each symptom dimension. Here, in Figure S9, we report the same set of analyses 
under our secondary prediction model (hyper-parameter optimization without nuisance 
regression).  
 
 

 
Figure S9. Prediction performance under our secondary prediction model. Each subplot shows prediction 
performance under our secondary prediction model using a nonlinear kernel ridge regression estimator. 
The top row indicates prediction performance measured via root mean squared error (RMSE; lower = 
better) and the bottom row indicates prediction performance measured via the correlation between true 𝑦𝑦 
and predicted 𝑦𝑦 (higher = better). Note, that the high predictive performance observed between strength 
and overall psychopathology is due to the shared confound with age, which correlated strongly with both. 
str = strength. ac = average controllability. bc = betweenness centrality. cc = closeness centrality. sgc = 
subgraph centrality. 
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Spatial correlation between pairs of connectivity features 
 In the main text, we illustrated how the regional correlation between strength and 
average controllability varied as a function of the principal cortical gradient of functional 
connectivity (Figure 3A). Here, for completeness, we present this same effect for each 
pair of connectivity features studied herein (Figure S10). Note, p-values were assigned 
with the spin test (59–61), using 10,000 spins, and were corrected for multiple 
comparisons using FDR. Figure S10 shows that the spatial effect of the principal gradient 
was only significant for the strength versus average controllability correlation maps and 
betweenness versus closeness centrality correlation maps. These results suggest that the 
location along the gradient where metrics diverge depends upon the way in which they 
index connectivity. That is, the ways in which strength and average controllability index 
connectivity diverges most in transmodal cortex, while the ways in which betweenness 
and closeness centrality index connectivity diverges most in unimodal cortex. 
 
 

 
Figure S10. Regional correlations between pairs of connectivity features as a function of the principal 
cortical gradient. For completeness, results for strength versus average controllability are duplicated here 
from Figure 3. Non-significant effects are shown with increased transparency. str = strength. ac = average 
controllability. bc = betweenness centrality. cc = closeness centrality. sgc = subgraph centrality. 
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Extended results for binned-regions prediction model 
 In the main text we illustrated how prediction performance varied over the 
cortical gradient for psychosis-positive scores using our binned-regions prediction model. 
Here, for completeness, we show the same analysis for all combinations of connectivity 
features and symptom dimensions (Figure S11). Concerning strength and average 
controllability, no spatial effects of the cortical gradient were observed for strength 
predicting psychosis-negative and overall psychopathology, nor for average 
controllability predicting overall psychopathology. That is, prediction performance was 
uniform across the cortex. A small negative spatial effect was observed for average 
controllability predicting psychosis-negative, wherein regions in the transmodal cortex 
yielded slightly better predictive performance compared to regions in the unimodal 
cortex. Concerning our graph-theoretic measures of centrality, similar to strength, 
betweenness centrality did not reveal strong spatial effects of note. Closeness centrality 
revealed small positive spatial effects for all symptom dimensions, wherein regions in the 
unimodal cortex yielded better predictive performance compared to regions in the 
transmodal cortex. Conversely, subgraph centrality yielded negative spatial effects for 
psychosis-positive and psychosis-negative, but these were weaker than those observed for 
average controllability predicting psychosis-positive. These results demonstrate that the 
way in which indirect connections to a region are summarized may play an important 
role in the prediction of PS symptoms. In particular, it points to the intriguing possibility 
that prediction may be optimized by targeted selection of specific connectivity features at 
different ends of the cortical gradient (e.g., closeness centrality in unimodal regions and 
average controllability in transmodal regions). However, we are reluctant to interpret 
these effects as only the combination of average controllability and psychosis-positive 
yielded above-chance predictive performance. 
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Figure S11. Prediction performance as a function of the cortical gradient for each combination of 
connectivity feature (X) and symptom dimension (y). For completeness, results for strength and average 
controllability predicting psychosis-positive scores are duplicated here from Figure 3. The strongest effect 
of the cortical gradient was observed for average controllability predicting psychosis-positive scores. Note 
that here no significance testing was conducted. 
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Figure S12. Prediction performance for psychosis-positive under our primary prediction model as a 
function of 7 Yeo systems. Prediction performance under our primary prediction model using a Kernel 
Ridge Regression estimator for strength (left) and average controllability (right) as a function of brain 
system. For each system, our primary prediction model was retrained using only regions from within that 
system. For strength, best prediction performance was observed for the visual and limbic systems. For 
average controllability, best prediction performance was observed for the dorsal attention and default mode 
systems. Vis. = visual. SM = somatomotor. DA = dorsal attention. VA = ventral attention. Lim. = limbic. FPC 
= frontoparietal control. DM = default mode. 
 
 
Binned-regions prediction model: varying bin size 
 In the main text, we reported results for the binned-regions prediction model 
using bins of 5 regions sampled along the principal cortical gradient. Here, we aimed to 
replicate our binned-regions prediction model as a function of bin size. Table S3 shows 
that the negative correlation between bins of region and RMSE for average controllability 
predicting the psychosis-positive dimension was highly conserved across bin sizes, only 
breaking down for average controllability at bin sizes of ≤3. 
 
