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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

Summary: The authors present a Deep Learning system that 

learns both modalities, text and chemical structure, together. 

General comments: The presented approach is novel and 

the main idea is scientifically appealing. The topic 

is relevant for the drug discovery field. However, 

there are severe technical errors and flaws. 

Several related scientific areas and works are ignored. 

The technical description is extremely lacking. 

The work is currently not reproducible. 

Reproducibility: Neither the code nor the data is provided 

by the authors such that this work cannot be reproduced. 

Major comments: 

A) Novelty: The approach to co-learn representations of molecules 

and biomedical texts is novel. Nevertheless, the authors should 

embed their work into other works, where multi-modal Deep Learning 

systems are employed. 

a) Medical images and text: reference [1]. 

b) Natural images and text: reference [2]. 

c) Protein sequences and molecules: reference [3]. 

d) Chemical reactions and molecules: reference [4]. 

e) Text and molecules: reference [5]. 

The authors should embed their work into related works with similar 

approaches and acknowledge prior work in appropriate form. 

B) Relevance: This work represents a step towards human-level 

understanding of chemical structures and offers the opportunity 

to interact with this knowledge via natural language. 

Therefore, this work is relevant in the area of drug discovery 

and biomedicine. The work is less relevant in the area of 

machine learning, since this represents a collection of 

existing techniques. 

The authors should state their contributions and relevance clearer 

at the end of the Introduction section. 

C) Technical errors and flaws: 

a) The description of the prediction tasks are severely lacking. For almost 

all tasks it is unclear what the prediction task is, where the labels are 

from, what the size of the dataset is, how the training, validation, and 

test sets are put together, what the evaluation metric is, what the 

compared methods are and how hyperparameters are selected. 

The authors should provide for each prediction task, at least the following: 

Description of the dataset: number of data points (train, val, test), 

nature of the prediction task, evaluation metrics, 

state-of-the-art methods, compared methods, hyperparameter selection strategy. 

b) For the molecular property prediction tasks, the predictive quality 

is extremely low and far away from any state of the art. Since the method 



has not been designed for property prediction, these experiments are 

also not relevant. The authors remove task on one modality, clearly 

state that their method is proficient at combining natural language 

and chemical structure and thus focus on the "versatile reading tasks", 

which is impressive enough. 

c) Inappropriate and missing compared methods. The authors only 

compare their method against other methods that they implemented 

and thus ignore a huge set of methods for the specific tasks. 

For molecular property prediction, there are at least 10 methods 

can easily be compared, including Random Forests, Gradient 

Boosting, Support Vector Machines, multi-task neural networks, 

message-passing neural networks, etc (e.g. see [6]) 

Similarly, for chemical reaction classification, there are 

tens of methods, see (e.g. methods named in [7] or [4]). 

Again, these special tasks should rather be removed from the 

paper since the presented method is inferior to other 

methods in the field. 

d) Missing error bars and statistical tests. All performance 

metrics are reported without error bars and comparisons 

without statistical test. In the current form, the performance 

values or purported improvement could just arise by chance. 

The authors should perform re-runs or cross-validation for 

each method to obtain reliable estimates and confidence intervals 

for their reported metrics. 

e) The comparison is biased towards the authors' method in multiple 

ways. First, the authors use two variants of their own method against 

single variants of compared methods, which makes the comparison unfair. 

Second, it appears that the hyperparameters of the authors' method 

have been adapted to the specific task, whereas the hyperparameters 

of compared methods have not. 

f) The architecture and all hyperparameters of the method are not described. 

The authors should clearly describe their architecture with all 

important parameters. Also the most important hyperparameters of the 

method should be stated and how these were adapted. 

In the current form, this central part is completely absent. 

g) Ad-hoc decisions and unjustified choices. The authors propose an architecture 

that contains many different elements, such as the use of SMILES strings, 

segmenting with BPE, pre-training strategy, text model. While the text model (BERT) 

is justified by it being one of the best and most widely used models, the 

other choices are particularly poor, ad-hoc and unjustified. The best 

performing molecule encoders appear to be based on chemical descriptors plus 

a fully-connected network or message-passing networks in combination with 

chemical descriptors ([6,8,9]). BERT-based deep architectures are inferior 

to those [10]. Also the tokenization step of the SMILES string is an arbitrary 

and potentially constraining choice. 

