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Uterine corpus endometrial carcinoma (UCEC) is a malignant
disease globally, and there is no unified prognostic signature at
present. In our study, two clusters were identified. Cluster 1
showed better prognosis and higher infiltration level, such as tu-
mormicroenvironment (TME), tumormutation burden (TMB),
and immune checkpoint genes expression. Gene set enrichment
analysis (GSEA) indicated that some tumor-related pathways
and immune-associated pathways were exposed. What is more,
six pyroptosis-related long noncoding RNAs (lncRNAs) (PRLs)
were applied to establish a prognostic signature throughmultiple
Cox regression analysis. In both training and testing sets, pa-
tients with higher risk score had poorer survival than patients
with low risk. The area under the curve (AUC) of receiver oper-
ating characteristic (ROC) curves performed that the survival
probabilitywasbetter inpeoplewith lower risk score.Mechanism
analysis revealed that high risk score was correlatedwith reduced
immune infiltration and T cells exhaustion, matching the defini-
tion of an “immune-desert” phenotype. Patients with lower risk
score were characterized by higher immune checkpoint gene
expression and TMB and have a sensitive response to immuno-
therapy and chemotherapy compared with patients with high
risk score. The signature has accurate prediction ability of
UCEC and is a promising therapeutic target to improve the effect
of immunotherapy.

INTRODUCTION
Uterine corpus endometrial carcinoma (UCEC) is a gynecological
malignant disease with high mortality,1 which came in fourth after
breast cancer, rectum, and lung cancer.2 The incidence rate and mor-
tality of UCEC are continuing to rise. In 2020, there were 417,367 new
cases and 97,370 deaths.3 There are two pathological types of UCEC,
one is estrogen-dependent endometrioid adenocarcinomas (EACs)
and the other is estrogen-independent serous adenocarcinomas
(SACs).4,5 Most patients have a good prognosis in early stage, while
the 5-year survival rate is 95%.5 With the progress of the disease
course, once metastasis occurs, the survival rate will also decrease
significantly.6,7 At present, UCEC patients are often treated by sur-
gery, radiotherapy, brachytherapy, and chemotherapy.8 However,
these methods have poor therapeutic effect on advanced patients,
and traditional risk assessment methods are not enough to explain
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the progress and prognostics of UCEC.9,10 Therefore, we urgently
need to establish a predictive model to provide a new target for
UCEC immunotherapy and improve the accuracy of prognosis pre-
diction of UCEC.

Cell death (CD) can not only maintain the stability of internal envi-
ronment but also an important tumor inhibition process.11 Resistance
to CD is a characteristic of tumors.12,13 Pyroptosis is a programmed
CD triggered by some inflammatory bodies,14,15 which will lead to
cell swelling, plasma membrane dissolution, and chromatin rupture,
accompanied by a series of inflammation and immune reaction.16,17

For one thing, as a kind of pro-inflammatory death, pyroptosis may
lead to a microenvironment conducive to the progress of tumors.
For another, it can prevent the occurrence and progression of cancer,
although the mechanisms are not clear.16,18

Pyroptosis can affect tumor proliferation, invasion, and metastasis
and has become a new study hotspot in tumor study in recent
years.14,19 Previous research has shown that pyroptosis has close re-
lationships with atherosclerosis and diabetic nephropathy20,21 and
is also closely correlated with the occurrence and development of
various cancers.22–24 Pyroptosis, as a programmed cell death, can
be regulated by some noncoding RNAs (ncRNAs).14,25 In addition,
pyroptosis inhibitors can also eliminate pyroptosis and long ncRNA
(lncRNA) overexpression and inhibit the progression of tumor.26

lncRNA is an important regulator of gene expression, which widely
affects the progression of cancer, cardiovascular disease, and dia-
betes.27 lncRNAs can participate in tumor growth andmetastasis pro-
cess through transcriptional and post-transcriptional mechanisms28

and are able to affect the expression of carcinogenic transcription fac-
tors.29,30 In the immune system, lncRNAs have different expression
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Table 1. Univariate Cox regression analysis of pyroptosis-related lncRNAs

in training set

ID HR HR.95L HR.95H p value

OTUD6B-AS1 1.2494 1.0721 1.4561 0.0044

AL353622.1 0.7589 0.6370 0.9041 0.0020

LINC02035 1.5625 1.2069 2.0229 0.0007

HM13-IT1 1.4665 1.1942 1.8009 0.0003

FIRRE 1.5388 1.2256 1.9321 0.0002

NORAD 1.0159 1.0039 1.0281 0.0095

AC010980.2 1.5812 1.1270 2.2186 0.0080

AL133243.2 1.8661 1.1751 2.9633 0.0082

NNT-AS1 1.4395 1.1286 1.8359 0.0033

PAX8-AS1 1.8934 1.2512 2.8653 0.0025

POC1B-AS1 0.2332 0.0852 0.6386 0.0046

U47924.3 0.3408 0.1603 0.7247 0.0052

ATP6V0E2-AS1 1.6049 1.1671 2.2070 0.0036

HR, hazard rate
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levels in different environments, stages, and cell types that contribute
to coordinate some aspects of immune function. So far, hundreds of
lncRNAs have been verified differentially expressing in immune
cells.31 Some recent articles have shown that lncRNAs can be applied
as biomarkers or immunotherapy targets to predict and diagnose
many different types of cancer, including UCEC.32–35 At present,
several UCEC-related lncRNAs have been found, such as MEG3,
GAS5, SRA, and HOTAIR.36,37 However, there is no unified
biomarker used for UCEC.38

In this study, we identified six lncRNAs that might become prognostic
signatures of UCEC. A risk model based on pyroptosis-related
lncRNAs (PRLs) was established and verified to have the ability to
judge the prognosis of UCEC patients and offer guidance for their
treatments. The flow diagram of this study is shown in Figure S1.

RESULTS
Analysis of pyroptosis-related genes (PRGs)

To evaluate the expression patterns of PRGs, we used profiles
achieved from the The Cancer Genome Atlas (TCGA) dataset to
find out the differential expression of 33 PRGs between UCEC and
normal tissues. A heatmap provided the level of the 33 genes expres-
sion in UCEC tissues and normal tissues (Figure S2A). The color of
red represents higher expression levels, and green represents lower
expression levels. Of the 33 PRGs, 25 have significantly different
gene expression between tumor and normal tissues (p < 0.001; Fig-
ure S2B). In tumor samples, 13 genes (CASP3, CASP5, CASP6,
CASP8, GPX4, GSDMB, GSDMC, GSDMD, IL18, NLRP7, NOD2, PY-
CARD, and TNF) had higher expression. However, ELANE, GSDME,
NLRP1,NLRP3,NOD1, PJVK, SCAF11, and TIRAP had lower expres-
sion in tumor samples (Figure S2C). A protein-protein interaction
(PPI) network was established to show the relationships between
PRGs (Figure S2D). Figure 2E shows the genes with more nodes.
Among them, CASP1 and PYCARDwere most closely related to other
genes that had 23 nodes. After that, we conducted Pearson correlation
analysis on these 33 genes (Figure S2F). GPX4 has a strong negative
correlation with SCAF11 (cor = �0.45) and CASP8 (cor = �0.44).
CASP1 was obviously positively correlated with CASP4 (cor = 0.61)
and CASP5 (cor = 0.61). The above results showed that there were
certain correlations between pyroptosis-related genes in UCEC.

