Supporting Information

Phosphine catalyzed dearomative [3+2] cycloaddition of benzoxazoles with a cyclopropenone

Xingben Wang, Congjun Yu, Iuliana L. Atodiresei, and Frederic W. Patureau*

Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany. E-mail: <u>Frederic.Patureau@rwth-aachen.de</u>

Table of Contents

- 1. General information (S2)
- 2. Preparation of some starting materials (S2)
- 3. General procedure (S3)
- 4. Product characterization (S3)
- 5. 31 P NMR study (S15)
- 6. X-ray structure of **3ca** (S16)
- 7. Chiral analytical HPLC profile for product **3aa** (S17)
- 8. References (S18)
- 9. Copies of ¹H, ¹³C, and ¹⁹F spectra (S18)

1. General information

NMR spectra were obtained on an Agilent VNMRS 400 or a Bruker Av 600 using CDCl₃ as solvents. Chemical shifts are given in ppm and coupling constants (*J*) in Hz. ¹H spectra were calibrated in relation to the reference measurement of TMS (0.00 ppm). ¹³C spectra were calibrated in relation to the deuterated solvent, namely CDCl₃ (77.16 ppm). The following abbreviations were used for ¹H NMR spectra to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet) as well as combinations of them. Flash chromatography was performed on silica gel (60 M, 0.04-0.063 mm) by standard technique. All the chemicals used for synthesis were purchased from Sigma Aldrich, abcr, Alfa Aesar, TCI, Fisher, or chemPUR. High resolution mass spectra (HRMS) were obtained on a Thermo Scientific LTQ Orbitrap XL spectrometer. Crystallographic data were collected on a Bruker Kappa APEX II CCD-diffractometer with monochromatic Mo–Kα radiation (λ =0.71073 Å) and a CCD detector.

Heating: Aluminum blocks equipped with slots that accommodate the glass vial reactors were utilized for all herein described experiments requiring heating.

2. Preparation of some starting materials

According to a known procedure,¹⁻² a Schlenk-tube (50 mL) was charged with **S1** (5 mmol) and Trimethyl orthoformate (3 mL). The mixture was heated up to 95 °C. the reaction was stirred (5 h) and simultaneously allowed to acclimatize to room temperature. The reaction was quenched with water (20 mL), extracted with ethyl acetate (3x 10 mL), dried over MgSO₄ and concentrated under reduced pressure. The crude was purified by SiO₂ gel column chromatography to afford **S2**.

S2 = 1x: ¹H NMR (600 MHz, Chloroform-*d*) δ 8.03 (s, 2H), 7.80 (d, *J* = 7.8 Hz, 2H), 7.66 (d, *J* = 1.8 Hz, 2H), 7.47 - 7.42 (m, 4H), 7.40 - 7.35 (m, 2H), 7.32 (dd, *J* = 8.4, 1.8 Hz, 2H), 7.31 - 7.26 (m, 2H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 152.9, 151.0, 149.0, 143.0, 140.1, 140.0, 128.0, 127.8, 126.2, 120.4, 120.0, 110.6, 65.3.

ESI-HRMS: mass spectrometry: m/z calc. 401.1285 [C₂₇H₁₇O₂N₂]⁺, measured 401.1273. IR (neat, cm⁻¹): \tilde{v} : 3850, 3116, 2677, 1731, 1606, 1506, 1470, 1447, 1243, 1115, 1063, 982, 919, 873, 812, 747.

S2 = **1**y: ¹H NMR (600 MHz, Chloroform-*d*) δ 8.06 (s, 2H), 7.76 (d, J = 1.8 Hz, 2H), 7.41 (d, J = 9.0 Hz, 2H), 7.15 (dd, J = 9.0, 1.8 Hz, 2H), 1.79 (s, 6H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 152.8, 148.1, 147.6, 139.9, 125.4, 118.1, 110.3, 43.3, 31.5. ESI-HRMS: mass spectrometry: m/z calc. 301.0948 [C₁₇H₁₄O₂N₂Na]⁺, measured 301.0944. IR (neat, cm⁻¹): \tilde{v} : 3137, 2964, 2869, 1757, 1612, 1513, 1467, 1361, 1288, 1246, 1110, 1060, 888, 812, 762, 662.

Cyclopropenone substrate **2a** was purchased from BLDpharm. Cyclopropenone **2b** was prepared according to a known literature procedure.³

3. General procedure

Triphenylphosphine (6.55 mg, 0.025 mmol, 0.125 equiv.), cyclopropenone **2** (0.2 mmol, 1 equiv.) and Benzoxazole **1** (0.6 mmol, 3 equiv.) were added sequentially, then the mixture was stirred at 25 °C for about 15 h (the consumption can be monitored by TLC). The mixture was filtered through celite and the filtrate was concentrated to dryness. The crude was purified by column chromatography to give the products **3**.

