Supplementary Table 1. Detailed search strategy for each of the databases searched.

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions(R) <1946 to July 25, 2021> Search Strategy:

1 diabetic retinopathy/ 2 macular edema/ 3 diabetic retinopath*.mp. 4 intraretinal cyst*.mp. 5 foveal thickness.mp. 6 macular edema.mp. 7 diabetic maculopath*.mp. 8 macular oedema.mp. 9 central retinal edema.mp. 10 geographic atrophy/ 11 wet macular degeneration/ 12 age related macul*.mp. 13 geographic atroph*.mp. 14 macular degeneration*.mp. 15 Subretinal Fluid/ 16 subretinal fluid.mp. 17 intraretinal fluid*.mp. 18 Choroidal Neovascularization/ 19 Retinal Drusen/ 20 retinal drusen.mp. 21 choroidal neovascular*.mp. 22 exudate*.mp. 23 (CME or CSME or CMO or CSMO).mp. 24 (DMO or DME).mp. 25 diabetic eye disease*.mp. 26 or/1-25 27 ehealth.mp.

28 Artificial Intelligence.mp. 29 AI.mp. 30 computer assist*.mp. 31 computer aid*.mp. 32 neural network*.mp. 33 machine learn*.mp. 34 screening.mp. 35 exp Artificial Intelligence/ 36 diagnosis, computer-assisted/ 37 image interpretation, computer-assisted/ 38 ((mydriatic or digital or retina\$ or fundus or steroscopic) adj3 camera).mp. 39 ((mydriatic or digital or retina\$ or fundus or steroscopic) adj3 imag\$).mp. 40 (telemedicine\$ or telemonitor\$ or telescreen\$ or telehealth or teleophthalmology).mp. 41 technology based.mp. 42 remote.mp. 43 refer*.mp. 44 smartphone based.mp. 45 fundus photography.mp. 46 mass screening/ 47 or/27-46 48 ophthalmoscopy/ 49 biomicroscop*.mp. 50 retinoscopy/ 51 physical examination/ 52 slit lamp microscopy/ 53 slit lamp*.mp. 54 ((eye or ocular or fundus or direct or indirect or ophthalmic) adj3 exam\$).mp. (30385) 55 slitlamp*.mp. 56 ophthalmoscop*.mp. 57 face to face.mp. 58 Office Visits/

59 ((office or clinic* or in person) adj3 (visit\$ or exam* or consult*)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating subheading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]
60 or/48-59
61 26 and 47 and 60
62 limit 61 to yr="2010 -Current"
63 limit 62 to "review"
64 62 not 63

Primary Author	Study Design	Country	Recruitment Period	Sample Size	Age mean (range)	Sex (female%)	Years Since diagnosis	Setting	Imaging Device	Mydriasis	Imagi	ng Protocol
							of diabetes mellitus				Observation Angle	Number of Fields
Ahsan[1] 2014	Cross sectional	Pakistan	2009-2010	728	48.8	63%	9.17	Outpatient eye hospital providing screening for diabetic retinopathy	Canon CR-1	Dilated	45 degrees	2, centred on macula/centred on optic disk
Andonegui [2] 2016	Cross sectional	Spain	Not provided	201	81 (64- 96)	56%	Not applicable	Outpatient ophthalmology clinic	Carl Zeiss Visucam Pro NM	Unclear	Not provided	Not provided
Azrak [3] 2015	Cross sectional	Spain	2012-2013	136	63	Not provided	13.8	Outpatient ophthalmology clinic	Topcon 3D OCT-2000	Unclear	45 degrees	1, macula covering up to nasal border of optic disk
Toy [4] 2016	Cross sectional	USA	2014	100	60.5	58%	11.9	Outpatient ophthalmology clinic	iphone 5s	Dilated	45 degrees	Unknown number, external, and fundus from disk to macula
Maa[5] 2014	Cross sectional	USA	2012	52	Not provided	Not provided	Not applicable	Outpatient ophthalmology clinic	Not provided	Dilated	Wide angle	4, disk-macula, supratemporal, nasal and external
Litvin [6] 2017	Cross sectional	USA	2014-2015	207	53.6	59%	8.9	Outpatient ophthalmology clinic	Canon CR DGI	Dilated	45 degrees	1, temporal to the macula and including the macula.
Conlin [7] 2015	Repeated cross sectional	USA	Not provided	389	67.2 (18- 80)	5%	12.1	Veterans Affairs Health System	Topcon TRC	Non- dilated	45 degrees	4, macula, superior temporal optic disk, inferior nasal optic disk, external
Borrelli [8] 2020	Cross sectional	Italy	Not provided	40	58 (31- 80)	40%	Not provided	Outpatient eye hospital providing screening for diabetic retinopathy	DRSplus confocal system	Non- dilated	45 degrees	6-field mosaic overlapping image

