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Supplementary Note 1 
 

1. F-box and leucine rich repeat protein 17 (FBXL17) 

Our study identified rs552690895 (p = 2.5E-08) in FBXL17 in the combined set. F-box and 
leucine rich repeat protein 17 (FBXL17) is characterized by an approximately 40-amino acid 
F-box motif. SCF complexes are formed by SKP1 (S-phase kinase-associated protein 1), cullin 
(CUL1), and F-box proteins, and act as protein-ubiquitin ligases. F-box proteins interact with 
SKP1 through the F-box, and they interact with ubiquitination targets through other protein 
interaction domains (1). Evidence suggest that the SCF is a key complex in the ubiquitine-
proteasome system (UPS) that is involved in 70.0-90.0% of protein degradation processes 
(2). It has been found that protein degradation by the UPS play a central role in 
cardiovascular physiology and disease: from endothelial function, the cell cycle, 
atherosclerosis, myocardial ischaemia, cardiac hypertrophy, inherited cardiomyopathies, 
and heart failure (3–7). A GWAS in Lithuanian families found that variants in FBXL17 were 
associated with coronary heart diseases (8). Other reports on genetic associations for 
FBXL17 include studies for educational attainment and mathematical ability (9), intelligence 
(10), and pulse pressure (11).  

2. Signal regulatory protein alpha (SIRPA) 

Our combined analysis identified also genetic association of rs6045318 (p = 4.7E-08) with 
cIMT in the SIRPA gene. Signal regulatory protein alpha (SIRPA) is a regulatory membrane 
glycoprotein from the SIRP family, which inhibits the cytoskeleton-intensive process of 
phagocytosis by the macrophage. SIRPA is activate cancer cells (through high expression of 
CD47) and upregulated SIRPA inhibits macrophage-mediated destruction. This mediation of 
phagocytosis and polarization of macrophages is important in the pathophysiology of 
atherosclerosis (12). There is evidence that SIRPA is involved in discrete stages of 
cardiovascular cell lineage differentiation (13) and that defects in the gene (knock out) 
reduces atherosclerosis in mice (14). SIRPA expression has been found as a signature of 
inflamed atherosclerotic plaque (15). Previous reports on GWAS studies associate SIRPA 
with blood protein (16,17), and the percentage of basophil in granulocytes (18). 

3. Sorting nexin 29 (SNX29) 

On the chromosome 16, rs147978408 (p = 6.3E-09) was the top cIMT associated variant in 
SNX29 for the male-specific analysis. The sorting nexin (SNX) family is a diverse group of 
cytoplasmic- and membrane-associated phosphoinositide-binding proteins that play pivotal 
roles in the regulation of protein trafficking. SNX gene variants are associated with CVDs, 
and dysfunction of the SNX pathway is involved in several forms of cardiovascular disease 
(CVD) (19). In a study of genes that regulate smooth muscle cell differentiation and disease 
risk, SNX29 was involved in pathways for occlusion of blood vessels and atherosclerosis (20). 
Ito and collaborators identified sex-dependent differentially methylated regions close to 
SNX29 in mouse liver and found that this methylation status was influenced by testosterone 
and contributed to sex-dimorphic chromatin decondensation (21). This might explain the 



sex-specific effect observed in our study. A study in children with sickle cell disease, 
identified SNX29 variants as suggestive of association with systolic blood pressure (22). Also, 
variants in SNX29 were found in suggestive association with subcutaneous adipose tissue in 
women (Sung et al. 2016). In patients with pulmonary arterial hypertension, SNX29 variation 
was reported for differential responses to vasodilator treatment (24). Further GWAS 
analysis stratified by hypertensive status showed that the association was driven by the 
hypertensive group (effect three times higher in hypertensives compared to the non-
hypertensives), therefore demonstrating that the association of SNX29 with cIMT might be 
mediated by the vascular remodeling caused by hypertension. GWA studies reported SNX29 
variants for association with educational attainment, mathematical ability and cognitive 
function measurement (Lee et al. 2018), intelligence (10,25), bone mineral density (26), and 
smoking (Liu et al. 2019).  