The authors should justify their choices on the architecture either by citing work 

that backs their choice or by presenting data. 

h) The description of the preprocessing steps for the datasets are lacking. 

For example, the description of the corpus S2orc and PubChem: which documents 

are used? How were they obtained from PubChem. What were the filtering 

criteria? The authors should strongly improve the description of the preprocessing 

of all datasets, such that this work can be reproduced. Furthermore, 



the datasets should be provided as supplementary material. 

i) The description of the comparison against human experts is completely missing (see major 

comment F). 

D) Related areas and works ignored: see Major Comment A. 

E) Technical description missing: see Major Comment C. 

F) Lacking description on the comparison with human experts. It appears that the authors 

have performed some comparison of their system with human experts. However, this is a 

difficult task to ensure a fair comparison (if this can ever be done at all). What were 

the exact circumstances of this experiment? How many human experts? How recruited? 

How did they get questions? How was their answer required? Did they know that they 

were competing against an AI? 

It is extremely concerning that these crucial details are missing in the manuscript. 

Incorrect or tenuous claims: 

a) "Molecule fingerprints computed by neural networks have achieved comparable or even better 

performance than expert-crafted descriptors": This is incorrect. Currently, neural networks 

built on expert-designed features or chemical fingerprints are on average better than 

pure graph neural networks or message-passing neural network at activity prediction tasks [8]. 

Citation [29] is especially misleading because this work combines the expert-crafted 

descriptors with message-passing neural nets which appear to give the method a slight edge over 

using each of those alone. The citations at this point are also strongly biased towards 

MIT/Stanford works. Therefore, the authors should re-write this paragraph on "Related Work". 

Questions to the authors: 

A) What is the problem that you are actually trying to solve with this approach? Can you state this 

clearer? 

Minor comments: 

a) The Tox21 dataset of MoleculeNet is an incorrect version of the original Tox21 dataset (data 

splits, number 

of molecules) and should be replaced by the original one. 

None further at this stage. 

Typos: 

None at this stage. 
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Reviewer #2: 

None 

Reviewer #3: 

Remarks to the Author: 

The authors have developed a method to acquire knowledge about molecules from mining 

biomedical papers. 

While in principle novel and interesting, I think the paper needs to be much more thoroughly 

written to be acceptable for publication. 

Some examples of issues. 

A striking issue is that already in the title it is mentioned that the system outperforms humans. 

However, besides stating the human accuracy is 0.72, there is no other information the human 

experiment. 

I'm surprised the the CHEBI ontology that covers substructures and could be used for the same 

task as in the paper is not even mentioned. 

Another potential issue that isn't mentioned is SMILES standardization including canonicalization, 

tautomer assignment etc that can have significant impact on the results. 

It is not clear what results in Table 2 and Figure 5 that couldn't be identified through NER without 

using SMILES strings. 

The statement that the code will be provided soon is fairly meaningless. 



Response Letter: A Deep-learning System Bridging Molecule

Structure and Biomedical Text with Comprehension Comparable to

Human Professionals

We make some notable changes to the manuscript,
supplementing important contents including: (1) Re-
lated works. We include more related works to better
embed our work in the literature, clarify our main
contributions, and support our model design choices.
(2) Detailed descriptions. We add detailed explana-
tions about the datasets, models, training process,
and human evaluation. (3) Error bars and statisti-
cal tests. We rerun the experiments and report the
error bars and results of statistical tests. The main
conclusion of our work has not been changed.

In the following, the comments of the reviewers are
shown in blue and our responses are shown in black.
The revised contents have also been highlighted in
blue in the manuscript to help track the changes.

Response to the comments of Reviewer 1

1. Reproducibility: Neither the code nor the data
is provided by the authors such that this work cannot
be reproduced.

Thanks for the comment. We provide data and
code download links in the data and code availability
section in the revised manuscript.