4. Product characterization

7-methyl-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3aa: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 65 mg product was obtained by 96% isolated yield as yellow solid. mp 190.0 – 191.5 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.58 - 7.54 (m, 2H), 7.46 - 7.42 (m, 2H), 7.41 - 7.34 (m, 7H), 6.87 - 6.84 (m, 2H), 6.78 (d, *J* = 7.8 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 174.9, 153.2, 150.9, 134.9, 131.8, 131.3, 130.5, 130.5, 130.3, 129.6, 129.2, 129.0, 128.8, 128.7, 125.9, 117.8, 109.2, 97.2, 21.2. ESI-HRMS: mass spectrometry: m/z calc. 362.1152 [C₂₃H₁₇O₂NNa]⁺, measured 362.1147. IR (neat, cm⁻¹): v: 3426, 3054, 2915, 1722, 1601, 1485, 1346, 1250, 1192, 1128, 1081, 1030, 959, 898, 776, 690.

2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3ba: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 57 mg product was obtained by 88% isolated yield as yellow solid. mp 189.8 – 191.0 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.60 - 7.56 (m, 2H), 7.55 - 7.51 (m, 1H), 7.47 - 7.43 (m, 2H), 7.42 - 7.35 (m, 6H), 7.10 - 7.05 (m, 1H), 7.02 - 6.97 (m, 1H), 6.93 - 6.89 (m, 1H), 6.88 (s, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 175.0, 155.3, 150.8, 134.8, 131.3, 130.5, 130.5, 130.4, 129.6, 129.2, 129.0, 128.8, 128.7, 125.8, 122.0, 117.1, 109.8, 97.1. ESI-HRMS: mass spectrometry: m/z calc. 348.0995 [C₂₂H₁₅O₂NNa]⁺, measured 348.0994. IR (neat, cm⁻¹): \tilde{v} : 3429, 3062, 2920, 1724, 1599, 1473, 1364, 1243, 1192, 1141, 1105, 1001, 948, 848,

7-fluoro-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3ca: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 41 mg product was obtained by 60% isolated yield as yellow solid. mp 170.6 – 171.9 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.56 - 7.50 (m, 2H), 7.44 - 7.32 (m, 8H), 7.27 - 7.22 (m, 1H),

6.89 (s, 1H), 6.80 - 6.75 (m, 1H), 6.75 - 6.70 (m, 1H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 174.65, 158.0 (d, *J* = 239.6 Hz), 151.3 (d, *J* = 2.3 Hz), 151.0, 134.7, 131.1 (d, *J* = 12.4 Hz), 131.1, 130.7, 130.3, 129.6, 129.4, 129.1, 128.9, 128.7, 111.4 (d, *J* = 24.2 Hz), 109.4 (d, *J* = 9.2 Hz), 105.8 (d, *J* = 28.6 Hz), 97.9.

 $^{19}\mathrm{F}$ NMR (564 MHz, Chloroform-d) δ -120.59 to -120.70 (m).

ESI-HRMS: mass spectrometry: m/z calc. 366.0901 [C₂₂H₁₄O₂NFNa]⁺, measured 366.0899. IR (neat, cm⁻¹): \tilde{v} : 3425, 3062, 2922, 1716, 1617, 1480, 1351, 1252, 1172, 1122, 1075, 946, 804, 761,

692.

752, 688.

7-chloro-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3da: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1).

42 mg product was obtained by 58% isolated yield as yellow solid. mp 210.2-211.1 °C.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.56 - 7.52 (m, 2H), 7.49 (d, J = 2.4 Hz, 1H), 7.45 - 7.33 (m,

8H), 7.02 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.89 (s, 1H), 6.79 (d, *J* = 9.0 Hz, 1H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 174.7, 154.0, 151.0, 134.7, 131.5, 131.1, 130.7, 130.2, 129.6, 129.4, 129.1, 128.9, 128.7, 126.8, 125.5, 117.6, 110.3, 97.8.

ESI-HRMS: mass spectrometry: m/z calc. 382.0605 $[C_{22}H_{14}O_2NCINa]^+$, measured 382.0601.

IR (neat, cm⁻¹): v: 3424, 2049, 2919, 1716, 1602, 1473, 1344, 1302, 1241, 1192, 1145, 1088, 958, 868, 776, 696.

7-bromo-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3ea: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 45 mg product was obtained by 56% isolated yield as yellow solid. mp 223.5 – 224.2 °C.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.62 (d, J = 2.4 Hz, 1H), 7.56 - 7.51 (m, 2H), 7.44 - 7.33 (m,

8H), 7.17 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.89 (s, 1H), 6.75 (d, *J* = 8.4 Hz, 1H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 174.7, 154.5, 151.0, 134.7, 131.8, 131.1, 130.8, 130.2, 129.6, 129.4, 129.1, 128.9, 128.7, 128.5, 120.3, 113.7, 110.9, 97.7.

ESI-HRMS: mass spectrometry: m/z calc. 426.0100 [C₂₂H₁₄O₂NBrNa]⁺, measured 426.0094. IR (neat, cm⁻¹): v: 3419, 3050, 2910, 1712, 1599, 1471, 1343, 1303, 1242, 1190, 1143, 1086, 956, 869, 774, 690.