Supplementary Table 2: Summary of characteristics of included studies.

Bilong [9] 2019	Cross sectional	Cameron	2017-2018	440	57.7	63%	7.9	Outpatient ophthalmology clinic	MII Ret Cam coupled with a smartphone (iphone 5s) and 20D lens	Dilated	Not provided	2, macula and optic nerve
Ding [10] 2012	Cross sectional	China	2007	531	Not provided (35-84)	62%	Not provided	Outpatient eye hospital providing screening for diabetic retinopathy	Canon CR6- 4NM	Dilated	45 degrees	2, macula and nasal photograph
Silva [11] 2012	Cross sectional	USA	Not provided	126	49 (24- 83)	46%	21.1	Outpatient eye hospital providing screening for diabetic retinopathy	Topcon NW6S camera interface with the MegaVision digital camera	Non- dilated	3, 45 degrees stereoscopic fields, 2, 30 degrees stereoscopic, 1 external image of each eye	6, 3 (centred between optic disk and macula, along the superior temporal vascular arcade, nasal, and inferior to disk), 2 (optic disk and macula), 1 (External)
Russo [12] 2015	Cross sectional	Italy	Not provided	240	58.8	54%	11.6	Outpatient ophthalmology clinic	iPhone 5 and D- Eye adapter	Dilated	20 degrees	Not provided
Fahadullah [13] 2019	Cross sectional	Pakistan	2015	2350	53.5 (20- 95)	51%	Not provided	Outpatient eye hospital providing screening for diabetic retinopathy	Canon CR-1	Non- dilated	45 degrees	1
Sengupta[14] 2018	Cross sectional	India	2014-2015	275	55.7 (37- 81)	37%	9.6	Outpatient ophthalmology clinic	Topcon TRC- 50DX	Dilated	45 degrees	3, macula, nasal and supratemporal arcade
Toy [15] 2016	Repeated cross sectional	USA	2008-2012	1521	55.4	Not provided	46.8	Outpatient ophthalmology clinic	Nidek NM-1000	Non- dilated	45 degrees	1, macula
Wilson [16] 2010	Cross sectional	Scotland	Not provided	380	Not provided	Not provided	Not provided	Outpatient ophthalmology clinic	Wide field scanning laser ophthalmoscope	Non- dilated	136 degrees	1
Litvin [17] 2014	Cross sectional	USA	Not provided	206	56	49%	Not provided	Outpatient ophthalmology clinic	Canon CR6- 45NM	Non- dilated	45 degrees	3, macula, optic disk, optic nerve and macula