2. Novelty: The approach to co-learn representa-
tions of molecules and biomedical texts is novel. Nev-
ertheless, the authors should embed their work into
other works, where multi-modal Deep Learning sys-
tems are employed. The authors should embed their
work into related works with similar approaches and
acknowledge prior work in appropriate form.

We add citations and discussions about multi-

modal deep learning systems according to the
suggestion in the related works section.

3. Relevance: This work represents a step to-
wards human-level understanding of chemical struc-
tures and offers the opportunity to interact with
this knowledge via natural language. Therefore, this
work is relevant in the area of drug discovery and
biomedicine. The work is less relevant in the area of
machine learning, since this represents a collection of
existing techniques. The authors should state their
contributions and relevance clearer at the end of the
Introduction section.

We agree that our work is more relevant in the
area of drug discovery and biomedicine instead of
machine learning. Contributions are re-summarized
and added at the end of the introduction section.

4. The description of the prediction tasks are
severely lacking. For almost all tasks it is unclear
what the prediction task is, where the labels are
from, what the size of the dataset is, how the train-
ing, validation, and test sets are put together, what
the evaluation metric is, what the compared meth-
ods are and how hyperparameters are selected. The
authors should provide for each prediction task, at
least the following: Description of the dataset: num-
ber of data points (train, val, test), nature of the
prediction task, evaluation metrics, state-of-the-art
methods, compared methods, hyperparameter selec-
tion strategy.

We add more details about the tasks and datasets,
including the description of tasks and labels, number
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of data points, splitting method, download link,
nature of the prediction tasks, and evaluation
metrics. Hyperparameter selection is explained in
the training setting section. We also include more
baselines for mono-domain tasks.

5. For the molecular property prediction tasks, the
predictive quality is extremely low and far away from
any state of the art. Since the method has not been
designed for property prediction, these experiments
are also not relevant. The authors remove task on
one modality, clearly state that their method is pro-
ficient at combining natural language and chemical
structure and thus focus on the ”versatile reading
tasks”, which is impressive enough.

Thanks for the comments that versatile reading
tasks are impressive enough. We present molecular
property prediction tasks mainly for the comparison
between our models and the baseline models such
as Sci-BERT to prove that, although still far from
state-of-the-art, our knowledge inserting pre-training
method can also improve PLMs capability in
molecule understanding. More tailored baselines and
the state-of-the-art method are further compared
in the method section. Although KV-PLM is
not designed for these tasks, it outperforms some
classical baseline models, which may inspire future
works. Therefore, we would like to remain this part
after careful consideration.

6. Inappropriate and missing compared meth-
ods. The authors only compare their method against
other methods that they implemented and thus ig-
nore a huge set of methods for the specific tasks.
For molecular property prediction, there are at least
10 methods can easily be compared, including Ran-
dom Forests, Gradient Boosting, Support Vector Ma-
chines, multi-task neural networks, message-passing
neural networks, etc (e.g. see [6]) Similarly, for chem-
ical reaction classification, there are tens of methods,
see (e.g. methods named in [7] or [4]). Again, these
special tasks should rather be removed from the pa-
per since the presented method is inferior to other
methods in the field.

Please refer to question 5.

7. Missing error bars and statistical tests. All per-
formance metrics are reported without error bars and
comparisons without statistical test. In the current
form, the performance values or purported improve-
ment could just arise by chance. The authors should
perform re-runs or cross-validation for each method
to obtain reliable estimates and confidence intervals
for their reported metrics.

Thanks for the suggestion. We actually reported
average results for several random seeds in the initial
script. In the revision, we further unify the experi-
mental settings and provide complete error bars for
all the results to better support the conclusions.

8. The comparison is biased towards the authors’
method in multiple ways. First, the authors use two
variants of their own method against single variants
of compared methods, which makes the comparison
unfair. Second, it appears that the hyperparameters
of the authors’ method have been adapted to the spe-
cific task, whereas the hyperparameters of compared
methods have not.