3fa: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 65 mg product was obtained by 91% isolated yield as yellow solid. mp 159.4 – 160.7 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.59 - 7.54 (m, 2H), 7.46 - 7.34 (m, 8H), 7.16 (d, *J* = 2.5 Hz, 1H), 6.89 (s, 1H), 6.79 (d, *J* = 8.7 Hz, 1H), 6.58 (dd, *J* = 8.6 Hz, *J* = 2.7 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 174.7, 155.2, 151.0, 149.2, 134.8, 131.3, 131.0, 130.5, 130.5, 129.6, 129.2, 129.0, 128.8, 128.7, 110.1, 109.5, 104.3, 97.4, 56.2. ESI-HRMS: mass spectrometry: m/z calc. 378.1101 [C₂₃H₁₇O₃NNa]⁺, measured 378.1096. IR (neat, cm⁻¹): \tilde{v} : 3425, 3062, 2920, 1720, 1619, 1481, 1369, 1308, 1256, 1185, 1028, 958, 871, 777, 690.

7-(tert-butyl)-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3ga: The crude mixture was purified by SiO_2 gel column chromatography with pentane/EA (from 60:1). 74 mg product was obtained by 97% isolated yield as yellow liquid.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.59 - 7.56 (m, 3H), 7.47 -7.43 (m, 2H), 7.41 - 7.34 (m, 6H), 7.08 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.86 (s, 1H), 6.83 (d, *J* = 8.4 Hz, 1H), 1.36 (s, 9H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 175.0, 153.0, 150.8, 145.5, 134.8, 131.4, 130.5, 130.5, 130.2,

129.6, 129.2, 129.0, 128.8, 128.7, 122.2, 114.5, 108.8, 97.4, 34.8, 31.7.

ESI-HRMS: mass spectrometry: m/z calc. 382.1802 $[C_{26}H_{24}O_2N]^+$, measured 382.1802.

IR (neat, cm⁻¹): v: 3434, 3058, 2961, 1720, 1608, 1485, 1341, 1233, 1196, 1140, 1060, 954, 779, 735, 693.

7-(tert-pentyl)-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3ha: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 76 mg product was obtained by 96% isolated yield as yellow liquid.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.61 - 7.57 (m, 2H), 7.53 (d, J = 1.8 Hz, 1H), 7.48 - 7.44 (m, 2H), 7.43 - 7.35 (m, 6H), 7.03 (dd, J = 8.4, 1.8 Hz, 1H), 6.86 (s, 1H), 6.84 (d, J = 8.4 Hz, 1H), 1.68 (q, J = 7.2 Hz, 2H), 1.32 (s, 6H), 0.74 (t, J = 7.8 Hz, 3H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 174.9, 152.9, 150.7, 143.7, 134.7, 131.3, 130.4, 130.4, 130.2, 129.5, 129.1, 128.9, 128.6, 122.9, 115.0, 108.6, 97.3, 37.9, 37.0, 28.9, 28.7, 9.2.

ESI-HRMS: mass spectrometry: m/z calc. 418.1778 [C₂₇H₂₅O₂NNa]⁺, measured 418.1764.

IR (neat, cm⁻¹): v: 3327, 3062, 2962, 1716, 1609, 1487, 1439, 1340, 1246, 1139, 1100, 1064, 959, 907, 807, 692.

2,3,7-triphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3ia: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 56 mg product was obtained by 70% isolated yield as yellow liquid. mp 235.6 – 236.2 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.77 (d, J = 1.8 Hz, 1H), 7.63 - 7.57 (m, 4H), 7.48 - 7.37 (m, 10H), 7.36 - 7.33 (m, 1H), 7.31 (dd, J = 8.4, 1.8 Hz, 1H), 6.97 (d, J = 7.8 Hz, 1H), 6.94 (s, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 174.8, 154.7, 150.8, 140.6, 135.7, 134.8, 131.2, 130.9, 130.5, 130.3, 129.5, 129.2, 128.9, 128.8, 128.7, 128.6, 127.0, 127.0, 124.6, 115.8, 109.7, 97.4. ESI-HRMS: mass spectrometry: m/z calc. 424.1308 [C₂₈H₁₉O₂NNa]⁺, measured 424.1294. IR (neat, cm⁻¹): \tilde{v} : 3438, 3065, 2908, 1721, 1600, 1475, 1434, 1347, 1233, 1141, 1079, 1029, 944, 807, 754, 686.

6-methyl-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3ja: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 66 mg product was obtained by 97% isolated yield as yellow solid. mp 181.9 – 183.1 °C.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.58 - 7.54 (m, 2H), 7.45 - 7.34 (m, 9H), 6.84 (s, 1H), 6.79 (d, *J* = 8.4 Hz, 1H), 6.73 (s, 1H), 2.33 (s, 3H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 175.1, 155.4, 150.7, 136.1, 134.9, 131.4, 130.5, 130.5, 129.6, 129.2, 129.0, 128.8, 128.7, 128.0, 122.2, 116.6, 110.6, 97.3, 21.7.

