Supplementary Materials

Supplementary Tables
Table S1. Descriptions of the EF battery of tasks 2
Table S2. Descriptions of the tasks measuring processing speed 5
Table S3. Descriptive statistics and data coverage of executive functioning and processing speed
tasks
Table S4. Model fit indices for five factor structures ADHD (using categorical indicators) 7
Table S5. Parceling of ADHD items based on rank-ordering of factor loadings onto each specific
factor (Inattention and Hyperactivity/Impulsivity)
Table S6. Model fit indices for five factor structures ADHD (using continuous indicators) 9
Table S7. Standardized regression coefficients of ADHD symptom factors and diagnostic ADHD
subtypes on EF, before and after adjusting for processing speed differences 10
Table S8. Main and moderation effects of age (modeled linearly and quadratically) on EF and
ADHD
Table S9. Moderation of the association between EF and parent-rated ADHD using
sociodemographic variables
Table S10. Zero-order correlations between higher- and first-order EF domain and processing
speed and sociodemographic moderator variables14
Table S11. Standardized regression coefficients of ADHD symptom factors on Common EF
before and after adjusting for processing speed differences at the domain-specific and higher-
order EF level

Supplementary Figures

Figure S1. Hierarchical factor structure of the superordinate Common EF factor 17
Figure S2. Factor structure of processing speed 18
Figure S3. Frequency distribution of parceled responses to parent-reported Conners-3 items 19
Figure S4. Path diagram representation of bifactor ADHD regressed onto common executive
functioning (EF), after accounting for the effects of processing speed on EF at the domain-
specific level
Figure S5. Moderation model of the EF-ADHD association by socioeconomic status
Figure S6. Diagnostic categories of child-rated ADHD regressed onto processing speed and
speed-residualized executive function (EF)

Supplementary Tables

Table S1.

Descriptions of the EF battery of tasks.

EF Domain Assessed	Task	Description	References	Reliability
Inhibition	Animal Stroop	 Participants verbally identify animals based on 3 conditions- Congruent: Animal's face matches the body Neutral: Animal face is removed, identification based on animal's body Incongruent: Animal's face does not match the body, participants are asked to name animal based on the body 	Wright, Waterman, Prescott, & Murdoch- Eaton (2003)	.84
Inhibition	Mickey	 Participants press a button corresponding to the side of the screen that the Mickey Mouse picture flashes. One or two white squares flash before the Mickey appears; participants are told to ignore them. 3 conditions administered- <u>Congruent</u>: Square flashes on same side as Mickey <u>Neutral</u>: Squares flash on both sides <u>Incongruent</u>: Square flashes on opposite side from Mickey 	Lee, K., Bull, R., & Ho, R.M.H (2013)	.46
Inhibition	Stop Signal	Stop Signal – Visual Participants press a button to indicate the direction an arrow is pointing, but are told not to respond when an 'X' appears a short delay after arrow presentation.	Verbruggen & Logan (2008)	.40

		Stop Signal – Auditory		.31
		Same as above, except participants are required		
		to inhibit their response when a tone sounds		
Working Memory	Symmetry Span	Participants view squares flashing on a grid,	Kane et al. (2004)	.78
		and are required to memorize the order of		
		presentation. A symmetry task (indicating		
		whether a geometric picture is symmetrical or		
		not) is used as a distractor on alternating trials		
		(i.e. between each square flashed).		
Working Memory	Listening Recall	Participants listen to single letters and	Daneman &	.78
		sentences, presented on alternating trials. They	Carpenter (1980)	
		are required to both recall the letters presented		
		in order and determine whether the sentence		
		presented makes sense. The number of letters		
		presented increases with each trial set.		
Working Memory	Digit Span - Backwards	Participants are required to recall and recite	Wechsler (2003)	.59
		increasingly long sets of numbers backward.		
Updating	Keeping Track	Participants listen to a list of words associated	Miyake et al.	.52
		with between two and six categories. They are	(2000)	
		required to recall the most recent word from a		
		selected category.		
Updating	2-back/n-back	Participants view a series of shapes and press a	Jaeggi et al. (2010);	2 back: .84
		button to indicate whether the current shape		1 1 00
		matches the shape presented either 1 or 2 trials		n-back: .89
		prior.		
Updating	Letter Recall	Participants are presented a sequence of single	Broadway & Engle	.75
		letters. They are required to identify the last N	(2010)	
		letters, in order of presentation.		
Switching	Trail Making	A paper-and-pencil task in which participants	Salthouse (2011)	.87
	("Connections")	connect circles containing either letters or		
		numbers according to task rules from 3		
		conditions-		
		• Numbers: Connect circles in numerical order		