Silva [18] 2013	Cross sectional	USA	Not provided	206	53.9 (18- 88)	50%	Not provided	Outpatient tertiary diabetes care centre	DiSLO200	Dilated	200 degrees	1
Manjunath [19] 2015	Cross sectional	UK	Not provided	2046	Not provided	Not provided	Not provided	Outpatient eye hospital providing screening for diabetic retinopathy	Optomap p2000 and OCT	Dilated	200 degrees	3, centre looking up, looking down
Ting [20] 2011	Cross sectional	Australia	Not provided	272	53.9	Not provided	13.9	Outpatient ophthalmology clinic	FF450 Zeiss	Dilated	Not provided	3, macula, optic disk, temporal retina
Ku [21] 2013	Cross sectional	Australia	2005-2008	706	48 (20- 83)	64%	Not provided	Remote community clinic for diabetic retinopathy screening	Topcon TRC- NW100	Dilated	45 degrees	1, centred on the fovea
Maa [22] 2020	Cross sectional	USA	2015-2017	256	60	87%	Not applicable	Veterans Affairs Health System	Canon CX-1	Dilated	45 degrees	3 retina, 1 external
Sengupta [23] 2019	Cross sectional	India	2015-2016	231	54.1	65%	10.7	Outpatient eye hospital providing screening for diabetic retinopathy	Topcon TRC- 50DX	Dilated	45 degrees	3, macula, supertemporal, nasal
Szeto [24] 2018	Cross sectional	Hong Kong	2015-2016	322	66.6	48%	13.3	Outpatient eye hospital providing screening for diabetic retinopathy	UWF-SLO Daytona	Dilated	200 degrees	1
Duchin [25] 2015	Cross sectional	USA	Not provided	94	74 (577- 88)	0%	Not applicable	Veterans Affairs Health System	Topcon NW-8	Non- dilated	Not provided	1, macula
Healy [26] 2013	Retrospective cross sectional	UK	2008-2011	3002	65 [*] (17- 100)	Not provided	Not provided	Outpatient ophthalmology clinic	Not provided	Dilated	Not provided	2, macula and disc-centered
Nanji [27] 2020	Cross sectional	Kenya	2011	538	62 (33- 91)	Not provided	5*	Outpatient ophthalmology clinic	Topcon 777	Dilated	45 degrees	3

Maruyama- Inoue [28] 2020	Cross sectional	Japan	2020	109	77.5	71%	Not applicable	Outpatient ophthalmology clinic	Clarus	Dilated	Single shot 133 degrees or montaged 200 degrees	Unclear
---------------------------------	--------------------	-------	------	-----	------	-----	-------------------	---------------------------------------	--------	---------	--	---------

*Median

Supplementary Table 3. Definitions of diabetic eye disease and age-related macular degeneration severity.

Study ID	DME Definition	Treatable DR Definition	Treatable AMD Definition
Ahsan[1] 2014	Not provided	severe non-proliferative and worse or DME (ICDR)*	Not applicable
Andonegui [2] 2016	Not applicable	Not applicable	Persistent macular fluid, visual acuity loss with macular fluid, new onset macular hemorrhage
Azrak [3] 2015	Hard exudate or retinal thickening within 500 microns of macula	Pre-proliferative, proliferative, DME (ETDRS)†	Not applicable
Toy [4] 2016	Presence of hard exudate	Moderate non-proliferative and worse (ICDR)*	Not applicable
Maa[5] 2014	Not applicable	Not applicable	Not applicable
Litvin [6] 2017	CSME (ETDRS)†	Not applicable	Not applicable
Conlin [7] 2015	Not provided	Moderate non-proliferative (ICDR)*	Category 3 or higher (ARED)‡
Borrelli [8] 2020	Not provided	Moderate non-proliferative and worse (ETDRS)†	Not applicable
Bilong [9] 2019	Hard exudate within one disk diameter of macula	Not provided (ICDR)*	Not applicable
Ding [10] 2012	Not provided	Pre-proliferative, proliferative, DME (UKNSC)**	Not applicable
Silva [11] 2012	Not provided	Moderate non-proliferative (ETDRS)†	Not applicable
Russo [12] 2015	CSME (ETDRS)†	Moderate non-proliferative and worse (ICDR)*	Not applicable
Fahadullah [13] 2019	Not applicable	Not applicable	Not applicable
Sengupta[14] 2018	CSME (NHS)††	Severe NPDR or worse and/or presence of CSME (NHS)††	Not applicable
Toy [15] 2016	Not provided	Moderate non-proliferative and worse (ICDR)*	Not applicable