Thanks for the comment. (1) Two variants.
We report the results of two variants since they
are both plausible in design choices, and exhibit
different strengths and characteristics, while both
variants are overall stronger than the baselines.
(2) Hyperparameters. In our initial manuscript,
we adopt the same hyperparameters for all models
when the model sizes and tasks are the same, since
in this case, hyperparameters typically transfer well
across models. In the revision, we further grid
search hyperparameters for our strongest baseline
(Sci-BERT) and update the results in Table 1. The
changes in baseline performance after grid search are
marginal as expected, and the conclusions still hold.

9. The architecture and all hyperparameters of
the method are not described. The authors should
clearly describe their architecture with all important
parameters. Also the most important hyperparame-
ters of the method should be stated and how these
were adapted. In the current form, this central part
is completely absent.
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Thanks for pointing out the issue. We have added
the details about the architecture and adaptation
methods in the model subsection, and described the
best hyperparameters and the selection approach in
the training settings subsection.

10. Ad-hoc decisions and unjustified choices. The
authors propose an architecture that contains many
different elements, such as the use of SMILES strings,
segmenting with BPE, pre-training strategy, text
model. While the text model (BERT) is justified by it
being one of the best and most widely used models,
the other choices are particularly poor, ad-hoc and
unjustified. The best performing molecule encoders
appear to be based on chemical descriptors plus a
fully-connected network or message-passing networks
in combination with chemical descriptors ([6,8,9]).
BERT-based deep architectures are inferior to those
[10]. Also the tokenization step of the SMILES string
is an arbitrary and potentially constraining choice.
The authors should justify their choices on the archi-
tecture either by citing work that backs their choice
or by presenting data.

Thanks for the comment. (1) Molecule encoder.
Indeed, some simple structures designed for molecule
encoding can solve this problem quite well. These
years, deep architectures such as BERT are also
widely used for it [1, 2, 3], greatly advancing the
performance of the work mentioned in this com-
ment [4]. Therefore, we believe the BERT-based
molecule encoder is promising in encoding molecule
structures. (2) SMILES tokenization. There are sev-
eral previous works trying to tokenize the SMILES
strings with BPE [5], and we cite some related work
in the revision to back our choice. We also compare
with alternatives to further support the design.
SmilesPE [6] is a good tokenizer for SMILES string
tasks based on BPE. We have experimented with
SmilesPE and find that the model performs not so
well on mono-information tasks (e.g., 88.95 for NER
and 47.41 for USPTO-few, which are significantly
lower than current results). One possible reason
is that the tokenized molecule representations are
over-specific, which may cause too many rarely used
tokens inserted in general text and break the normal

structure of sentences. Therefore, we simply use
BPE and set the vocabulary size relatively small,
ensuring that tokenized molecule representations
are commonly used and it becomes easier to train
KV-PLM.

11. The description of the preprocessing steps for
the datasets are lacking. For example, the description
of the corpus S2orc and PubChem: which documents
are used? How were they obtained from PubChem.
What were the filtering criteria? The authors should
strongly improve the description of the preprocessing
of all datasets, such that this work can be reproduced.
Furthermore, the datasets should be provided as sup-
plementary material.

Thanks for the suggestion. We have added de-
tailed descriptions of the corpus and download links
of datasets in the corpus and dataset section. PCdes
is crawled from PubChem with the restriction that
the chemical needs to have at least a paragraph of
text descriptions. Preprocessing information is also
provided in the revision.

12. Lacking description on the comparison with
human experts. It appears that the authors have per-
formed some comparison of their system with human
experts. However, this is a difficult task to ensure
a fair comparison (if this can ever be done at all).
What were the exact circumstances of this experi-
ment? How many human experts? How recruited?
How did they get questions? How was their answer
required? Did they know that they were competing
against an AI? It is extremely concerning that these
crucial details are missing in the manuscript.

It is a crucial problem in our initial script. We have
added a description of human expert experiments
in the versatile reading subsection. We recruited
more experts in human evaluation for more reliable
results. It is indeed a difficult task to ensure fairness,
and we tried to maximally reach this goal.