Identification of PRLs

We screened a 384-lncRNA database that was closely related to PRGs
from TCGA through Pearson correlation analysis. The selection
criteria were correlation coefficient >0.5 and p < 0.001. After
combining with clinical information, we achieved 511 samples. Sam-
ples of entire sets were assigned into training and testing sets for 1:1
ratio randomly. By performing univariate Cox regression analysis on
the training set, we identified 13 PRLS (OTUD6B-AS1, AL353622.1,
LINC02035, HM13-IT1, FIRRE, NORAD, AC010980.2, AL133243.2,
NNT-AS1, PAX8-AS1, POC1B-AS1, U47924.3, and ATP6V0E2-
AS1) that had potential prognosis value for UCEC (Table 1). A box-
plot and heatmap of 13 PRLs expressed in normal and tumor tissues
are shown in Figures 1A and 1B. Most of their expression was not the
same. The abnormal expression of these PRLs means an important
affect for the occurrence and progression of UCEC.

Consistency clustering analysis

According to the proportion of similarity and fuzzy clustering mea-
sures on the basis of 13 PRL expression with prognostic value, it has
the best clustering stability when k = 2 is determined. Figures S3A
and S3B show the change of cumulative distribution function (CDF)
of consensus cluster and area under the curve (AUC) from k = 2 to
k = 9. 256 patients in the training set were assigned into two subtypes,
cluster1 (n = 192) and cluster2 (n = 64), in terms of consensus matrix
k = 2. A consensus cluster composed of 13 PRLs was constructed by
using the “consumusclusterplus” package (Figure S2C).

Prognosis and clinical characteristics of the two clusters

The overall level of PRL expression was higher in cluster2 than
in cluster1, especially the expression levels of OTUD6B-AS1 and
NORAD (Figure 1C). The clinical characteristics between the
two clusters were also compared. Samples in cluster2 were related to
older, more advanced stage, grade, and historical type. At the same
time, the survival probability of cluster2 was lower than that of cluster1
(p = 0.036; Figure 1D). A boxplot showed that patients in different clus-
ters of UCEChave different clinical characteristics. As shown in Figures
1E–1H, the clinical symptoms of cluster2 patientsweremore serious. In
cluster1, patients belonging to the essential histological type accounted
for 85%, and 15% belonged to mixed and serous type, age %60 ac-
counted for 44% and age >60 accounted for 56%, G1 and G2 accounted
for 19% and G3 and G4 accounted for 81%, and stage I and stage II ac-
counted for 74% and stage III and stage IV accounted for 26%.While in
cluster2, patients belonging to endogenous histological type accounted
for 44% and patients belonging to the mixed and serial type accounted
for 56%, age%60 accounted for 31% and age >60 accounted for 69%,
G1 and G2 accounted for 12% and G3 and G4 accounted for 88%,
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Figure 1. Different clinicopathological features and survival probability of the two UCEC subtypes

(A) Boxplot of 13 PRLs’ expression in normal and tumor tissues. (B) Heatmap of 13 PRLs’ expression in normal and tumor tissues is shown. (C) The different expressions of

PRLs and their clinicopathological features between the two clusters were shown by heatmap. (D) The OS rate of UCEC patients in the two groups was calculated by Kaplan-

Meier curve. (E–H) The proportions of histological type (E), age (F), grade (G), and stage (H) between the two clusters were compared. *P < 0.05; **P < 0.01; ***P < 0.001. ns,

not significant.

Molecular Therapy: Nucleic Acids
and stage I and stage II accounted for 62% and stage III and stage IV ac-
counted for 38%.

Cluster2 had lower infiltration level of immune cell

To explore the immune infiltration level of different PRL expressions,
we evaluated the fraction of 22 immune cells between the two clusters
(Figure 2A). Regulatory T cells (Treg cells) showed a significantly lower
fraction in cluster2. The immune information of checkpoint, dendritic
1038 Molecular Therapy: Nucleic Acids Vol. 27 March 2022
cells (DCs), plasmacytoid DCs (pDCs), and T cell co-stimulation was
higher in cluster1 (p < 0.001; Figure 2B). The immune score of cluster1
was also higher than in cluster2 (Figure 2C). The expression levels of
some human leukocyte antigens (HLAs) were also different between
the two subtypes. Figure 2D shows that the TMB of cluster1 was higher
than cluster2. In particular, the expression levels of HLA-DRB1,
HLA-DQB1, HLA-DPB1, and HLA-DMA in cluster1 were higher in
cluster2 (Figure 2E). For the purpose of clarifying the correlations
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Table 2. Multivariable Cox regression analysis of pyroptosis-related

lncRNAs in the training set

ID Coef HR HR.95L HR.95H p value

AL353622.1 �0.2409 0.7859 0.6548 0.9432 0.0097

HM13-IT1 0.2916 1.3386 1.0957 1.6355 0.0043

FIRRE 0.3454 1.4126 1.1283 1.7685 0.0026

NNT-AS1 0.3754 1.4555 1.1376 1.8622 0.0028

POC1B-AS1 �1.1937 0.3031 0.1066 0.8615 0.0251

ATP6V0E2-AS1 0.3824 1.4658 1.0607 2.0257 0.0205
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between immune checkpoint inhibitors (ICIs) and PRLs, we evaluated
the expression discrepancy of programmed death-1 (PD1) and the as-
sociation between PD1 and PRLs. PD1 expression was higher in
UCEC tissue (p < 0.05; Figure 2F). Comparing the two clusters, the
expression level of PD1 in cluster2 was down-regulated (p < 0.05; Fig-
ure 2G). Then, the association between PD1 and PRLs was further
analyzed. In the TCGA cohort, the expression of PD1 had a negative
correlation with the expression levels of OTUD6B-AS1, LINC02035,
FIRRE, NORAD, and NNT-AS1 (Figure 2H). International Prognostic
Score (IPS) analysis showed that IPS (p= 0.027), IPS_ ctla4_pdl1_pd1_
pdl2 (p = 0.018), and IPS_ pdl1_ pd1_ pdL2 (p = 0.029) had a higher
level in cluster1, but not IPS_ ctla4 (p = 0.076; Figure 2I), which means
cluster1 was associated with higher immunogenicity. In brief, in im-
mune infiltration, proportion of T cells was lower in cluster2, which
indicated that cluster2 might be a subtype of cold tumor. That means
patients in cluster2may have immune escape, and the efficacy of immu-
notherapy will be poor.