ESI-HRMS: mass spectrometry: m/z calc. 362.1152 [C₂₃H₁₇O₂NNa]⁺, measured 362.1146.

IR (neat, cm⁻¹): v: 3417, 1060, 2924, 1713, 1599, 1493, 1440, 1344, 1243, 1137, 1081, 954, 882, 809, 779, 692.

6-fluoro-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3ka: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 36 mg product was obtained by 52% isolated yield as yellow solid. mp 192.6 – 194.0 °C.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.57 - 7.51 (m, 2H), 7.44 - 7.33 (m, 9H), 6.89 (s, 1H), 6.70 - 6.62 (m, 2H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 175.3, 161.0 (d, J = 243.9 Hz), 156.1 (d, J = 13.7 Hz), 150.6, 134.9, 131.2, 130.7, 130.3, 129.6, 129.4, 129.1, 128.9, 128.7, 126.7 (d, J = 3.0 Hz), 117.1 (d, J = 10.3 Hz), 107.9 (d, J = 23.7 Hz), 99.1 (d, J = 28.8 Hz), 98.3.

 19 F NMR (564 MHz, Chloroform-*d*) δ -115.09 to -115.16 (m).

ESI-HRMS: mass spectrometry: m/z calc. 366.0901 [C₂₂H₁₄O₂NFNa]⁺, measured 366.0903.

IR (neat, cm⁻¹): v: 3274, 3083, 2920, 1724, 1617, 1481, 1445, 1345, 1314, 1233, 1118, 1080, 945, 844, 809, 690.

6-chloro-2,3-diphenylbenzo[*d*]pyrrolo[2,1-*b*]oxazol-1(3a*H*)-one

3la: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 30 mg product was obtained by 42% isolated yield as yellow solid. mp 169.5 – 172.2 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.56 - 7.52 (m, 2H), 7.44 - 7.34 (m, 9H), 6.96 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.89 (d, *J* = 1.8 Hz, 1H), 6.89 (s, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 174.9, 155.9, 150.7, 134.9, 131.1, 131.0, 130.7, 130.2, 129.6, 129.4, 129.4, 129.1, 128.9, 128.7, 121.9, 117.4, 110.7, 98.0.

ESI-HRMS: mass spectrometry: m/z calc. 382.0605 [C₂₂H₁₄O₂NCINa]⁺, measured 382.0606. IR (neat, cm⁻¹): v: 3415, 1056, 2923, 1710, 1604, 1478, 1441, 1356, 1314, 1243, 1133, 1053, 940, 894, 801, 691.

6-bromo-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3ma: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 45 mg product was obtained by 56% isolated yield as yellow solid. mp 173.4 - 176.3 °C.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.56 -7.52 (m, 2H), 7.44 - 7.34 (m, 9H), 7.11 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.04 (d, *J* = 1.8 Hz, 1H), 6.88 (s, 1H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 174.8, 156.0, 150.7, 134.8, 131.1, 130.7, 130.2, 129.9, 129.6, 129.4, 129.1, 128.9, 128.7, 124.9, 118.2, 117.9, 113.4, 97.8.

ESI-HRMS: mass spectrometry: m/z calc. 426.0100 $[C_{22}H_{14}O_2BrNa]^+$, measured 426.0099.

IR (neat, cm⁻¹): v: 3415, 3054, 2923, 1709, 1600, 1476, 1354, 1243, 1195, 1134, 1041, 942, 874, 799, 761, 690.

2,3-diphenylnaphtho[2,3-d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3na: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 55 mg product was obtained by 73% isolated yield as yellow solid. mp 247.3 – 247.9 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.61 - 7.57 (m, 2H), 7.48 - 7.36 (m, 10H), 7.19 (s, 1H), 6.93 (s, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 174.1, 154.4, 150.8, 134.9, 132.4, 131.2, 130.7, 130.4, 130.4, 130.2, 129.6, 129.4, 129.1, 128.9, 128.8, 128.0, 127.2, 125.9, 124.6, 114.2, 105.0, 97.0. ESI-HRMS: mass spectrometry: m/z calc. 398.1152 [C₂₆H₁₇O₂NNa]⁺, measured 398.1152. IR (neat, cm⁻¹): \tilde{v} : 3447, 3055, 2921, 1723, 1607, 1464, 1347, 1312, 1253, 1146, 1068, 953, 898, 837, 747, 691.

9,10-diphenylnaphtho[2,1-d]pyrrolo[2,1-b]oxazol-8(10aH)-one

30a: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 65 mg product was obtained by 87% isolated yield as yellow solid. $224.9 - 227.1 \,^{\circ}$ C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.97 - 7.93 (m, 1H), 7.86 - 7.82 (m, 1H), 7.76 (d, *J* = 8.5 Hz, 1H), 7.68-7.63 (m, 2H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.48 - 7.37 (m, 10H), 7.09 (s, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 175.9, 150.9, 150.1, 135.1, 132.5, 131.5, 130.6, 130.6, 129.6, 129.3, 129.0, 128.9, 128.8, 128.5, 126.1, 125.7, 125.5, 121.9, 120.7, 120.3, 116.4, 98.4. ESI-HRMS: mass spectrometry: m/z calc. 398.1152 [C₂₆H₁₇O₂NNa]⁺, measured 398.1152. IR (neat, cm⁻¹): \tilde{v} : 3413, 3054, 2919, 1714, 1636, 1595, 1462, 1397, 1341, 1280, 1191, 1131, 1052, 962, 865, 747, 690.