13. Incorrect or tenuous claims: “Molecule finger-
prints computed by neural networks have achieved
comparable or even better performance than expert-
crafted descriptors”: This is incorrect. Currently,

3



neural networks built on expert-designed features or
chemical fingerprints are on average better than pure
graph neural networks or message-passing neural net-
work at activity prediction tasks [8]. Citation [29] is
especially misleading because this work combines the
expert-crafted descriptors with message-passing neu-
ral nets which appear to give the method a slight edge
over using each of those alone. The citations at this
point are also strongly biased towards MIT/Stanford
works. Therefore, the authors should re-write this
paragraph on ”Related Work”.

We are very grateful to the reviewer for pointing
out this mistake. The related claim has already been
corrected in the new script.

14. Questions to the authors: What is the prob-
lem that you are actually trying to solve with this
approach? Can you state this clearer?

We are trying to solve the isolation problem of the
current machine learning models when processing
materials from biomedical area. Moreover, by
bridging molecule structures and biomedical text,
our model can be applied to drug discovery and
documentation to assist biomedical research.

15. Minor comments: The Tox21 dataset of
MoleculeNet is an incorrect version of the original
Tox21 dataset (data splits, number of molecules) and
should be replaced by the original one.

Since Tox21 is used as a sub-task in the Molecu-
leNet benchmark, we download and use the latest
version from the official homepage of MoleculeNet
instead of the original one for the convenience of
comparison.

Response to the comments of Reviewer 2

1. There should be multiple ways to describe a
molecule structure, like describing the structure, the
function, its solubility, its toxicity, etc. My concern
here is which way the model chooses to describe the
structure? How does the model control the generated
text with the given molecule structures?

This is an insightful comment. The molecule
description is actually retrieved from the description

base instead of generated at this stage. The output
text of our model will follow the distribution of
the training data used (i.e., molecule descriptions
written by human experts in knowledge base). For
example, our model may tend to choose to describe
the toxicity of molecules if the descriptions written
by human experts in the knowledge base pay more
attention to toxicity. We believe this property of
our model is reasonable and helpful in real-world
applications, since in this way our model can
produce descriptions that human experts are most
interested in. More details are explained in Ver-
satile Reading and Case Study in the Results section.

2. This type of pre-training strategy with cross-
information is not new. Previous studies already
jointly exploit text and image to train deep learning
models, such as multi-modal pretraining models in
“LayoutLMv2: Multi-modal pre-training for visually-
rich document understanding” and “M3p: Learning
universal representations via multitask multilingual
multimodal pre-training”.

Thanks for the comment. Although bridging and
grounding molecule structure and general text in
PLMs is a new idea, we have indeed been inspired
by plenty of visual-language cross-modal researches,
and even refer to the classic VSE++ method in
visual-language embeddings for our retrieval system.
We agree it will be beneficial to discuss more related
works on cross-modal pre-training in the paper to
better embed our work in the literature. In our
revision, we have added more citations related to
cross-modal pre-training in Related Work in the
Method section.

3. More notable baseline models are supposed to
be compared with, such as BioBERT, RoBERTa, etc.

Thanks for the suggestion. The original version
of BioBERT is beaten by Sci-BERT according to
the results provided by the original papers and
therefore we choose Sci-BERT as our baseline.
We have added results for the latest version of
BioBERT (+PubMed), which is further pre-trained
on PubMed corpus and is the state-of-the-art model
for ChemProt and BC5CDR in Table 4 in the
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Method section. The result for RoBERTa is also
reported as a representative of better general domain
PLMs.

Response to the comments of Reviewer 3
1. A striking issue is that already in the title it
is mentioned that the system outperforms humans.
However, besides stating the human accuracy is 0.72,
there is no other information the human experiment.

Thanks for the comments. It is a crucial prob-
lem in our initial manuscript. We have added
the description of human expert experiments in
Versatile Reading subsection. We recruited more
experts in human evaluation for more reliable results.

2. I’m surprised the the CHEBI ontology that cov-
ers substructures and could be used for the same task
as in the paper is not even mentioned.

CHEBI is not mentioned separately because
PubChem crawls useful information from many
websites including CHEBI. (e.g. Salicylic acid1)

3. Another potential issue that isn’t mentioned is
SMILES standardization including canonicalization,
tautomer assignment etc that can have significant im-
pact on the results.