GSEA revealed the pathway that PRLs exposed

In order to explore the potential mechanism leading to the difference
between the two groups, we conducted GSEA (Figures 2J and 2K).
Enrichment scores of allograph rejection, asthma, autoimmune thy-
roid disease, graft versus host disease, and intrinsic immune network
for immunoglobulin A (IgA) were evaluated both in cluster1 and clus-
ter2. The results indicated that cluster1 had negative correlation with
immune-related function, and cluster2 was positively related to im-
mune functions. Therefore, the different prognoses of cluster1 and
cluster2 may be due to the different immune statuses.

Analysis of drug sensitivity

Drug sensitivity analysis was carried out (Figures S4A–S4D). Patients
in cluster1 were more sensitive to etoposide (p = 0.036), while patients
in cluster2 were more sensitive to paclitaxel (p = 0.026). The sensi-
tivity of patients in the two subtypes to cisplatin (p = 0.47) and doxo-
rubicin (p = 0.14) were not significantly different.
Figure 2. Immunoassay of two clusters

(A) The infiltrating levels of 22 immune cell types in cluster1 and cluster2 subtypes in th

expression (E) in two clusters are shown. (F) Up-regulation of PD1 expression in tumor ti

correlation between PD-L1 and PRLs is shown. (I) IPS analysis is shown. (J and K) GSE

cluster2 (K). *P< 0.05 and **P< 0.01; ns, not significant.
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Constructing and validating a risk signature based on PRLs

Multiple Cox regression analysis was then conducted on the training
set, and six PRLs were verified to have independent prognostic value
(Table 1). Among the six independent prognostic factors, HM13-IT1,
FIRRE, NNT-AS1, and ATP6V0E2-AS1 were risk factors and
AL353622.1 and POC1B-AS1 were protective factors. Then, we con-
structed a risk signature in the light of six PRLs. The formula is as fol-
lows: risk score = (0.2916 � HM13-IT1) � (0.2409� AL353622.1) +
(0.3454 � FIRRE) + (0.3754 � NNT-AS1) � (1.1937 � POC1B-
AS1) + (0.3824 � ATP6V0E2-AS1) Table 2. After that, people were
assigned into two risk groups in the light of median risk score (Figures
3A–3C). Subsequently, univariate and multivariate Cox regression
analyses were applied to identify whether the model based on pyrop-
tosis-related lncRNAs (PYLRM) can be thought as an independent
prognostic factor. The results are shown in Table 3, indicating that
the risk score can be considered as an important independent prog-
nostic factor for UCEC. The distribution of risk score and survival
time of different patient sets were further calculated, and the heatmap
was used to test the prediction ability of PYLRM. The two risk groups
had significant difference in risk score distribution, survival status,
and survival time distribution (Figures 3D–3F). The results obtained
from principal-component analysis (PCA) indicated that the two risk
groups have different distributions (Figure S5). This means that the
prognosis of UCEC patients can be judged by risk score. Heatmap
showed that the expression levels of PRLs, such as HM13-IT1, FIRRE,
NNT-AS1, and ATP6V0E2-AS1, were higher in patients with higher
risk score, while the expression levels of PRLs, like AL353622.1 and
POC1B-AS1, were up-regulated in patients with low risk (Figures
3G–3I). Kaplan-Meier survival analysis showed that the survival
rate of patients with low risk was higher than that of patients with
high risk (p < 0.01; Figures 3J–3L). As is shown in Figures 3M–3O,
the PYLRM had great prediction sensitivity. It showed the same re-
sults in all 511 samples (Figures 3M–3O).

Different clinical features of patients with different risk

We calculated the differences of clinical features of UCEC between
the groups and drew a heatmap for the entire set (Figure S6A).
AL353622.1 and POC1B-AS1 had higher expression level in the
low-risk group, while HM13-IT1, FIRRE, NNT-AS1, and
ATP6V0E2-AS1 had higher expression in patients with high risk.
At the same time, cases in cluster2 were mostly in a high-risk level.
Patients with higher risk scores were related to older, more advanced
stage, grade, and histological type. Immune score was also lower in
patients with higher risk. In Figures S6B–S6G, a boxplot revealed
the expression difference of clinical characteristics in the groups,
and the discrepancy was significant (p < 0.05). There were differences
in risk scores among the four UCEC immune subtypes (p < 0.05),
e TCGA cohort. (B–E) Immune infiltration (B), immune score (C),TMB (D), and HLA

ssue is shown. (G) Expression level of PD1 in cluster1 and cluster2 is shown. (H) The

A was employed to predict the potential functions and pathways in cluster1 (J) and
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Table 3. Univariate and multivariate Cox regression analyses of the prognosis-related factors

Variable

Univariable model Multivariable model

HR HR.95L HR.95H p value HR HR.95L HR.95H p value

Training set (n = 256)

Age 2.3114 1.2355 4.3241 0.0088 2.1003 1.0889 4.0511 0.0268

Histological type 2.7963 1.6241 4.8146 0.0002 1.4889 0.8113 2.7323 0.1988

Grade 4.4004 1.3628 14.2085 0.0132 2.3424 0.6819 8.0466 0.1764

Stage 3.9662 2.2870 6.8783 0.0000 2.7928 1.4988 5.2039 0.0012

Risk score 1.0614 1.0405 1.0827 0.0000 1.0489 1.0263 1.0720 0.0000

Testing set (n = 255)

Age 1.4015 0.6890 2.8506 0.3515 1.2233 0.5728 2.6126 0.6026

Histological type 3.4650 1.7958 6.6859 0.0002 2.2780 1.1192 4.6365 0.0232

Grade 2.6125 0.8010 8.5213 0.1114 0.9889 0.2703 3.6183 0.9865

Stage 4.4158 2.2746 8.5726 0.0000 3.3562 1.6682 6.7520 0.0007

Risk score 1.0686 1.0250 1.1141 0.0018 1.0411 0.9912 1.0935 0.1083

Entire set (n = 511)

Age 1.7782 1.1121 2.8432 0.0162 1.5435 0.9452 2.5204 0.0828

Histological type 3.0435 2.0032 4.6242 0.0000 1.7697 1.1192 2.7984 0.0146

Grade 3.3631 1.4671 7.7097 0.0042 1.5019 0.6199 3.6391 0.3677

Stage 4.1162 2.7000 6.2754 0.0000 3.0600 1.9218 4.8724 0.0000

Risk score 1.0616 1.0438 1.0797 0.0000 1.0481 1.0281 1.0684 0.0000
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except that there was no significant discrepancy in risk scores between
C4 and other immune subtypes (Figure S6H). After that, the survival
probability of the two groups were compared under different clinical
characteristics (Figure S6I). Regardless of how old the patients were,
survival probability was higher in patients with lower risk (p < 0.05).
There was no statistical discrepancy of survival probability of patients
with G1 and G2 between different risk groups, while in patients with
G3 and G4, the survival probability of the low-risk group was signif-
icantly higher (p < 0.001). Survival probability of people with mixed
and severe type was very low. However, the survival probability of pa-
tients that had lower risk score was higher in people with endometrial
carcinoma (p < 0.001). Patients in different stages had significantly
higher survival probability than people in the low-risk group in gen-
eral (p < 0.05).