Wilson [16] 2010	Exudate or blot hemorrhage within 1 disk diameter of fovea (SDRSS)‡‡	Severe non-proliferative and worse or DME (SDRSS) ‡‡	Not applicable
Litvin [17] 2014	Exudate within one disk diameter of fovea as surrogate marker for CSME	Not applicable	Not applicable
Silva [18] 2013	Not provided	Moderate non-proliferative and worse (ETDRS) †	Not applicable
Manjunath [19] 2015	CSME (ETDRS)†	Moderate non-proliferative and worse (UKNSC)**	Not applicable
Ting [20] 2011	Not applicable	Not applicable	Not applicable
Ku [21] 2013	Retinal thickening within 500 microns fovea associated with thickening at least one disk area in size and one disk diameter from the fovea	PDR or DME	Not applicable
Maa [22] 2020	Not applicable	Not applicable	Not applicable
Sengupta [23] 2019	Not applicable	Not applicable	Not applicable
Szeto [24] 2018	Not provided	Moderate non-proliferative	Not applicable
Duchin [25] 2015	Not applicable	Not applicable	Scale 3 or higher (ARED) ‡
Healy [26] 2013	Exudate within 1 disc diameter (DD) of the center of the fovea, circinate or group of exudates within the macula, or any microaneurysm or hemorrhage within 1 DD of the center of the fovea	Pre-proliferative, proliferative, (ETDRS)†	Not applicable

	but only if associated		
	with a best visual acuity		
	of worse than 0.3		
	LogMAR equivalent to		
	Snellen 6/12).		
Nanji [27] 2020	Not applicable	Not applicable	Not applicable
Maruyama-Inoue [28]	Not applicable	Not applicable	Not applicable
2020			

*ICDR: International Classification of diabetic retinopathy

†ETDRS: Early treatment of diabetic retinopathy study

‡ARED: Age related eye disease study

**UKNSC: United Kingdom National Screening Committee

††NHS: National Health Service

‡‡SDRSS: Scottish diabetic retinopathy severity scheme

Supplementary	Table 4.	Grading	of disease severity.	
11 5		0	2	

	Telemed	licine Evaluation		Face to Face Examination						
Study ID	Number of Graders	Grader Credentials	Number of Graders	Credentials	Reference Standard					
Ahsan[1] 2014	1	Retina specialist	1	Not provided	Keeler ophthalmoscope					
Andonegui [2] 2016	1	Retina specialist	1	Retina specialist	noncontact 90D fundus lens					
Azrak [3] 2015	1	Retina specialist	1	Retina specialist	Indirect ophthalmoscopy and Slit lamp fundus biomicroscopy					
Toy [4] 2016	2	Ophthalmologist	1	Ophthalmologist	Dilated ophthalmoscopy and Slit lamp fundus biomicroscopy					
Maa[5] 2014	1	Ophthalmologist	1	Ophthalmologist	Not provided					
Litvin [6] 2017	2	Optometrist	1	Optometrist	Slit lamp fundus biomicroscopy					
Conlin [7] 2015	1	Optometrist	1	Ophthalmologist	Indirect ophthalmoscopy Slit lamp					
		-		or optometrist	fundus biomicroscopy					
Borrelli [8] 2020	1	Ophthalmologist	1	Ophthalmologist	Slit lamp fundus biomicroscopy					
Bilong [9] 2019	1	Ophthalmologist	1	Ophthalmologist	Indirect ophthalmoscopy					
Ding [10] 2012	1	Ophthalmologist	1	Ophthalmologist	Slit lamp fundus biomicroscopy					
Silva [11] 2012	1	Optometrist	1	Ophthalmologist	Not reported					
Russo [12] 2015	1	Ophthalmologist	1	Ophthalmologist	Slit lamp fundus biomicroscopy					
Fahadullah [13] 2019	1	Optometrist	1	Ophthalmologist	Slit lamp fundus biomicroscopy					
Sengupta[14] 2018	2	Retina specialist	2	Retina specialist	Slit lamp fundus biomicroscopy and indirect ophthalmoscopy using 90D and 20D lenses					
Toy [15] 2016	1	Ophthalmologist	1	Ophthalmologist	Slit lamp fundus biomicroscopy and indirect ophthalmoscopy					
Wilson [16] 2010	1	Ophthalmology research fellow	1	Ophthalmologist or ophthalmology resident	Slit lamp fundus biomicroscopy					
Litvin [17] 2014	2	Optometrist	1	Optometrist	Slit lamp biomicroscopy with 90D lens					
Silva [18] 2013	1	Retina specialist	1	Retina specialist	Dilated retinal exam					