Thanks for reminding. During pre-training, the
SMILES strings from PubChem are all canonical-
ized, while there is no special treatment for other
strings from downstream tasks for generalization
and simplicity.

4. It is not clear what results in Table 2 and Figure
5 that couldn’t be identified through NER without
using SMILES strings.

We are really sorry that we have not totally
understood this comment. Using SMILES strings
should not cause information leakage in NER,
since most of the entities in ChemProt dataset are
expressed in their textual names instead of SMILES
strings. SMILES strings are only inserted in a
part of pre-training corpus to strengthen the model
capability of understanding chemicals, while we just

1https://pubchem.ncbi.nlm.nih.gov/compound/338

use the original normal sentences in downstream
natural language tasks.

5. The statement that the code will be provided
soon is fairly meaningless.

Thanks for pointing out the issue. We provide code
and data download links at the end of the paper this
time.
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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

Summary: The authors present a Deep Learning system that 

learns both modalities, text and chemical structure, together. 

This is the review of the first revision of the paper. 

General comments: The presented approach is novel and 

the main idea is scientifically appealing. The topic 

is relevant for the drug discovery field. 

With the new version several technical errors have been corrected 

and the manuscript has strongly improved. 

However, there are two main concerns that remain (major comments), 

such that I recommend a major revision. 

Reproducibility: Reproducibility has been strongly improved 

due to the availability of the code and data. 

Positive aspects: 

The work approaches a relevant problem in biology, medicine 

and molecular biology and related fields. The presented 

computational approach is reasonably novel and leads to 

interesting results and potentially open new ways for 

practitioners and researchers to acquire knowledge. 

Major comments: 

A) The choice of the molecular encoder is still an ad-hoc 

decision and a strongly limiting factor of this work. The authors 

chose to tokenize the SMILES strings and then use this 

as input for their BERT model. However, any other molecule encoder 

would be a suitable choice. A belief that a BERT-based molecule 

encoder is good is a poor argument against the amount of 

literature that stands against it (at least [1,2,3,4]-- in none 

of those a Smiles-transformer based method is the best method). 

At the least, the authors should state this choice as a strongly 

limiting factor and a decision made for programmatic simplicity 

at a prominent position in the manuscript. 

B) Experiments for molecular property/activity prediction and 

Table 3 are still incorrect and strongly misleading. 

a) As stated in my previous review, for Tox21 there is 

a pre-defined test set (challenge test set), on which methods 

are compared. The authors pick a 8:1:1 random split, which 

means they defined their own test set, such that 

performance values cannot be compared. The authors should 

use the pre-defined test set of Tox21 to assess the 

performance of their method. The error also becomes immediately 

evident by their reported performance of an AUC of 0.90, while 

the SOTA is at 0.871 [5]. 

b) There must be a similar problem with the calculation 

of the performance values for the datasets BBBP, HIV, and SIDER, 



since the authors report values far above the state of the art 

and all reference values. Concretely, for BBBP the best 

methods usually perform around 0.92-0.93, 

for HIV around 0.83-0.84, for SIDER around 0.67-0.68 (see eg. [2],[6],[7],[8]), 

whereas the authors report 0.988, 0.825, and 0.858. 

Especially for SIDER, such an AUC is hardly possible 

based on the characteristics of the dataset. The authors should 

re-visit their results on these datasets and check for correct 

model and hyperparameter selection or possible data leakage. 

c) The authors introduce a "false balancedness" by their 

choice of baselines ("GraphConv", "TextCNN", "SA-MTL"), i.e., 

it appears as if those were the standard methods for this 

type of datasets. However, the standard would be descriptor-based 

multi-task deepnetworks (e.g.[3]), descriptor-based Random Forests, 

or graph-convolutions combined with descriptors [1]. 

The authors should report performance values obtained with 

standard baselines, and the current state-of-the-art at these 

datasets and show comparable performance values of their own 

compared methods. 

d) The reviewer appreciates the point that the authors want to make 

about their model that it is also capable of being used for 

molecular property prediction, but at this point the experiments 

are so flawed (points a,b,c), 

such these experiments should rather be removed from 

the manuscript. 