5-methyl-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3pa: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 65 mg product was obtained by 96% isolated yield as yellow solid. mp 203.2 – 204.8 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.61 - 7.57 (m, 2H), 7.46 - 7.34 (m, 9H), 6.93 - 6.88 (m, 2H),

6.85 (s, 1H), 2.28 (s, 3H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 174.9, 153.5, 150.6, 134.8, 131.4, 130.5, 130.3, 129.7, 129.5, 129.1, 128.8, 128.7, 128.7, 127.4, 121.6, 120.0, 114.4, 96.8, 14.8.

ESI-HRMS: mass spectrometry: m/z calc. 362.1152 [C₂₃H₁₇O₂NNa]⁺, measured 362.1152.

IR (neat, cm⁻¹): v: 3424, 3056, 2920, 1720, 1636, 1598, 1444, 1339, 1250, 1138, 1115, 1035, 966, 903, 776, 686.

5-fluoro-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3qa: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 23 mg product was obtained by 34% isolated yield as yellow solid. mp 163.9 – 165.6 °C.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.60 - 7.55 (m, 2H), 7.47 - 7.34 (m, 8H), 7.33 - 7.29 (m, 1H), 6.94 (s, 1H), 6.93 - 6.86 (m, 2H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 174.6, 150.4, 146.6 (d, J = 246.9 Hz), 141.6 (d, J = 12.3 Hz), 134.7, 133.0 (d, J = 4.3 Hz), 130.9, 130.6, 130.1, 129.5, 129.3, 128.9, 128.7, 128.7, 122.3 (d, J = 6.5 Hz), 113.9 (d, J = 17.4 Hz), 112.8 (d, J = 3.4 Hz), 98.4.

¹⁹F NMR (564 MHz, Chloroform-*d*) δ -137.38 to -137.43 (m).

ESI-HRMS: mass spectrometry: m/z calc. 366.0901 [$C_{22}H_{14}O_2NFNa$]⁺, measured 366.0897.

IR (neat, cm⁻¹): v: 3433, 3058, 2922, 1722, 1624, 1465, 1335, 1250, 1170, 1136, 1070, 960, 880, 777.

5,7-dimethyl-2,3-diphenylbenzo[*d*]pyrrolo[2,1-*b*]oxazol-1(3a*H*)-one

3ra: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 65 mg product was obtained by 92% isolated yield as yellow solid. mp 197.7 – 199.2 °C.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.60- 7.56 (m, 2H), 7.46 - 7.34 (m, 8H), 7.20 - 7.17 (m, 1H),

6.83 (s, 1H), 6.73 - 6.69 (m, 1H), 2.33 (s, 3H), 2.23 (s, 3H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 174.8, 151.5, 150.7, 134.8, 131.4, 131.2, 130.6, 130.3, 129.6,

129.5, 129.0, 128.8, 128.7, 128.6, 127.6, 119.4, 115.0, 96.9, 21.0, 14.8.

ESI-HRMS: mass spectrometry: m/z calc. 376.1308 $[C_{24}H_{19}O_2NNa]^+$, measured 376.1313.

IR (neat, cm⁻¹): v: 3416, 3058, 2917, 1717, 1630, 1482, 1361, 1306, 1197, 1130, 1030, 982, 905, 813, 774, 692.

5,7-dichloro-2,3-diphenylbenzo[*d*]pyrrolo[2,1-*b*]oxazol-1(3a*H*)-one

3sa: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 100:1). 28 mg product was obtained by 36% isolated yield as yellow solid. mp 209.3 – 210.9 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.58 - 7.52 (m, 2H), 7.45 - 7.33 (m, 9H), 7.08 (d, *J* = 3.0 Hz,

1H), 6.94 (s, 1H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 174.4, 150.7, 150.4, 134.7, 132.2, 130.8, 130.7, 130.6, 129.9, 129.4, 129.0, 128.8, 128.7, 127.1, 125.8, 116.0, 115.0, 98.2.

ESI-HRMS: mass spectrometry: m/z calc. 416.0216 [C₂₂H₁₃O₂NCl₂Na]⁺, measured 416.0213. IR (neat, cm⁻¹): v: 3441, 1086, 2923, 1725, 1600, 1460, 1340, 1247, 1198, 1146, 1106, 1063, 961, 899, 770, 687.

5,7-dichloro-6-methyl-2,3-diphenylbenzo[*d*]pyrrolo[2,1-*b*]oxazol-1(3a*H*)-one

3ta: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 100:1). 28 mg product was obtained by 34% isolated yield as yellow solid. mp 243.3 – 244.3 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.58 - 7.54 (m, 2H), 7.44 (s, 1H), 7.43 - 7.35 (m, 8H), 6.91 (s, 1H), 2.42 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 174.6, 150.7, 150.6, 134.7, 131.5, 130.8, 130.7, 130.0, 129.4, 129.3, 129.2, 128.9, 128.7, 128.7, 127.0, 115.9, 115.8, 98.0, 17.0.