Manjunath [19] 2015	1	Ophthalmologist	1	Ophthalmologist	Slit lamp fundus biomicroscopy
Ting [20] 2011	1	Ophthalmologist	1	Ophthalmologist	Slit lamp fundus biomicroscopy
Ku [21] 2013	1	Ophthalmologist	1	Ophthalmologist	Slit lamp fundus biomicroscopy
Maa [22] 2020	2	Ophthalmologist	1	Ophthalmologist	Not provided
Sengupta [23] 2019	2	Ophthalmologist	1	Ophthalmologist	Slit lamp fundus biomicroscopy
					and indirect ophthalmoscopy with
					90D and 20D lenses
Szeto [24] 2018	1	Ophthalmologist	1	Ophthalmologist	Slit lamp fundus biomicroscopy
Duchin [25] 2015	2	Optometrist	1	Ophthalmologist	Slit lamp fundus biomicroscopy
Healy [26] 2013	1	Grader with	1	Ophthalmologist	Slit lamp fundus biomicroscopy
		certification from			
		English Screening			
		Program			
Nanji [27] 2020	1	Ophthalmologist	1	Ophthalmologist	Slit lamp fundus biomicroscopy
Maruyama-Inoue [28]	2	Ophthalmologist	2	Ophthalmologist	Slit lamp fundus biomicroscopy
2020					

TP (Patients	FN	FP	TN	Sensitivity	Specificity
or Eyes)	(Patients or	(Patients or	(Patients or	[95% CI]	[95% CI]
	Eyes)	Eyes)	Eyes)		_
Any detectable	e age-related ma	cular degeneratio	n*		
2	0	2	48	1.00 [0.16,	0.96 [0.86,
				1.00]	1.00]
10	3	77	299	0.77 [0.46,	0.80 [0.75,
				0.95]	0.83]
3	3	2	248	0.50 [0.12,	0.99 [0.97,
				0.88]	1.00]
Any referrable	e age-related mac	ular degeneration	n**		
84	3	17	97	0.97 [0.90,	0.85 [0.77,
				0.99]	0.91]
48	9	2	35	0.84 [0.72,	0.95 [0.82,
				0.93]	0.99]
85	5	2	17	0.94 [0.88,	0.89 [0.67,
				0.98]	0.99]

Supplementary Table 5. Diagnostic accuracy of tele-retinal screening for the detection of age-related macular degeneration.

*Presence of macular drusen, disciform scar, or choroidal neovascularization with subretinal bleeding or fluid **Any large drusen (>125 micron), geographic atrophy, or neovascularization

Supplementary Table 6. Strength of body of evidence for main outcomes.

Sensitivity	0.91 (95% CI: 0.82 to 0.96)	Prevalence*	20%	28%	40%	
Specificity	0.88 (95% CI: 0.74 to 0.95)					

	№ of studies (№ of patients)	s Study design		Factors that r	nay decrease cer	tainty of evide	Effect	Test			
Outcome			Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 20%	pre-test probability of 28%	pre-test probability of 40%	accuracy CoE
True positives (patients with diabetic retinopathy)	13 studies 7207 patients	cross-sectional (cohort type accuracy study)	serious ª	not serious	serious ^b	not serious	none	182 (164 to 192)	255 (230 to 269)	364 (328 to 384)	⊕⊕⊖⊖ Low
False negatives (patients incorrectly classified as not having diabetic retinopathy)								18 (8 to 36)	25 (11 to 50)	36 (16 to 72)	
True negatives (patients without diabetic retinopathy)	13 studies 7207 patients	cross-sectional (cohort type accuracy study)	serious ª	not serious	serious ^b	not serious	none	704 (592 to 760)	634 (533 to 684)	528 (444 to 570)	⊕⊕⊖⊖ Low
False positives (patients incorrectly classified as having diabetic retinopathy)								96 (40 to 208)	86 (36 to 187)	72 (30 to 156)	

Explanations

a. Inappropriate exclusion of patients who are ot great candidates for fundus photography, removal of ungradable images from analysis.

b. Large degree of heterogeneity as presented in sROC curves with large predictive regions.