Construction and verification of nomogram

For the purpose of evaluating the prognostic accuracy of the PYLRM,
we compared the true positive rates predicted by PYLRM, clinical fac-
tors, and the model combined with clinical factors. The analysis of
receiver operating characteristic (ROC) curves for 1, 3, and 5 years
is shown in Figure 4A. The AUCs of the PYLRM for the three
different years were 0.732, 0.701, and 0.708, respectively, which
Figure 3. Predictive value of risk model constructed by PRLs in different patie

(A–C) Testing set (A), training set (B), and entire set (C) were divided into high- and low-r

survival status between high-risk group and low-risk group in testing set (D), training s

expression levels of six PRLs in the testing set (G), training set (H), and entire set (I). (J–L)

(J), training set (K), and entire set (L) is shown. (M–O) Prediction sensitivity in testing se
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were higher than that of single clinical characteristics. It is worth
mentioning that it is better to combine PYLRM with clinical factors.
From the results mentioned above, we inferred that the risk score
evaluated by six PRLs can accurately forecast the prognosis of
UCEC patients. According to the results of multivariate Cox regres-
sion in the entire cohort, a nomogram, including indicators such as
stage, histological type, and risk score, was established to predict over-
all survival (OS) incidence rate in 1, 3, and 5 years. By comparing with
clinical characteristics, the risk level of the PYLRM showed
outstanding prediction value through nomogram (Figure 4B). The
correlation diagram showed that the observed OS ratios in 1, 3, and
5 years are in good agreement with the predicted ratios (Figures
4C–4E).

Estimation of TME and response to ICI on the basis of the PRLs

In this paragraph, we will further explore the tumor microenviron-
ment (TME) of UCEC. In order to explore the potential mechanism
leading to the difference between the two groups, we conducted
GSEA. Tumor-related pathways, like cell cycle, DNA replication,
endometrial cancer, ERBB signaling pathway, mismatch repair, path-
ways in cancer, and WNT signaling pathway, are mainly enriched in
the high-risk groups (Figure 5A). However, immune-related
nts set

isk groups according to the median risk score. (D–F) Distribution of survival time and

et (E), and entire set (F) is shown. (G–I) The heatmap of cluster analysis shows the

Kaplan-Meier survival curve of OS in low-risk group and high-risk group in testing set

t (M), training set (N), and entire set (O) in 1, 3, and 5 years is shown.
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pathways, such as allograft rejection, asthma, graft versus host disease,
internal immune network for IgA production, and type 1
diabetes mellitus, are mainly enriched in low-risk groups (Figure 5B).
This means that high-risk score was related to tumor-related path-
ways, and low-risk patients were associated with immune-related
pathways. This may explain why high-risk patients have poor prog-
noses. Therefore, we used ESTIMATION and single sample gene
set enrichment analysis (ssGSEA) analysis to verify the differences
of immune status between groups. The study based on ssGSEA also
confirmed that there were significant differences in immune cells
and immune function between the two risk groups. The scores of im-
mune cells and immune function in patient with higher risk score
were generally lower than those with lower risk, except type I inter-
feron (IFN) response scored higher in patients with higher risk score
(Figures 5C and 5D). Immune cells and stromal cells are two impor-
tant components of TME.39,40 We assessed immune cells (Figure 5E)
and stromal cells (Figure 5F) in the two risk groups and added them
together to get the estimated score (Figure 5G). The scores of the low-
risk group were higher than the high-risk group, and there was signif-
icant discrepancy between the groups (p < 0.01). Higher estimated
score means lower tumor purity, which is consistent with our results
(Figure 5H): the tumor purity of low-risk patients was lower
than patients with higher risk (p < 0.01). Figures 5I–5L showed the
relationships between immune score, stromal score, estimate score,
tumor purity, and the risk score. The immune score, stromal score,
and estimate score were negatively related to the risk score, and tumor
purity had a positive relationship with the risk score, which is consis-
tent with the above results. Figure S7A shows the relative percent of
21 immune-infiltrating cells in two groups. Then, we analyzed the dif-
ference of the fraction of each immune cell between the groups (Fig-
ure S7B). Nine immune cells were different. The expressions of CD8
T cells (p = 0.014), Treg cells (p < 0.01), activated NK cells (p = 0.013),
and monocytes (p = 0.02) in the high-risk group were lower. The
expression of memory B cells (p = 0.013), M0 macrophages (p =
0.007), M1 macrophages (p = 0.031), M2 macrophages (p = 0.006),
and activated DCs (p = 0.011) in the low-risk group were low. We
further explored the relationships between 21 tumor-infiltrating cells
and 6 PRLs (Figure S7C). We found that gamma delta T cells and
naïve B cells had strong positive correlations with NNT-AS1, respec-
tively (p < 0.001). Treg cells also had a positive correlation with
POC1B-AS1 (p < 0.001). The negative relationship between neutro-
phils and ATP6V0E2-AS1 was the strongest (p < 0.001). After that,
we assessed the relationships between the PYLRM risk score and im-
mune-infiltrating cells. The risk score had positive relationships with
memory B cells (R = 0.18; p = 0.0051), activated DCs (R = 0.22; p =
0.00059), M0 macrophages (R = 0.13; p = 0.045), and M1 macro-
phages (R = 0.17; p = 0.0087), while it had negative relationships
with monocytes (R = �0.18; p = 0.005) and Treg cells (R = �0.23;
p = 0.00035; Figure S7D), which showed that the level of T cell infil-
tration was lower in the high-risk group. These results suggested that
Figure 4. Construction and evaluation of a prognostic nomogram

(A) The area under the ROC curve (AUC) of risk score and clinical characteristics was de

the 1-, 3-, and 5-year OS. (C–E) The calibration plot of the nomogram predicts the pro
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the risk characteristics of PYLRM can distinguish the different char-
acteristics of tumor immune cells. Then, we calculated the expression
levels of immune checkpoints in the two groups (Figure 6A). Of the
47 immune checkpoints we analyzed, 33 had expression differences
between the groups (p < 0.05). The relationship between immune
checkpoint and risk score was evaluated. There was a significant pos-
itive relationship between immune checkpoints (Figure 6B). It was
found that CTLA4 (R = �0.21; p < 0.01), HAVCR2 (R = �0.21;
p = 0.0048), and PD1 (R = �0.15; p < 0.01) were negatively related
to risk score (Figures 6C–6E). In addition, the level of PD1 expression
was lower in high-risk groups (Figure 6F). The expression level of im-
mune checkpoints of high-risk group was lower, which also
confirmed that there may be T cell failure in patients with high
risk. The results mentioned above suggest that immunosuppressants
acting on immune checkpoints, such as PD1, can be applied to of
UCEC patients for immunotherapy. IPS analysis showed that IPS
(p = 0.023), IPS_ ctla4 (p = 0.006), and IPS_ ctla4_ pdl1_ pd1_
pdl2 (p = 0.0071) had a higher level in low-risk group, but not IPS
_ pdl1_ pd1_ pdL2 (p = 0.057), which also showed that patients at
low risk were related to higher immunogenicity (Figures 6G–6J). Ac-
cording to the above results, we can infer that the high-risk UCEC
group belongs to the cold tumors subtype and may have poor
response to immunotherapy.