ESI-HRMS: mass spectrometry: m/z calc. 430.0372 [C₂₃H₁₅O₂NCl₂Na]⁺, measured 430.0363. IR (neat, cm⁻¹): v: 3442, 3056, 2921, 1725, 1614, 1457, 1405, 1342, 1301, 1238, 1144, 1094, 962, 866, 784, 692.

5,7-dichloro-6-ethyl-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3ua: The crude mixture was purified by SiO_2 gel column chromatography with pentane/EA (from 100:1). 34 mg product was obtained by 40% isolated yield as white solid. mp 206.5 – 208.1 °C.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.59 - 7.53 (m, 2H), 7.46 - 7.33 (m, 9H), 6.91 (s, 1H), 2.96 - 2.86 (m, 2H), 1.16 (t, *J* = 7.8 Hz, 3H).

 ^{13}C NMR (150 MHz, Chloroform-*d*) δ 174.6, 150.8, 150.6, 137.0, 134.7, 130.8, 130.7, 130.0, 129.4,

129.3, 129.2, 129.0, 128.8, 128.7, 126.6, 116.2, 115.4, 98.0, 24.4, 12.7.

ESI-HRMS: mass spectrometry: m/z calc. 444.0529 $[C_{24}H_{17}O_2NCl_2Na]^+$, measured 444.0522.

IR (neat, cm⁻¹): v: 3470, 3086, 2927, 1740, 1608, 1457, 1404, 1331, 1224, 1141, 1065, 942, 870, 784, 748, 699.

6,7-oxazol-2,3-diphenylbenzo[*a*]pyrrolo[2,1-*b*]oxazol-1(3aH)-one

3va: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 20:1). 43 mg product was obtained by 59% isolated yield as yellow solid. mp 235.1 – 237.0 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.01 (s, 1H), 7.86 (s, 1H), 7.58 - 7.54 (m, 2H), 7.46 - 7.35 (m,

8H), 7.11 (s, 1H), 6.96 (s, 1H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 174.7, 154.2, 152.0, 150.4, 147.8, 134.8, 134.4, 131.0, 130.6, 130.1, 129.4, 129.3, 128.9, 128.7, 128.6, 128.3, 108.7, 98.1, 93.6.

ESI-HRMS: mass spectrometry: m/z calc. 367.1077 $[C_{23}H_{15}O_{3}N_{2}]^{+}$, measured 367.1077.

IR (neat, cm⁻¹): v: 3445, 3112, 2922, 1726, 1619, 1457, 1373, 1347, 1208, 1163, 1122, 1066, 938, 838, 769, 687.

6-(benzo[d]oxazol-6-yl)-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3wa: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 20:1). 20 mg product was obtained by 22% isolated yield as yellow solid. mp 206.5 – 208.1 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.12 (s, 1H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.73 (d, *J* = 1.8 Hz, 1H), 7.6 – 7.5 (m, 4H), 7.46 – 7.35 (m, 8H), 7.24 (dd, *J* = 7.9 Hz, *J* = 1.7 Hz, 1H), 7.15 (d, *J* = 1.8 Hz, 1H), 6.94 (s, 1H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 174.9, 155.9, 152.9, 150.8, 139.4, 139.1, 138.9, 134.8, 131.1, 130.5, 130.2, 130.0, 129.4, 129.2, 128.9, 128.7, 128.6, 124.2, 121.3, 120.6, 117.0, 109.4, 108.9, 97.5. ESI-HRMS: mass spectrometry: m/z calc. 465.1210 [C₂₉H₁₈O₃N₂Na]⁺, measured 465.1199. IR (neat, cm⁻¹): \tilde{v} : 3423, 3125, 2922, 1719, 1592, 1504, 1468, 1352, 1250, 1219, 1144, 1061, 948, 867, 811, 694.

7-(9-(benzo[*d*]oxazol-5-yl)-9*H*-fluoren-9-yl)-2,3-diphenylbenzo[*d*]pyrrolo[2,1-*b*]oxazol-1(3a*H*)one

3xa: The crude mixture was purified by SiO_2 gel column chromatography with pentane/EA (from 20:1). 67 mg product was obtained by 55% isolated yield as yellow oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.03 (s, 1H), 7.81 - 7.75 (m, 2H), 7.65 (d, J = 2.4 Hz, 1H), 7.57 - 7.54 (m, 2H), 7.52 - 7.50 (m, 1H), 7.50 - 7.46 (m, 2H), 7.45 (d, J = 8.4 Hz, 1H), 7.42 - 7.39 (m, 2H), 7.39 - 7.32 (m, 9H), 7.32 - 7.28 (m, 2H), 6.87 (dd, J = 9.0, 2.4 Hz, 1H), 6.81 (s, 1H), 6.72 (d, J = 8.4 Hz, 1H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 174.8, 154.2, 152.8, 151.1, 150.9, 150.5, 148.9, 143.1, 140.0, 140.0, 139.9, 139.8, 134.7, 131.2, 130.5, 130.4, 130.3, 129.5, 129.2, 128.9, 128.7, 128.6, 128.0, 127.9, 127.7, 126.2, 126.1, 126.1, 125.0, 120.4, 120.3, 119.9, 117.4, 110.6, 108.9, 97.6, 65.1.
ESI-HRMS: mass spectrometry: m/z calc. 629.1836 [C₄₂H₂₆O₃N₂Na]⁺, measured 629.1817.