*Estimated prevalence obtained from: Zhang X, Saaddine JB, Chou C-F, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. Jama 2010;304(6):649-56

Sensitivity	0.84 (95% CI: 0.76 to 0.90)					
		Prevalence*	2%	4%	10%	
Specificity	0.85 (95% CI: 0.75 to 0.91)					

Outcome	№ of studies (№ of patients)	idies f Study design ts)		Factors that r	nay decrease cer	tainty of evide	Effect	Test			
			Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 2%	pre-test probability of 4%	pre-test probability of 10%	accuracy CoE
True positives (patients with diabetic macular edema)	6 studies 4255 patients	cross-sectional (cohort type accuracy study)	serious ^a	not serious	not serious ^b	not serious	none	17 (15 to 18)	34 (30 to 36)	84 (76 to 90)	⊕⊕⊕⊖ Moderate
False negatives (patients incorrectly classified as not having diabetic macular edema)	_							3 (2 to 5)	6 (4 to 10)	16 (10 to 24)	
True negatives (patients without diabetic macular edema)	6 studies 4255 patients	cross-sectional (cohort type accuracy study)	serious ^a	not serious	not serious ^b	not serious	none	833 (735 to 892)	816 (720 to 874)	765 (675 to 819)	⊕⊕⊕⊖ Moderate
False positives (patients incorrectly classified as having diabetic macular edema)								147 (88 to 245)	144 (86 to 240)	135 (81 to 225)	

Explanations

a. Inappropriate exclusion of patients who are not great candidates for fundus photography, removal of ungradable images from analysis.

b. Mild-moderate degree of heterogeneity as presented in sROC curves with smaller predictive regions.

*Estimated prevalence obtained from: Varma R, Bressler NM, Doan QV, et al. Prevalence of and risk factors for diabetic macular edema in the United States. JAMA ophthalmology 2014;132(11):1334-40

Sensitivity	0.88 (95% CI: 0.81 to 0.93)					
		Prevalence*	2%	4%	10%	
Specificity	0.86 (95% CI: 0.79 to 0.90)					

	№ of studies (№ of patients)	udies of Study design tts)		Factors that n	nay decrease cer	tainty of evide	Effect	Test			
Outcome			f Study design s)	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 2%	pre-test probability of 4%	pre-test probability of 10%
True positives (patients with referrable diabetic retinopathy)	10 studies 6373 patients	cross-sectional (cohort type accuracy study)	serious ª	not serious	not serious ^b	not serious	none	18 (16 to 19)	35 (32 to 37)	88 (81 to 93)	⊕⊕⊕⊖ Moderate
False negatives (patients incorrectly classified as not having referrable diabetic retinopathy)								2 (1 to 4)	5 (3 to 8)	12 (7 to 19)	
True negatives (patients without referrable diabetic retinopathy)	10 studies 6373 patients	cross-sectional (cohort type accuracy study)	serious ª	not serious	not serious ^b	not serious	none	843 (774 to 882)	826 (758 to 864)	774 (711 to 810)	⊕⊕⊕⊖ Moderate
False positives (patients incorrectly classified as having referrable diabetic retinopathy)								137 (98 to 206)	134 (96 to 202)	126 (90 to 189)	

Explanations

a. Inappropriate exclusion of patients who are not great candidates for fundus photography, removal of ungradable images from analysis.

b. Mild-moderate degree of heterogeneity as presented in sROC curves with smaller predictive regions.

