echo "======================================================" echo " ICA for rs-fMRI data " echo " Author: Hanbing Lu, Ph.D., NIDA IRP " echo " Referenced in: Acquistition of resting-state " echo " functional magnet resonance imaging data in the rat " echo " Journal of Visual Experiments, 2021 " echo "____________________________________________________ " ## This script uses AFNI formatted images as input and outputs an FSL melodic report ## ## Default settings: ## --3dmerge: 1blur_fwhm (FWHM Gaussian blur) = 0.8 ## --3dAutomask: clfrac (clip level fraction) = 0.7 ## --melodic: d (dimensionality reduction into #num dimensions) = 15 independent components; ## Oall = output all ## report = generate Melodic web report echo "input AFNI dataset name (e.g. E8)" read InDataset ## flip dimensions 3dLRflip -Y -prefix temp ${InDataset}+orig # apply gaussian blur rm -fr temp2* 3dmerge -doall -1blur_fwhm 0.8 -prefix temp2 temp+orig ## convert to nifti rm -fr temp2.nii 3dAFNItoNIFTI temp2+orig ## get the mean image rm -fr mean_image+orig* 3dTstat -mean -prefix mean_image temp2+orig ## generate mask image rm -fr mask1+orig* 3dAutomask -prefix mask1 -clfrac 0.7 mean_image+orig ## convert mask to nifti rm -fr mask1.nii 3dAFNItoNIFTI mask1+orig ## perform ICA melodic --verbose -d 15 -m mask1.nii --Oall --report -i temp2.nii mv temp2.ica ${InDataset}.ica ## open melodic web report firefox ${InDataset}.ica/report/00index.html ## clean up rm -fr temp* rm -fr mask1* rm -fr mean_image+orig*