IR (neat, cm⁻¹): v: 3450, 3061, 2923, 1724, 1606, 1513, 1481, 1443, 1340, 1243, 1201, 1122, 1065, 907, 807, 727.

7-(2-(benzo[d]oxazol-5-yl)propan-2-yl)-2,3-diphenylbenzo[d]pyrrolo[2,1-b]oxazol-1(3aH)-one

3ya: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 20:1). 58 mg product was obtained by 60% isolated yield as yellow liquid.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.06 (s, 1H), 7.78 (d, J = 1.8 Hz, 1H), 7.58 - 7.53 (m, 2H), 7.46 - 7.41 (m, 4H), 7.40 - 7.33 (m, 6H), 7.23 (dd, J = 8.4, 1.8 Hz, 1H), 6.90 (dd, J = 8.4, 1.8 Hz, 1H), 6.84 (s, 1H), 6.78 (d, J = 8.4 Hz, 1H), 1.77 (s, 3H), 1.75 (s, 3H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 174.8, 153.2, 152.7, 150.7, 148.1, 147.7, 144.8, 139.8, 134.7, 131.2, 130.4, 130.3, 130.2, 129.5, 129.1, 128.9, 128.6, 128.6, 125.4, 124.0, 118.0, 115.7, 110.3, 108.8, 97.3, 43.0, 31.4, 31.4.

ESI-HRMS: mass spectrometry: m/z calc. 507.1679 $[C_{32}H_{24}O_3N_2Na]^+$, measured 507.1676. IR (neat, cm⁻¹): \tilde{v} : 3650, 3059, 2926, 1719, 1609, 1513, 1484, 1438, 1340, 1250, 1138, 1065, 958, 878, 811, 692.

7-(2-(benzo[d]oxazol-5-yl)-1,1,1,3,3,3-hexafluoropropan-2-yl)-2,3-diphenylbenzo[d]pyrrolo[2,1b]oxazol-1(3aH)-one

3za: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 20:1). 48 mg product was obtained by 41% isolated yield as yellow solid. mp 196.1 – 197.3 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.14 (s, 1H), 8.00 (s, 1H), 7.60 -7.54 (m, 3H), 7.49 - 7.46 (m, 1H), 7.46 - 7.32 (m, 9H), 7.19 - 7.14 (m, 1H), 6.90 (d, *J* = 9.0 Hz, 1H), 6.89 (s, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 174.8, 155.6, 153.5, 150.5, 149.9, 140.0, 134.6, 131.1, 130.6, 130.6, 130.1, 130.0, 129.5, 129.3, 128.9, 128.7, 128.6, 128.1, 127.9, 127.0, 125.1 (\approx broad d corresponding to the main lines of a q, $J \approx 285$ Hz), 123.1, 119.1, 110.7, 109.0, 97.9. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -63.75.

ESI-HRMS: mass spectrometry: m/z calc. 615.1114 [C₃₂H₁₈O₃N₂F₆Na]⁺, measured 615.1102. IR (neat, cm⁻¹): v: 3315, 3124, 2920, 1721, 1615, 1489, 1446, 1344, 1303, 1203, 1127, 1064, 961, 885, 811, 692.

2,3-di-*m*-tolylbenzo[*d*]pyrrolo[2,1-*b*]oxazol-1(3a*H*)-one

3bb: The crude mixture was purified by SiO₂ gel column chromatography with pentane/EA (from 60:1). 38 mg product was obtained by 54% isolated yield as yellow liquid.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.50 (dd, J = 7.8, 1.2 Hz, 1H), 7.40 (s, 1H), 7.34 - 7.30 (m, 1H), 7.28 (s, 1H), 7.25 - 7.17 (m, 6H), 7.08 - 7.03 (m, 1H), 7.00 - 6.96 (m, 1H), 6.86 (s, 1H), 2.34 (s, 3H), 2.33 (s, 3H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 175.1, 155.2, 150.7, 138.6, 138.3, 134.7, 131.2, 130.3, 130.3, 130.0, 129.8, 129.0, 128.7, 128.5, 126.4, 125.9, 125.6, 121.8, 117.0, 109.6, 97.0, 21.4, 21.4.

ESI-HRMS: mass spectrometry: m/z calc. 378.1308 [C₂₄H₁₉O₂NNa]⁺, measured 376.1306.