Prediction of immunotherapy effect TMB was employed to quantita-
tively evaluate the mutations taken by tumor cells, which is an effec-
tive molecular marker. Figure 7A showed the distribution of risk score
and survival status of each sample. There were significant differences
in TMBs between the two groups. TMB was higher in low-risk groups
(Figure 7B). TMB was negatively related to the risk score (Figure 7C).
Waterfall plot displayed mutation information of genes with high
mutation frequency in high- (Figure 7D) and low-risk groups (Fig-
ure 7E). Survival probability of patients with high TMB was higher
than patients with low TMB (p < 0.001; Figure 7F). The survival anal-
ysis of TMB combined with risk score indicated that the survival
probability of patients with low TMB together with high risk was
lower than other patients (Figure 7G). Microsatellite instability
(MSI) is another tumor immune marker to reflect the effectiveness
of immunotherapy. The proportion of three microsatellite states in
two risk group is shown in Figure 7H. The proportion of MSI-high
(MSI-H) in patients with higher risk score (20%) was lower than in
patients with lower risk score (43%). The risk score of patients with
MSI-H was lower than of patients with low MSI (p = 0.0011) and sta-
ble microsatellite (p < 0.001; Figure 7I). The stability of MSI in the
low-risk group is poor, and the effect of immunotherapy may be
better.

The sensitivity of chemotherapeutic drugs to UCEC

For the purpose of selecting more suitable chemotherapeutic drugs
for UCEC patients, we evaluated the half-maximal inhibitory
termined according to the ROC curve. (B) The nomogram predicts the probability of

bability of the 1- (C), 3- (D), and 5-year (E) OS.



Figure 5. The results of GSEA, ssGSEA, and ESTIMATE analysis

(A and B) Gene set enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) of low-risk group (A) and high-risk group (B). (C and D) The difference of

immune cells (C) and immune functions between the two risk groups (D) is shown. (E–H) The difference of immune score (E), stromal score (F), ESTIMATE score (G), and tumor

purity (H) in high- and low-risk groups is shown. (I–L) The relationships between immune score (I), stromal score (J), ESTIMATE score (K), and tumor purity (L) and risk score are

shown. *P < 0.05; **P < 0.01; ***P < 0.001. ns, not significant.
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concentration (IC50) of four chemotherapeutic drugs in two risk
groups and calculated the relationships between six PRLs and chemo-
therapeutic drugs. Paclitaxel (p = 0.079), cisplatin (p = 0.0083), etopo-
side (p = 0.033), and doxorubicin (p = 0.24) all had higher sensitivity
in patients with lower risk score (Figures 8A–8D). It means that
chemotherapy drugs may have better therapeutic effects in the low-
risk group. Six PRLs were associated with the sensitivity of some
chemotherapeutic drugs (p < 0.05; Figure 8E). For example, increased
FIRRE expression was associated with increased resistance to midos-
taurin in UCEC patients, while the increase of FIRRE expression was
related to the increased sensitivity of tumor cells to achine, vinblas-
tine, bendamustine, clofarabine, and vorinostat.

Finding potential drugs for UCEC

To clarify the new treatment scheme of UCEC, some potential thera-
peutic drugs for UCEC were screened from the connectivity map
(CMAP) database. Functional enrichment analysis was employed to
differential gene expression between the groups. In the Gene Ontology
(GO) database, cilium organizing，collagen containing, and tubulin
binding had the highest enrichments in biological process, cellular
component, and molecular function, respectively (Figure S8A).The
top ten related molecule drugs are listed in Table 4. Three small-mole-
cule drugs (tacrolimus, aminoglutethimide, and emetine) with negative
enrichment scores were selected to display the three-dimensional struc-
ture (Figures S8B–S8D). Due to lack of three-dimensional structure of
tacrolimus, two-dimensional structure is shown instead.

DISCUSSION
UCEC is a malignant gynecologic tumor.9,41 More and more evidence
indicates that the uncommon expression of lncRNAs may be associ-
ated with the occurrence and development of many kinds of tu-
mors.42–47 Due to its high efficiency, high tissue specificity, and
high stability, lncRNAs have the potential to become immunothera-
peutic targets and biomarkers for UCEC diagnosis, prognosis, and
treatment.48,49 Pyroptosis also has a close correlation with cancer pro-
gression.50–52 Inducing tumor cells apoptosis has been applied to
eliminate malignant cells.53

In this study, a prognostic signature on the basis of PRLs was con-
structed and verified. PRLs may be an effective and reliable biomarker
to forecast the prognosis of UCEC in the future. This is the first time
analyzing the role of PRLs in UCEC.

The selection of 33 PRGs (AIM2, CASP1, CASP3, CASP4, CASP5,
CASP6, CASP8, CASP9, ELANE, GPX4, GSDMA, GSDMB, GSDMC,
GSDMD, GSDME, IL18, IL1B, IL6, NLRC4, NLRP1, NLRP2,
NLRP3, NLRP6, NLRP7, NOD1, NOD2, PJVK, PLCG1, PRKACA,
PYCARD, SCAF11, TIRAP, and TNF) refers to previous studies.54
Figure 6. The correlations between immune checkpoint and risk score

(A) The boxplot shows the expression of immune checkpoints in high- and low-risk gr

lationships between CTLA4 (C), HAVCR2 (D), and PDCD1 (E) and the risk score are show

differences of IPS (G), IPS_ ctla4 (H), IPS_ ctla4_ pdl1_ pd1_ pdl2 (I), and IPS _ pdl1_ pd1

ns, not significant.
The role of these genes in UCEC has not been studied before. Our
study found that a large number of the 33 PRGs had different expres-
sions between tumor and normal tissues, and there were interactions
between the genes that may be used to judge the prognosis of UCEC.