*Estimated prevalence obtained from: Zhang X, Saaddine JB, Chou C-F, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. Jama 2010;304(6):649-56

Sensitivity	0.71 (95% CI: 0.49 to 0.86)					-
		Prevalence*	5%	8%	10%	
Specificity	0.88 (95% CI: 0.85 to 0.90)]

Outcome	№ of studies (№ of patients)	s Study design		Factors that n	nay decrease cer	tainty of evide	Effect	Test			
			Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 5%	pre-test probability of 8%	pre-test probability of 10%	accuracy CoE
True positives (patients with AMD)	3 studies 697 patients	cross-sectional (cohort type accuracy study)	not serious	not serious	serious ^a	serious ^b	none	36 (25 to 43)	57 (39 to 69)	71 (49 to 86)	⊕⊕⊖⊖ Low
False negatives (patients incorrectly classified as not having AMD)								14 (7 to 25)	23 (11 to 41)	29 (14 to 51)	
True negatives (patients without AMD)	3 studies 697 patients	cross-sectional (cohort type accuracy study)	not serious	not serious	serious ^a	serious ^b	none	836 (808 to 855)	810 (782 to 828)	792 (765 to 810)	⊕⊕⊖⊖ Low
False positives (patients incorrectly classified as having AMD)								114 (95 to 142)	110 (92 to 138)	108 (90 to 135)	

Explanations

a. Large degree of heterogeneity as shown in Supplementary Table 4.

b. Data based on limited sample size.

*Estimated prevalence obtained from: 1. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and metaanalysis. The Lancet Global Health 2014;2(2):e106-e16

References

- 1. Ahsan S, Basit A, Ahmed KR, et al. Diagnostic accuracy of direct ophthalmoscopy for detection of diabetic retinopathy using fundus photographs as a reference standard. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2014;8(2):96-101
- 2. Andonegui J, Aliseda D, Serrano L, et al. Evaluation of a telemedicine model to follow up patients with exudative age-related macular degeneration. Retina 2016;**36**(2):279-84
- 3. Azrak C, Baeza-Díaz MV, Palazón-Bru A, et al. Validity of optical coherence tomography as a diagnostic method for diabetic retinopathy and diabetic macular edema. Medicine 2015;94(38)
- 4. Toy BC, Myung DJ, He L, et al. Smartphone-based dilated fundus photography and near visual acuity testing as inexpensive screening tools to detect referral warranted diabetic eye disease. Retina 2016;**36**(5):1000-08
- 5. Maa AY, Evans C, DeLaune WR, Patel PS, Lynch MG. A novel tele-eye protocol for ocular disease detection and access to eye care services. Telemedicine and e-Health 2014;**20**(4):318-23
- 6. Litvin TV, Bresnick GH, Cuadros JA, Selvin S, Kanai K, Ozawa GY. A revised approach for the detection of sight-threatening diabetic macular edema. JAMA ophthalmology 2017;**135**(1):62-68
- 7. Conlin PR, Asefzadeh B, Pasquale LR, Selvin G, Lamkin R, Cavallerano AA. Accuracy of a technology-assisted eye exam in evaluation of referable diabetic retinopathy and concomitant ocular diseases. British Journal of Ophthalmology 2015;99(12):1622-27
- 8. Borrelli E, Querques L, Lattanzio R, et al. Nonmydriatic widefield retinal imaging with an automatic white LED confocal imaging system compared with dilated ophthalmoscopy in screening for diabetic retinopathy. Acta diabetologica 2020
- 9. Bilong Y, Katte JC, Koki G, et al. Validation of smartphone-based retinal photography for diabetic retinopathy screening. Ophthalmic Surgery, Lasers and Imaging Retina 2019;**50**(5):S18-S22
- 10. Ding J, Zou Y, Liu N, et al. Strategies of digital fundus photography for screening diabetic retinopathy in a diabetic population in urban China. Ophthalmic epidemiology 2012;**19**(6):414-19
- 11. Silva PS, Cavallerano JD, Sun JK, Soliman AZ, Aiello LM, Aiello LP. Peripheral lesions identified by mydriatic ultrawide field imaging: distribution and potential impact on diabetic retinopathy severity. Ophthalmology 2013;**120**(12):2587-95
- 12. Russo A, Morescalchi F, Costagliola C, Delcassi L, Semeraro F. Comparison of smartphone ophthalmoscopy with slit-lamp biomicroscopy for grading diabetic retinopathy. American journal of ophthalmology 2015;159(2):360-64. e1
- 13. Fahadullah M, Memon NA, Salim S, et al. Diagnostic accuracy of non-mydriatic fundus camera for screening of diabetic retinopathy: A hospital based observational study in Pakistan. Innovation 2019;**69**(3)
- 14. Sengupta S, Sindal M, Besirli C, et al. Screening for vision-threatening diabetic retinopathy in South India: comparing portable non-mydriatic and standard fundus cameras and clinical exam. Eye 2018;**32**(2):375-83
- 15. Toy BC, Aguinaldo T, Eliason J, Egbert J. Non-mydriatic fundus camera screening for referral-warranted diabetic retinopathy in a Northern California safety-net setting. Ophthalmic Surgery, Lasers and Imaging Retina 2016;47(7):636-42