Minor comments: 

Formulas need mathematical typesetting. 
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Reviewer #3: 

Remarks to the Author: 

My comments have been satisfactorily adressed so I would support publication 



Response Letter: A Deep-learning System Bridging Molecule

Structure and Biomedical Text with Comprehension Comparable to

Human Professionals

Thanks for the careful review of all the editors and
reviewers. We make the following revision to the
manuscript: (1) MoleculeNet experiments. We get
the split data from the DeepChem package and re-
vise the related results. Baseline methods are also
changed. (2) Explanation for the SMILES encoder.
We supplement the reason for choosing SMILES as
the molecule encoding method in the introduction.

In the following, the comments of the reviewer
1 are shown in blue and our responses are shown
in black. The revised contents have also been
highlighted in blue in the manuscript to help track
the changes.

Response to the comments of Reviewer 1

A) The choice of the molecular encoder is still an
ad-hoc decision and a strongly limiting factor of this
work. The authors chose to tokenize the SMILES
strings and then use this as input for their BERT
model. However, any other molecule encoder would
be a suitable choice. A belief that a BERT-based
molecule encoder is good is a poor argument against
the amount of literature that stands against it (at
least [1,2,3,4]– in none of those a Smiles-transformer
based method is the best method). At the least, the
authors should state this choice as a strongly limiting
factor and a decision made for programmatic simplic-
ity at a prominent position in the manuscript.

Thanks for the comment. We carefully read the
references you provided and accepted your adjust-
ment suggestions, supplementing the programmatic
simplicity statement in the introduction.

B) Experiments for molecular property/activity
prediction and Table 3 are still incorrect and strongly
misleading.

a) As stated in my previous review, for Tox21
there is a pre-defined test set (challenge test set),
on which methods are compared. The authors pick
a 8:1:1 random split, which means they defined their
own test set, such that performance values cannot be
compared. The authors should use the pre-defined
test set of Tox21 to assess the performance of their
method. The error also becomes immediately evident
by their reported performance of an AUC of 0.90,
while the SOTA is at 0.871.

b) There must be a similar problem with the cal-
culation of the performance values for the datasets
BBBP, HIV, and SIDER, since the authors report
values far above the state of the art and all reference
values. Concretely, for BBBP the best methods usu-
ally perform around 0.92-0.93, for HIV around 0.83-
0.84, for SIDER around 0.67-0.68, whereas the au-
thors report 0.988, 0.825, and 0.858. Especially for
SIDER, such an AUC is hardly possible based on the
characteristics of the dataset. The authors should
re-visit their results on these datasets and check for
correct model and hyperparameter selection or pos-
sible data leakage.

Thanks for the suggestion. We check the data
again and there is no data leakage problem. For
the high score of SIDER and Tox21, we check the
source codes of some baselines and find that there
exist different evaluation methods for the two multi-
label datasets. In the last manuscript, we treat mul-

1



tiple tasks as a whole to calculate the AUC score.
In the current version, following [1], the results are
replaced by the more common average AUC scores
of the multiple tasks. The adjusted results meet the
reasonable range mentioned by the reviewer.

For the split of the dataset, we find there are
several common practices in the literature: The
method that MoleculeNet [2] requires is to divide
the data into 8:1:1 by scaffold split (for BBBP
and HIV) or random split (for SIDER and Tox21).
Many works [3, 4], including D-MPNN [5] that the
reviewer mentioned, also follow this method and
define their test set. Some other works take 5-fold
cross-validation instead [6, 7]. Since the reviewer
suggests us to use the pre-defined test set and refer
to the Tox21 SOTA method [1], we follow its setting
and adopt the official train, valid and test sets in the
DeepChem [8] package to ensure fairness, and revise
our results in the latest version.

c) The authors introduce a “false balancedness” by
their choice of baselines (“GraphConv”, “TextCNN”,
“SA-MTL”), i.e., it appears as if those were the stan-
dard methods for this type of datasets. However,
the standard would be descriptor-based multi-task
deepnetworks, descriptor-based Random Forests, or
graph-convolutions combined with descriptors. The
authors should report performance values obtained
with standard baselines, and the current state-of-the-
art at these datasets and show comparable perfor-
mance values of their own compared methods.

d) The reviewer appreciates the point that the au-
thors want to make about their model that it is also
capable of being used for molecular property predic-
tion, but at this point the experiments are so flawed
(points a,b,c), such these experiments should rather
be removed from the manuscript.