IR (neat, cm⁻¹): v: 3432, 3035, 2920, 1720, 1596, 1474, 1344, 1305, 1238, 1131, 1102, 1009, 933, 825, 748, 693.

5. ³¹P NMR study.

Figure S1. ³¹P NMR experiments in CDCl₃: A): only PPh₃ in CDCl₃; B): PPh₃ and 1a (1:24); C): PPh₃ and 2a (1:8); D): PPh₃, 1a and 2a (1:24:8); E): PPh₃, 1a and 2a (1:24:8); and the mixture was stirred for 15 h.

6. X-ray structure of 3ca (CCDC 2093753)

(ORTEP view, 50% probability level)

Crystallization of compound **3ca** (C₂₂H₁₄F₁N₁O₂) from pentane at room temperature gave monoclinic crystals of space group P2₁/n (14) suitable for single crystal X-ray structure determination. Cell constants a = 6.2797(3), b = 22.8959(10), c = 11.1534(4) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 94.874(2)$, Z = 4, and a molecular weight of $M_r = 343.34$ result in a density of 1.427 gcm⁻³ and a linear absorption coefficient of $\mu = 0.1$ mm⁻¹ for MoK_{α} radiation ($\lambda = 0.71073$ Å).

24983 reflections covering the range $-8 \le h \le 8$, $-29 \le k \le 30$, and $-14 \le l \le 13$ ($\Theta_{max} = 28.4^{\circ}$) were collected (ϕ and ω scans) at 150 K on an Bruker APEX-II CCD diffractometer equipped with a graphite-monochomator and merged to give 4008 independent diffraction data (*R*int = 0.0223) of which 3627 with I > 2σ (I). The data set was corrected for absorption effects using the multi-scan absorption correction method SADABS⁴ ($T_{min} = 0.6878$, $T_{max} = 0.7457$). The structure was solved by intrinsic phasing using the ShelXT 2018/2 structure solution program⁵ and refined against F² on all data by full-matrix least-squares methods using ShelXL-2018/3⁶ and ShelXle GUI.⁷ 3627 reflexions were used in the final full-matrix least squares refinement including 235 parameters. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were placed at idealised positions and refined isotropically using the riding model. Refinement converged at *R*1 = 0.0386 for the observed data and wR2 = 0.1020 for all data ($w = 1/[\sigma^2(Fo^2)+(0.0494P)^2+0.6360P$] where P=(Fo²+2Fc²)/3), a residual electron density of -0.215/+0.329 eÅ⁻³, and a final goodness of fit of 1.045.

7. Chiral analytical HPLC profile for product 3aa

The enantiomeric excess was determined by chiral analytical HPLC with a chiralcel OD column (hexanes: 2-propanol= 95:5, 1.0 mL/min, 245 nm, 74:26 *er* for chiral ligand **P4**, see main text); major enantiomer $t_r = 13.14$ min, minor enantiomer $t_r = 9.31$ min.

<Peak Table>

PDA Ch1 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	9.338	4359947	224135	49.534							
2	13.553	4441915	153685	50.466							
Total		8801862	377821								

<Peak Table>

PDAC	HT 234000						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.311	1346270	69821	26.127			
2	13.142	3806495	135811	73.873			
Total		5152765	205632				

8. References

- ¹X. D. Ma, G. Zhang, ACS Catal. 2021, 11, 5108.
- ² Q. Xiong, G. Li, S. Dong, X. Liu, X. Feng, Org. Lett. 2019, 21, 8771.
- ³ P. Zhou, W. T. Yang, A. U. Rahman, G. Li, B. Jiang, J. Org. Chem. 2020, 85, 360.
- ⁴ a) SADABS-2016/2 Bruker AXS area detector scaling and absorption correction. b) L. Krause,
- R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst. 2015, 48, 3.
- ⁵ G. M. Sheldrick, *Acta Cryst.* **2015**, *A71*, 3.
- ⁶ G. M. Sheldrick, Acta Cryst. 2015, C71, 3.
- ⁷C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281.

9. Copies of ¹H and ¹³C Spectra

¹³C NMR (1x) (150 MHz, Chloroform-d)

¹H NMR (1y) (600 MHz, Chloroform-*d*)

¹³C NMR (1y) (150 MHz, Chloroform-*d*)

¹H NMR (**3ba**) (600 MHz, Chloroform-*d*)

¹³C NMR (**3fa**) (150 MHz, Chloroform-*d*)

¹³C NMR (3ga) (150 MHz, Chloroform-d)

¹³C NMR (**3ia**) (150 MHz, Chloroform-*d*)

¹³C NMR (**3ja**) (150 MHz, Chloroform-*d*)

¹H NMR (3qa) (600 MHz, Chloroform-d)

¹³C NMR (**3ra**) (150 MHz, Chloroform-*d*)

¹³C NMR (**3ta**) (150 MHz, Chloroform-*d*)

¹³C NMR (**3ua**) (150 MHz, Chloroform-*d*)

¹³C NMR (**3va**) (150 MHz, Chloroform-*d*)

¹³C NMR (**3wa**) (150 MHz, Chloroform-*d*)