The two clusters achieved from consensus clustering analysis had
different prognosis, clinical features, and drug sensitivity of UCEC
and had different level of PD-L1 expression, immune score, and im-
mune-infiltrating cells. Cluster1 showed better prognosis, and the clin-
ical symptomsof patients in cluster2weremore serious. The proportion
of Treg cells was higher in cluster1, while the infiltration level of CD4
memory resetting T cells, gamma delta T cells, and M1 macrophages
werehigher in cluster2. It is considered that tumor-relatedmacrophages
can promote the invasion ofUCEC tumor cells.55 The immune score as-
sessed by estimation algorithm in cluster 1 was also higher than in clus-
ter 2. Meanwhile, the immune infiltration level, TMB, PD1 expression
level, HLA expression level, and IPS of cluster1 were higher, which
means that people in cluster1 have higher immunogenicity. So it can
be applied to forecast the immunotherapeutic effect of UCEC patients.
Immune infiltration affects the survival rate of UCEC. Low TMB is
related to low immune infiltration, which means poor immune
response. TMB-related signals (GFAP, Edn3, CXCR3, plxna4, and
SST) have been verified to be great predictors of the OS rate of
UCEC.56 PD1 and PD-L1 inhibitors have important benefits for the
immunotherapy of many types of recurrent or metastatic cancer,57–59

and UCEC showed high response to pembrolizumab, a PD1 immune
checkpoint inhibitor.52,60,61 HLA alleles have been proven to stratify
UCEC patients with high accuracy.62,63 The results indicated that clus-
ter1 had negative correlation with immune-related functions, and clus-
ter2 was positively correlated with immune-related functions. Itmay be
the mechanism of different immunogenicity between the two groups.
Then, we analyzed the drug sensitivity of the two clusters. Patients in
cluster1 were more sensitive to etoposide, and cluster 2 patients were
more sensitive to paclitaxel, which provided targeted guidance for pa-
tients with UCEC to choose therapeutic drugs.

After that, the PYLRM was constructed via multivariate Cox regres-
sion analyses. The survival status of people with low-risk score was
better than high-risk persons in all three sets, indicating that the
PYLRM has the potential to forecast the prognosis of UCEC patients.
Among the six PRLs, the high expression of HM13-IT1, FIRRE,
NNT-AS1, and ATP6V0E2-AS means that the patient has a high
risk level and a poor prognosis. However, the high expression of
AL353622.1 and POC1B-AS1 means that patients have a low risk
level. Univariate and multivariate Cox regression analyses showed
that the risk score could be an important independent prognostic fac-
tor for UCEC. Comparing the clinical characteristics of the two risk
groups, it was found that there was significant discrepancy in age,
oups. (B) The correlations between immune checkpoints are shown. (C–E) The re-

n. (F) The expression difference of PD1 between high-and low-risk groups. (G–J) The

_ pdL2 (J) in patients with different risk are shown. *P < 0.05; **P < 0.01; ***P < 0.001.
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Figure 8. The relationships between six PRLs and drug sensitivity

(A–D) The differences of sensitivity of patients to cisplatin (A), doxorubicin (B), etoposide (C), and paclitaxel (D) in high- and low-risk groups. (E) Correlation between six PRLs

and chemotherapeutic drugs is shown.

www.moleculartherapy.org
grade, stage, historical type, and immune subtypes between the
groups, and the prognosis of patients with different clinical character-
istics is different, suggesting that the clinical characteristics also have
the potential to forecast the prognosis of UCEC patients. However,
Figure 7. The relationship between TMB and risk and survival

(A) The distribution of risk score and survival status of each sample. (B) The differences o

and risk score is shown. (D and E) Waterfall plot displayed the mutation information of g

Survival analysis of patients with different level of TMB is shown. (G) Survival analysis of pa

of three microsatellite states in high- and low-risk groups is shown. (I) Differences in ris
the ROC curves suggested that the prognosis accuracy of risk score
was much better. It is worth mentioning that the prediction of risk
score combined with clinicopathological features was more accurate.
Nomograph also confirms its excellent prediction ability.
f TMB between high- and low-risk groups are shown. (C) Correlation between TMB

enes with high mutation frequency in high-risk group (D) and low-risk group (E). (F)

tients with different TMBs combinedwith risk score is shown. (H) The percent weight

k scores of microsatellites with different stabilities are shown.
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Table 4. Top ten results of CMAP analysis

CMAP name Mean n Enrichment p value Specificity
Percent
non-null

Tomatidine 0.363 4 0.816 0.00207 0 50

Dirithromycin 0.483 3 0.868 0.00427 0 66

W-13 �0.449 2 �0.949 0.00561 0 100

Glafenine 0.357 4 0.737 0.00939 0.0355 50

Ciclopirox 0.477 4 0.711 0.01436 0.1159 75

Tacrolimus �0.353 3 �0.785 0.02035 0.0645 66

CAY-10397 0.492 3 0.784 0.02049 0.0305 66

Capsaicin 0.275 4 0.657 0.03177 0.0078 50

Emetine �0.32 4 �0.602 0.06581 0.4588 50

Aminoglutethimide �0.535 3 �0.659 0.07902 0.0595 66

Molecular Therapy: Nucleic Acids
Enrichment analysis based on GSEA suggested that the high-
risk group was related to tumor-related pathways, while low-risk
patients were closely related to immune-related pathways.
This may explain why the high-risk group had poor prognosis.
The results of ssGSEA and ESTIMATE showed that the scores
of immune cells and immune function in patients with higher
risk score were generally lower than people with lower risk score,
which was in line with previous studies. There were statistical
differences in the risk scores among the four UCEC immune sub-
types, suggesting that immunotherapy may be effective for UCEC
patients.

The infiltration of immune cells in UCEC was associated with the
clinical prognosis.64 The expression level of tumor-infiltrating cells
was different in the two risk groups. Memory B cells, M0 macro-
phages, M1 macrophages, M2 macrophages, and activated DCs had
higher expression levels in patients with higher risk. The expression
levels of CD8 cells, Treg cells, activated NK cells, and monocytes
were higher in people with lower risk score, which can be used as a
basis to select appropriate therapeutic targets and chemotherapeutic
drugs. There were also some correlations between tumor-infiltrating
cells and six PRLs. The risk score was positively related to memory B
cells, activated DCs, M0 macrophages, and M1 macrophages, while it
had negative relationships with monocytes and Treg cells. These re-
sults revealed that the risk characteristics of the PYLRM constructed
by PRLs can distinguish the different factors of tumor immune cells in
UCEC.

Immunotherapy has developed into an alternative or complementary
therapeutic strategy to traditional radiotherapy and chemotherapy.
CTLA-4, PD1, and PD-L1 antibodies showed great efficacy in tumor
treatment especially.65 Previous literature also confirmed that
advanced UCEC patients had great response to PD1 immuno-
therapy.60 In this study, the expression levels of immune checkpoints
like CTLA4, HAVCR2, PDCD1, and PD1 significantly had negative
correlations with risk score, so immunotherapy may be more effective
in low-risk patients.
1050 Molecular Therapy: Nucleic Acids Vol. 27 March 2022
Cold tumor means that there are few infiltrating immune cells and a
large proportion of immunosuppressive cells in the tumor, which
means that the response to immunotherapy is weak.66 Our results
suggested that patients with high risk and cluster2 belong to
cold tumor subtype. The high-risk group and cluster2 are featured
with immune infiltration reduction and T cells exhaustion, matching
the definition of an “immune-desert” phenotype.67 This means that
the immune surveillance functions of patients with higher risk score
were weakened, which is conducive to immune escape, and the effect
of immunotherapy will be poor.