4. Mitogen-activated protein kinase kinase kinase 7 (MAP3K7) 

In the male-specific analysis, we found rs284509 (p=5.3E-08) in MAP3K7 region on 
chromosome 6 to be associated with cIMT. Mitogen-activated protein kinase kinase kinase 7 
(MAP3K7) also called TAK1 encodes a serine/threonine protein kinase family member, with 
a central role as regulator of cell death. Because of its role in kinase pathway, and regulation 
of transforming growth factor beta (TGF-b), MAP3K7 plays a role in growth inhibition in 
vascular smooth muscle cells and can be atheroprotective or atherogenic (28). More 
biological evidence of the contribution of MAP3K7 to atherosclerosis is through its 
regulation by micro-RNAs (29,30). In a study of women receiving hormone replacement 
therapy, variants in MAP4K4, a gene targeting MAP3K7 (31) were associated to cIMT (32). 
The sex-specific association observed might be related to the fact that MAP3K7IP3 (located 
on the X chromosome), which is known to form a ternary complex with MAP3K7 in response 
to inflammatory stimuli, has shown sex-differential expression in ischemic stroke (33,34). In 
a study on expression of androgen-modulated micro-RNAs, it has been reported that 
MAP3K7 was a target of mmu-miR-467h and mmu-miR-669i in the angiogenesis and 
transforming growth factor beta receptor signalling pathways (35). Despite biological 
relevance to atherosclerosis, GWA studies reported variants in gene region to be associated 
with cancer progression (36), anti-TNF response in rheumatoid arthritis (37), attention 
deficit hyperactivity disorder (38), adolescent idiopathic scoliosis (Liu et al. 2018), and 
sporadic amyotrophic lateral sclerosis (Xie et al. 2014). Our study is the first to report 
MAP3K7 association with a CVD phenotype. 

5. La-related protein 6 (LARP6) 

LARP6 (La-related protein 6) is a ribonucleoprotein domain family member 6. Studies 
showed that it has a role in collagen regulation by targeting mRNA encoding Type I collagen 
(Cai et al. 2010; Zhang and Stefanovic 2016; Glenn, Wang, and Schwartz 2009; Stefanovic et 
al. 2019). Sukhanov and collaborators found that IGF1R deficiency downregulated collagen 
mRNA-binding protein LARP6 and vascular collagen, and showed an atheroprotective effect 
(45,46). Collagen is a hallmark of atherosclerotic plaque stability, thus alteration of the 
collagen balance may lead to an instability of atherosclerotic lesions, and therefore promote 
plaque formation and rupture (15,47). In the Taiwanese population, the LARP6 locus was 
found to be associated with coronary artery disease (48). In European ancestry populations, 



LARP6 was found associated with insulin measurement (49). However, Mendelian 
randomization for cIMT found that despite the limited effects of proinsulin-increasing SNP 
scores on cIMT, proinsulin was unlikely to have causal effects on cIMT (50). Myocardial gene 
expression in non-ischemic human heart failure found LARP6 to be differentially expressed 
between men and women (1.36 fold) (51). The female-specific effect of the loci may find its 
explanation in the enhancer function of rs78172571 in high LD with rs150840489 (the top 
SNP associated in our female-specific) on THAP10 gene (FDR = 2.03E-17) known to be 
regulated by oestrogen. 

6. Prokineticin 1 (PROK1) 

Prokineticin 1 (PROK1), also called endocrine gland derived vascular endothelial growth 
factor (EG-VEGF), is a specific placental angiogenic factor which play a role in the control of 
normal (e.g endometrial decidualization) and pathological placental angiogenesis (52). It is 
involved in pathologies such as recurrent pregnancy loss, gestational trophoblastic diseases, 
foetal growth restriction, and preeclampsia (53–57). The gene is known to be predominantly 
expressed in the steroidogenic glands, such as ovary, testis, and adrenal cortex, and is often 
complementary to the expression of vascular endothelial growth factor (VEGF), suggesting 
that these molecules function in a coordinated manner. The function and particular pattern 
of this gene’s activity might explain why we identified the locus only in our female-specific 
analysis. Our study is the first to report PROK1 for any trait in a GWAS. 