Table S3. Pearson’s correlation between out-of-sample RMSE and bins of regions sampled along the cortical 
gradient as a function of bin size. 

 Bin size (number of regions) 
 1 2 3 4 5 6 7 8 9 10 
Strength, r-value 0.07 0.09 0.13 -0.10 0.07 -0.02 0.03 -0.08 -0.15 -0.10 

Average 
Controllability, r-value 

 
-0.08 

 
-0.01 

 
-0.24 

 
-0.60 

 
-0.66 

 
-0.59 

 
-0.48 

 
-0.59 

 
-0.65 

 
-0.70 
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Brain parcellation 
In the main text, we reported results for the Schaefer200 parcellation. Here, we 

aimed to replicate our key results using the Schaefer400, Lausanne234, and HCP-MMP 
parcellations. Most pertinently, we examined (i) the extent to which our primary 
prediction model yielded improved prediction of psychosis-positive scores for average 
controllability relative to strength and (ii) whether the correlations between strength and 
average controllability varied over the principal cortical gradient (i.e., the effect reported 
in Figure 3A). Results for these analyses are presented below in Figure S13. 
 

 

Figure S13. Predictive performance of psychosis-positive scores and cross-metric correlations as a function 
of brain parcellation. Each column represents one of four brain parcellations utilized in the current study, 
starting with the primary parcellation on the left (Schaefer200). A, The principal cortical gradient of 
functional connectivity for each brain parcellation. The gradient was highly conserved across parcellations. 
B, Predictive performance of strength and average controllability predicting psychosis-positive scores under 
our primary prediction model. For each parcellation, average controllability yielded significantly better 
predictive performance compared to strength. Improved prediction for average controllability was marginal 
for Lausanne234 (p = 0.05). C, Correlations between strength and average controllability as a function of the 
principal cortical gradient. The negative spatial effect of the gradient, wherein strength and average 
controllability diverge most in transmodal cortex, was conserved across parcellations. For completeness, 
results from Figures 2 and 3 are duplicated here. str = strength. ac = average controllability. 
 
 

Figure S13 shows that our results are broadly reproduced across parcellations. 
First, under our primary prediction model, average controllability better predicted 
psychosis-positive scores when compared to strength (Figure S13B). This effect was 
significant for all parcellations except for Lausanne234, which was marginal at p = 0.05. 



Parkes et al.  Supplement 

29 

Next, Figure S13C shows that the negative spatial effect on the link between strength and 
average controllability was conserved across parcellations. Thus, the observation that 
average controllability indexes increasingly unique inter-individual variation at the top 
end of the cortical gradient was upheld. 
 
 
Extended analysis of the effect of age 

In the main text, we controlled for the effects of age in all of our prediction 
analyses. However, as mentioned in the introduction of the main text, previous literature 
has demonstrated that age is a key factor in the emergence of both PS symptoms and 
associated dysconnectivity throughout youth (62,63). Thus, here we sought to 
characterize the effect of age on our analyses by repeating our prediction models using a 
mean split approach. Specifically, we split our sample of n=1,068 individuals into two 
groups, one of n=539 individuals (agelow) who were all younger than the mean age of our 
sample (15 years) and a second of n=529 individuals (agehigh) who were all older than the 
mean age. Next, in each age group (agelow, agehigh) we examined the following: (i) whether 
the correlations between strength and average controllability varied over the principal 
cortical gradient (i.e., the effect reported in Figure 3A) and (ii) the extent to which 
prediction of psychosis-positive scores varied over the cortical gradient and was best in 
transmodal cortex (i.e., the effect reported in Figure 3B). Results for these analyses are 
presented below in Figure S14. Note, owing to the fact that our statistical power was cut 
in half, we did not test for significance of prediction here (i.e., under our null prediction 
model). Any loss of above-chance predictive performance here could not be rigorously 
distinguished from a simple consequence of lower statistical power. 
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Figure S14. Correlations between strength and average controllability as well as results from our binned-
regions prediction model after splitting the full sample into two subsamples based on age. Data from the full 
sample (n=1,068) were split into two subsamples at the mean age point (15 years). agelow (left) represents 
n=539 individuals that were younger than 15 years of age and agehigh (right) represents n=529 individuals 
who were older than 15 years of age. A, Correlation between strength and average controllability as a 
function of the cortical gradient for agelow and agehigh. B, Results from the binned-regions prediction model 
for agelow and agehigh. 
 

Figure S14 above shows that the effect of the cortical gradient on the correlation 
between strength and average controllability was virtually identical for both agelow and 
agehigh (Figure S14A). By contrast results from our binned-regions prediction model 
showed that the spatial effect of the cortical gradient, wherein prediction was higher in 
transmodal cortex relative to unimodal cortex, was more pronounced in agehigh compared 
to agelow. This distinction suggests that the dysconnectivity centered on transmodal cortex 
that predicts positive PS symptoms may be driven predominantly by individuals >15 years 
of age in our sample. This observation is consistent with previous literature positing that 
this period of mid adolescence coincides with the onset of psychotic disorders such as 
schizophrenia (62). 
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