IPS analysis indicated that the score of people with low risk was
higher, which means that low-risk patients have higher immunoge-
nicity. TMB is regarded as another important indicator of immuno-
therapy response. In most kinds of cancer, the higher the level of
TMB, the longer the OS after immunotherapy;39,40,68 it was the
same in UCEC. It was further proven that immunotherapy may be
effective in UCEC patients. MSI is a phenomenon that arises in
some tumors when the number of repeat units of specific microsatel-
lite sites changed.69 MSI has been used in the diagnosis and treatment
of patients with colorectal cancer. MSI status may affect the efficacy of
ICIs by changing the TME of tumor. In colorectal cancer, patients
with MSI-H benefit from ICIs treatment compared with MSS/low
MSI (MSI-L) tumor patients.70 The stability of MSI in the low-risk
group was poor, and the effect of immunotherapy was better, which
was consistent with the previous results.

Paclitaxel, cisplatin, etoposide, and doxorubicin had higher sensitivity
in the low-risk group. This means that the effect of chemotherapeutic
drugs may have better therapeutic effect in the low-risk patients. Pre-
vious research has also verified that paclitaxel is a potential immuno-
therapeutic drug for UCEC.71

Due to immunotherapy and chemotherapy in patients with higher
risk score being unsatisfactory, we consider that the combination of
small molecular compounds may be effective. Through GO analysis,
we enriched the differentially expressed genes in different risk groups.



Table 5. The statistical data of clinical characteristics of the three sets

Covariates Type Total Test Train p value

Age %60 199 (38.94%) 94 (36.86%) 105 (41.02%) 0.3833

Age ＞60 312 (61.06%) 161 (63.14%) 151 (58.98%)

Histological_type endometrial 384 (75.15%) 192 (75.29%) 192 (75%) 1

Histological_type mixed and serous 127 (24.85%) 63 (24.71%) 64 (25%)

Grade G1 and G2 91 (17.81%) 46 (18.04%) 45 (17.58%) 0.9836

Grade G3 and G4 420 (82.19%) 209 (81.96%) 211 (82.42%)

Stage stage I and stage II 370 (72.41%) 188 (73.73%) 182 (71.09%) 0.571

Stage stage III and stage IV 141 (27.59%) 67 (26.27%) 74 (28.91%)
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Through CMAP, we screened some potential small chemotherapeutic
drugs for UCEC, such as tacrolimus, aminoglutethimide, and
emetine. Aminoglutethimide can be used to treat Cushing’s syndrome
and breast cancer.72 Emetine can treat lung cancer in cooperation
with cisplatin.73 The roles of aminoglutethimide and emetine in the
treatment of UCEC still need further analysis.

Our study identified six UCEC prognostic markers associated with
pyroptosis: HM13-IT1; FIRRE; NNT-AS1; ATP6V0E2-AS1;
AL353622.1; and POC1B-AS1. Among these biomarkers, there is
no research reporting the role of FIRRE and NNT-AS1 in UCEC.
But NNT-AS1, the regulatory mechanism of microRNA (miRNA)
sponge, may affect tumor cell proliferation, invasion, metastasis,
and apoptosis74 and has been found to be involved in the progress
of pneumonia.75 FIRRE can promote the growth of DLBCL cells.76

There are few reports that focus on HM13-IT1, POC1B-AS1,
ATP6V0E2-AS1, and AL353622.1, but they have potential to be the
prognostic biomarkers of UCEC.

Our study also has some deficiencies. First and foremost, insufficient
raw data and small sample size for analysis may have some impact on
the results. In future research, it is necessary to further improve the
sample size, sequencing data, and clinical information of UCEC pa-
tients. In addition, our research is the result of bioinformatics analysis
based on the dataset of a public database. It is necessary to further
confirm the accuracy of the model through experiments and clinical
studies.

MATERIALS AND METHODS
Data acquisition

Transcriptome and RNA sequencing (RNA-seq) profiles of UCEC
were taken from the TCGA database: https://portal.gdc.cancer.gov/,77

and the transcriptome data files were “FPKM.” The following inclusion
criteria were used: (1) removing all samples without clinical follow-up
information and then (2) removing all samples with unknown survival
time, <30 days, and no survival status. Finally, 511 patients with UCEC
and the corresponding clinical information, such as age, grade, stage,
and histological type, were enrolled for further study. All 511 patients
with UCECwere randomly assigned into the training set (256 patients)
and testing set (255 patients) at a 1:1 ratio via the caret package.
Clinicopathology features of the samples are presented in Table 5 (p
> 0.05; chi-square test).

Identification of PRGs

Thirty-three PRGs were achieved from previous studies,16,54,78

including AIM2, CASP1, CASP3, CASP4, CASP5, CASP6, CASP8,
CASP9, ELANE, GPX4, GSDMA, GSDMB, GSDMC, GSDMD,
GSDME, IL18, IL1B, IL6, NLRC4, NLRP1, NLRP2, NLRP3,
NLRP6, NLRP7, NOD1, NOD2, PJVK, PLCG1, PRKACA, PYCARD,
SCAF11, TIRAP, and TNF. Profiles of 33 PRGs expression and clin-
icopathology characteristics of UCEC patients were achieved from
the TCGA. “Limma” package was used to identify the different ex-
pressions of PRGs between UCEC and normal tissues. Heatmap
showed the expression of 33 PRGs in tumor and normal tissues.
Boxplot was used to show the differences of these genes between
different tissues. In addition, volcano plot visualized the expression
of these genes.

Constructing a PPI network

This study employed the interactive gene search tools STRING data-
base: http://string-db.org/ to estimate the correlation between 33
PRGs, and the PPI network was constructed.79,80 Bar plot showed
genes with more nodes and their quantity of nodes.

Screening PRLs

We identified 384 lncRNAs that had close correlation with PRGs
from the TCGA database based on Pearson analysis. The standard
used in this part was Pearson R > 0.5 and p < 0.001. Subsequently,
univariate Cox regression analysis was conducted on the training
set to screen 13 PRLs that had potential prognosis value of
UCEC.81

Consensus clustering analysis

A consensus cluster consisting of 13 PRLs was constructed on the
base of “ConsensusClusterPlus” package(K means cluster count).82

According to the similarity of PRLs’ expression level and the pro-
portion of fuzzy clustering measurement, it was found that, when
k = 2, the cluster had the best stability. Therefore, 256 patients
with UCEC were assigned into two clusters: cluster1 (n = 192)
and cluster2 (n = 64). After that, the differences of lncRNA
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expression, immunity, and clinical characteristics between the two
clusters were compared.

Constructing and evaluating prognostic model

The model was constructed in the light of the training set; meanwhile,
the testing set and the entire set were applied to test the predicted abil-
ity of the model. Multivariate Cox regression analysis was conducted
in the training set and identified six PRLs.83 We named this model as
“PYLRM.” The following formula was employed to evaluate the risk
score: risk score = coef (lncRNA1) � expr (lncRNA1) + coef
(lncRNA2) � expr (lncRNA2) + . + coef (lncRNAn) � expr
(lncRNAn), where coef means the coefficients, coef (lncRNAn) indi-
cates the coefficient of lncRNAs related to survival, and expr
(lncRNAn) is the expression of lncRNAs.