7. Caldesmon 1 (CALD1) 

Our gene-based analysis identified caldesmon 1 significantly associated with cIMT in our 
combined set led by rs7781307 (p = 2.1E-06) on 7q33. Caldesmon 1 is calmodulin binding 
protein encoding for a calmodulin-and actin-binding protein that play a major role in the 
regulation of smooth muscle contraction, cell migration and cell invasion (58). CALD1 was 
identified as key gene in the “regulation of actin cytoskeleton” module from protein-protein 
interaction network resulting from a bioinformatics analysis of key pathways and genes in 
advanced coronary atherosclerosis (59). A study screening for keys genes for abdominal 
aortic aneurysm found that CALD1 was leading a KEGG enrichment signal pathways 
(Vascular smooth muscle contraction) of differential expressed genes (DEGs) (60). 
Underexpression of CALD1 was found to be a key feature of calcification of vascular smooth 
muscle cells from atherosclerotic plaque (15,61,62). Additionally, studies on epigenetic 
modifications reported CALD1 to exhibit differential methylation in atherosclerosis (63–65). 
Previous GWAS reported CALD1 for phenotypes such as Lung function (FEV1/FVC) (66), 
Response to paliperidone in schizophrenia (PANSS score) (Li et al. 2017), Attention deficit 
hyperactivity disorder symptom score (68), Diverticular disease (69) 

8. Fms-related tyrosine kinase (FLT4) 

FLT4 or Vascular endothelial growth factor receptor 3 (VEGFR3) is a major signalling protein 
involved in angiogenesis, vasculogenesis and maintenance of the endothelium. By acting as 
receptor to VEGFC and VEGFD, it plays an essential role in lymphangiogenesis in adults and 
in the development cardiovascular system during embryonic phase. Defect and/or 
downregulation of VEGR3 was found to lead to cardiovascular failure in embryonic stage 



and to higher mortality after myocardial infarction in mice models (70,71). Biological studies 
have highlighted the role of FLT4 in atherosclerosis in major pathological processes. The 
gene has been reported to be involved in plaque instability by two process: the mediation of 
monocytes/macrophages apoptosis and consequently alteration plaque stability (72) ; and 
the modulation of vascular remodelling and shear stress resulting in plaques haemorrhages 
and calcification in carotids (73–75). Our study is the first to report association of FLT4 locus 
(rs112967731, p = 5.7E-07, female-specific) with cIMT or any cardiovascular phenotype in 
GWAS studies. Previous studies reported the locus for association with folic acid 
measurement (76) and blood protein measurements (16,17).  
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Supplementary Figure 1: Principal Component Analysis (PCA) plots showing 

population sub-structure in the AWI-Gen data and compared to 
data from selected populations from the 1000GP.  

Each dot represents a participant and 1,729,661 SNPs were used in the analysis. AWI-Gen data - 
BF: Burkina Faso; GH: Ghana; KE: Kenya; ZA: South Africa.  

 
  



 

 
Supplementary Figure 2: Manhattan plot showing the –log10-transformed 

two-tailed P-value of each SNP for test of difference between 
female and male associations for each SNP.  
The blue line indicates the threshold for suggestive association (p <1×10−5). Each SNP from the 
GWAS for Mean Max cIMT on the Y axis and base-pair positions along the chromosomes on the 
X axis. The blue line indicates Bonferroni-corrected genome-wide significance (p < 1E-08); the 
blue line indicates the threshold for suggestive association (p < 1E-05). 

 
  



 
Supplementary Figure 3: Manhattan plots for the gene-based test as computed 

by MAGMA based on our summary statistics.  
Input SNPs were mapped to 19152 protein coding genes. Genome wide significance (red dashed line in the 
plot) was defined at P = 0.05/19152 = 2.611e-6. (A) combined dataset. (B) Female-specific. (C) Male-specific 
  



 
 
Supplementary Figure 4: Estimation of power for the GWAS of cIMT (as a quantitative trait) considering genetic 

effect β ranging from 0.0067 mm to 0.156 mm. 
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