- 16. Wilson P, Ellis J, MacEwen C, Ellingford A, Talbot J, Leese G. Screening for diabetic retinopathy: a comparative trial of photography and scanning laser ophthalmoscopy. Ophthalmologica 2010;224(4):251-57
- 17. Litvin TV, Ozawa GY, Bresnick GH, et al. Utility of hard exudates for the screening of macular edema. Optometry and vision science: official publication of the American Academy of Optometry 2014;**91**(4):370
- Silva PS, Walia S, Cavallerano JD, et al. Comparison of low-light nonmydriatic digital imaging with 35-mm ETDRS sevenstandard field stereo color fundus photographs and clinical examination. TELEMEDICINE and e-HEALTH 2012;18(7):492-99
- 19. Manjunath V, Papastavrou V, Steel D, et al. Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening. Eye 2015;**29**(3):416-23
- 20. Ting DS, Tay-Kearney ML, Kanagasingam Y. Light and portable novel device for diabetic retinopathy screening. Clinical & experimental ophthalmology 2012;**40**(1):e40-e46
- 21. Ku JJY, Landers J, Henderson T, Craig JE. The reliability of single-field fundus photography in screening for diabetic retinopathy: the Central Australian Ocular Health Study. Medical Journal of Australia 2013;**198**(2):93-96
- 22. Maa AY, McCord S, Lu X, et al. The Impact of OCT on Diagnostic Accuracy of the Technology-Based Eye Care Services Protocol: Part II of the Technology-Based Eye Care Services Compare Trial. Ophthalmology 2020;**127**(4):544-49 doi: 10.1016/j.ophtha.2019.10.025.
- 23. Sengupta S, Sindal MD, Baskaran P, Pan U, Venkatesh R. Sensitivity and specificity of smartphone-based retinal imaging for diabetic retinopathy: a comparative study. Ophthalmology Retina 2019;**3**(2):146-53
- 24. Szeto SK, Wong R, Lok J, et al. Non-mydriatic ultrawide field scanning laser ophthalmoscopy compared with dilated fundal examination for assessment of diabetic retinopathy and diabetic macular oedema in Chinese individuals with diabetes mellitus. British Journal of Ophthalmology 2019;**103**(9):1327-31
- 25. Duchin KS, Asefzadeh B, Poulaki V, Rett D, Marescalchi P, Cavallerano A. Teleretinal imaging for detection of referable macular degeneration. Optometry and Vision Science 2015;**92**(6):714-18
- 26. Healy R, Sallam A, Jones V, et al. Agreement between photographic screening and hospital biomicroscopy grading of diabetic retinopathy and maculopathy. European journal of ophthalmology 2014;**24**(4):550-58
- 27. Nanji K, Kherani IN, Damji KF, Nyenze M, Kiage D, Tennant MT. The Muranga Teleophthalmology Study: A Comparison of Virtual (Teleretina) Assessment with in-person Clinical Examination to Diagnose Diabetic Retinopathy and Age-related Macular Degeneration in Kenya. Middle East Afr J Ophthalmol 2020;**27**(2):91-99 doi: 10.4103/meajo.MEAJO 144 19.
- 28. Maruyama-Inoue M, Kitajima Y, Mohamed S, et al. Sensitivity and specificity of high-resolution wide field fundus imaging for detecting neovascular age-related macular degeneration. PLoS One 2020;15(8):e0238072 doi: 10.1371/journal.pone.0238072.