Evaluation of predict ability of the PYLRM

In the light of the median risk score, all the samples were assigned into
two groups. Kaplan-Meier was employed to calculate the OS.84,85

PCA was utilized to visualize the diversity of the groups.86 The distri-
bution of clinical characteristics between two risk groups was visual-
ized by “pheatmap” R package. Univariate and multivariate Cox
regression analyses were applied to assess whether the risk score
was an independent prognostic factor of UCEC patients when com-
bined with other clinical characteristics.

Establishment and verity of a predictive nomogram

A nomogram was established in the light of risk score and clinicopa-
thology factors that were applied to predict OS incidence rate in 1, 3,
and 5 years. The modified curve calculated by Hosmer-Lemeshow test
was utilized to show the consistency between the actual results and the
predicted results.87 AUC and ROC curve were applied to evaluate the
prognostic value of clinicopathological features.88 The AUC >0.6
showed that the PYLRM can accurately forecast the survival rate of
UCEC patients.

GSEA and ssGSEA

For the purpose of clarifying the potential regulation mechanism
causing the difference between the two clusters, we conducted
GSEA. Profiles of gene sets in GSEA provide stable and interpretable
measurement of biological function and pathways.89 ssGSEA was uti-
lized to verify the differences of immune cells and immune function
between the groups. ssGSEA worked at the single-sample level and is
an extension of the GSEA method.90

Immune microenvironment assessment

Through CIBERSORT: http://cibersort.stanford.edu/, our study
analyzed the composition and infiltration level of 21 infiltrating im-
mune cells. CIBERSORT is an algorithm that can accurately evaluate
the immune components of immune cells from complex gene expres-
sion profiles of tissues.91,92 After that, ESTIMATE was used to verify
the discrepancy of immune microenvironment between different risk
groups. The immune score, stromal score, estimate score, and tumor
purity of each sample were evaluated by R “estimate” package. These
scores reflect the proportion of immune and stromal components in
1052 Molecular Therapy: Nucleic Acids Vol. 27 March 2022
TME. The relationships between immune score, stromal score, esti-
mated score, tumor purity, and risk score were also evaluated by Pear-
son correlation coefficient method.

Mutational analysis

TMB indicates the number of somatic mutations per megabase
genome sequence, which can be used to find patients who have
more possibility to respond to ICIs.93 This study evaluated the differ-
ence of TMB between two risk groups and its relationship with risk
score.

Immunotherapy response prediction

IPS range from 0 to 10 was evaluated in the light of the gene expres-
sion Z score. IPS level of the low-risk group was higher, which means
patients with low risk have higher immunogenicity.94 The results
were downloaded from the The Cancer Imaging Archive (TCIA)
database.95 MSI refers to the change of allele size between tumor tis-
sue and its corresponding normal tissue.96 MSI-H patients are more
immunogenic than MSI-L and MSS patients. Meanwhile, the effect of
immunotherapy for MSI-H patients will be better. The information
about MSI was also downloaded from the TCIA database.

Analysis of drug sensitivity

By using R software package “PRROPHIC,” we evaluated IC50 of four
chemotherapeutic drugs of two risk groups. The correlation between
six PRLs and the sensitivity of some chemotherapeutic drugs was dis-
played by ggplot2.97 The NCI-60 database includes 60 different tu-
mors cells from nine cancers evaluated by using CellMiner interface:
https://discover.nci.nih.gov/cellminer.98,99 Pearson correlation anal-
ysis was conducted to explore the correlations between PRL expres-
sion and drug sensitivity.

Functional analysis

We used GO analysis to screen the differentially expressed genes
(DEGs). This analysis utilized R package “clusterProfiler.” The
threshold of GO analysis was decided by the q value, and p < 0.05
means that the functions were significantly enriched.

Exploration of potential chemotherapeutic drugs

CMAP was used to screen potential drugs for UCEC treatment.100 As
we stated before, these small-molecule drugs were identified through
662 DEGs between two risk groups with | log2 fold change (FC) | > 1
and false discovery rate (FDR) < 0.05. The two-dimensional and
three-dimensional structures of the drugs were taken from
PubChem.101,102

Statistical analysis

R v.4.1.0 was used to do statistical tests. The differences of the two
subgroups were calculated by Student’s t test and ANOVA. Kaplan-
Meier analysis and log rank test were employed to calculate the
discrepancy of OS between the two risk groups. The relationships be-
tween risk score and immune infiltration level were calculated by
Pearson correlation test. p < 0.05 was defined to have statistical
difference.

http://cibersort.stanford.edu/
https://discover.nci.nih.gov/cellminer
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Figure S1 The flow diagram of this study. 

  



 
Figure S2 The expression levels of PRGs between tumor and normal samples in TCGA 

UCEC cohort. Heatmap(A), box plot(B) and volcano plot(C)shows the expression 

patterns of pyroptosis -related genes between tumor and normal tissues. (D) PPI 

network performed the interaction between 33 PRGs. (E) Bar graph showed genes with 

more nodes (F) Pearson correlation analysis of the 33 PRGs. 

  



 

Figure S3 Consensus clustering analysis (A) Uniform clustering cumulative 

distribution function (CDF), k = 2-9 (k represents the number of clusters). (B) The 

change of area under CDF curve with k = 2-9. (C) TCGA UCEC cohort was divided 

into two clusters when k=2. 

  



 

Figure S4 Drug sensitivity of the two clusters. The sensitivity of the two clusters to 

cisplatin (A), doxorubicin (B), etoposide (C) and paclitaxel (D) was different. 

  



 

Figure S5 Principal component analysis (PCA) analysis The result of PCA in tseting set 

(A), training set (B) and entiring set (C). 

  



 

Figure S6  Effects of different clinical features and risk scores on UCEC prognosis 

(A)The different expression of 6 PRLs and their clinical features between the two risk 

groups were shown by heat map. Differences in age (B), stage (C), grade (D), 

histological type (E), immune score (F) and cluster (G) between the two risk groups. 

(H)The difference of the risk scores of the four UCEC immune subtypes. (I) 



Comparison of survival probability between high and low risk groups under different 

clinical characteristic. 

  



 

Figure S7 The correlation between tumor infiltrating immune cells and the model. 

(A)Bar plot showed the relative percent of 21 tumor infiltrating immune cells in the 

high- and low-risk groups. (B)Violin plot showed the difference of the fraction of each 

immune cells between the two risk groups. (C)The correlations between 21 tumor 



infiltrating cells and 6 PRLs. (D)The correlation between risk score and 6 tumor 

infiltrating immune cells. 

  



 

Figure S8 GO analysis and CMAP GO (A) enrichment analysis of different expressed 

genes between two risk groups. (B) Two-dimensional structure of tacrolimus. Three-

dimensional structure of aminoglutethimide (C) and emetine (D). 
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