Thanks for the suggestion about the choice of base-
lines. We adopt the graph-convolutions and Random
Forest combined with descriptors as baseline mod-
els [5]. As the reviewer suggests, they are repre-
sentatives of mainstream methods. Since the orig-
inal paper [5] does not adopt the pre-defined test
set in DeepChem, we turn to the results on the pre-
defined DeepChem split reported in DMP [9]. It is a

relatively strong baseline under DeepChem setting.
Meanwhile, DMP is an unsupervised method that
takes the SMILES strings and molecular graphs as
the input and the pre-training process effectively im-
proves the performance. We take DMP as another
baseline model to enrich the comparison. The DMP
result can also be deleted if there are any misleading
points. The above methods are all open source so
that reproducibility is guaranteed.

We sincerely appreciate the suggestion about
removing the molecule experiments, and the per-
formance of our model is indeed not good enough
especially after the evaluation settings are revised.
Nevertheless, after careful consideration and discus-
sion, we would like to improve the experiments by
including more representative baselines and adopting
more widely used evaluation settings, instead of
removing this part of the content. Otherwise, the
claim of versatile capability may be less persuasive.
Besides, we believe that reporting the results that
need to be further improved can also inspire related
discussion and future research. We hope this decision
will gain your approval.

References

[1] Z. Alperstein, A. Cherkasov, and J. T. Rolfe, “All
smiles variational autoencoder,” arXiv preprint
arXiv:1905.13343, 2019.

[2] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes,
C. Geniesse, A. S. Pappu, K. Leswing, and
V. Pande, “Moleculenet: a benchmark for molec-
ular machine learning,” Chemical science, vol. 9,
no. 2, pp. 513–530, 2018.

[3] Z. Quan, X. Lin, Z.-J. Wang, Y. Liu, F. Wang,
and K. Li, “A system for learning atoms based
on long short-term memory recurrent neural net-
works,” in 2018 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM),
pp. 728–733, IEEE, 2018.

[4] K. Abbasi, A. Poso, J. Ghasemi, M. Amanlou,
and A. Masoudi-Nejad, “Deep transferable com-

2



pound representation across domains and tasks
for low data drug discovery,” Journal of chem-
ical information and modeling, vol. 59, no. 11,
pp. 4528–4539, 2019.

[5] K. Yang, K. Swanson, W. Jin, C. Coley, P. Eiden,
H. Gao, A. Guzman-Perez, T. Hopper, B. Kelley,
M. Mathea, et al., “Analyzing learned molecular
representations for property prediction,” Journal
of chemical information and modeling, vol. 59,
no. 8, pp. 3370–3388, 2019.

[6] X. Lin, Z. Quan, Z.-J. Wang, H. Huang, and
X. Zeng, “A novel molecular representation with
bigru neural networks for learning atom,” Brief-
ings in bioinformatics, vol. 21, no. 6, pp. 2099–
2111, 2020.

[7] Y. Song, S. Zheng, Z. Niu, Z.-H. Fu, Y. Lu, and
Y. Yang, “Communicative representation learn-
ing on attributed molecular graphs.,” in IJCAI,
pp. 2831–2838, 2020.

[8] B. Ramsundar, Molecular machine learning with
DeepChem. PhD thesis, Stanford University,
2018.

[9] J. Zhu, Y. Xia, T. Qin, W. Zhou, H. Li, and T.-
Y. Liu, “Dual-view molecule pre-training,” arXiv
preprint arXiv:2106.10234, 2021.

3



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

My remaining comments and concerns about the molecular property prediction tasks have been 

addressed. 



Point-by-point response to the reviewers 

 

Reviewer #1 (Remarks to the Author): 

My remaining comments and concerns about the molecular property prediction tasks 

have been addressed. 

 

Response: 

Thanks for your careful review and inspiring suggestions. 
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