		 <u>Letters</u>: Connect circles in alphabetical order <u>Number-Letter</u>: Connect numbers and letters in alternating fashion, but still following numerical and alphabetical order (i.e. 1-A-2-B-3-C etc.) <u>Letter-Number</u>: Connect letters and numbers in alternating fashion, but still following numerical and alphabetical order (i.e. A-1-B-2-C-3 etc.) 		
Switching	Local-Global	 Participants verbally identify letters and shapes composed of smaller letters and shapes, respectively, based on 3 conditions- Local: Participants name the small letters or shapes that make up the larger figure <u>Global</u>: Participants name the large letter or shape <u>Alternating</u>: Participants alternate between naming the smaller and larger letter/shape (based on the rule listed above "small" or "big", respectively) 	Miyake et al. (2000)	.73
Switching	Plus-Minus	 A paper-and-pencil task in which participants are given lists of 2-digit numbers and complete addition and subtraction problems based on 3 conditions- <u>Addition</u>: Participants add 1 to each number in the first list <u>Subtraction</u>: Participants subtract 1 to each number in the second list <u>Alternating</u>: Participants alternate between adding 1 and subtract 1 from each number in the third list 	Miyake et al. (2000)	.69
Switching	Cognitive Flexibility	A rule matching game in which participants press a button to indicate which image choice (presented in the middle of the screen) matches a target shape that pops up at the bottom of the screen. The rules are to either match by shape or color.	Baym, Corbett, Wright, & Bunge (2008)	.82

Table S2.

Task	Description	References	Reliability
Letter Comparison	A paper-and-pencil task in which participants compare two letter strings and decide as quickly as possible whether they are the same or different.	Salthouse & Babcock (1991)	0.85
Pattern Comparison	A paper-and-pencil task in which participants compare two geometric patterns and decide as quickly as possible whether they are the same or different.	Salthouse & Babcock (1991)	0.84
Symbol Search	A paper-and pencil task in which participants determine and indicate whether target symbols (simple line drawings) appear in line of various simple symbols.	Wechsler (2003)	0.79

Descriptions of the tasks measuring processing speed.

Table S3.

Descriptive statistics and data coverage of executive functioning and processing speed task	<i>:</i> S.
---	-------------

Domain	Task	N	Mean	SD	% Missing
EF: Inhibition	Stroop	1545	-230.55	238.38	0.19
	Mickey	931	-36.88	70.12	39.86
	Stop Signal - Auditory	682	329.90	82.14	55.94
	<u>Stop Signal - Visual</u>	660	-260.49	62.04	57.36
EF: WM	Symmetry Span	1492	20.84	8.80	3.62
	Listen Recall	1423	-3.39	1.16	8.07
	Digit Back	1120	7.07	1.83	27.65
EF: Updating	Keep Track	1525	6.75	2.32	1.49
	2-Back	731	-3.82	1.06	52.78
	<u>1- and 2-Back</u>	778	-3.97	1.66	49.74
	Running Memory	1029	19.17	8.06	33.53
EF: Switching	Connections	1065	-6.93	0.58	31.20
	Local Global	1526	-7.15	0.43	1.42
	Plus-Minus	722	-683.67	1274.72	53.36
	Cognitive Flexibility	772	-1088.32	190.73	50.13
Processing Speed	Letter Comparison	1546	6.99	2.52	0.13
	Pattern Comparison	1548	14.22	3.81	0
	Symbol Search	1482	23.83	7.26	4.26

Note. After the third year of data collection, three tasks (italicized) were replaced by tasks from the same EF domain (underlined).

Table S4.

Model	Model Fit Indices								
mout	χ^2	df	p(χ ²)	RMSEA (95% CI)	CFI	TLI			
One factor: ADHD	2637.43	170	< 0.0001	0.100 (0.097-0.103)	0.87	0.82			
Two factors: Inatt, Hyp/Imp	822.22	169	< 0.0001	0.052 (0.048-0.055)	0.97	0.95			
Three factors: Inatt, Hyp,	788.66	167	<0.0001	0.051 (0.047-0.054)	0.97	0.96			
Imp	,	107			0.77	0170			
Bifactor [2 specific factors]:	132 88	150	~0.0001	0 036 (0 032 0 040)	0.00	0.08			
ADHD, Inatt, Hyp/Imp	432.00	130	<0.0001	0.030 (0.032-0.040)	0.99	0.90			
Bifactor [3 specific factors]:	616.03	150	<0.0001	0.046 (0.043.0.050)	0.08	0.06			
ADHD, Inatt, Hyp, Imp	010.95	150	<0.0001	0.040 (0.045-0.050)	0.98	0.90			

Model fit indices for alternate factor structures of ADHD using categorical indicators.

Note. Models were constructed using categorical indicators. Bold signifies the best-fitting model for each rater. ADHD = Attention-Deficit Hyperactivity Disorder; Inatt = Inattention; Hyp = Hyperactivity; Imp = Impulsivity; χ^2 =chi-square; RMSEA = Root Mean Square Error of Approximation; CFI = Comparative Fit Index; TLI = Tucker-Lewis Index

Table S5.

Parceling of ADHD items based on rank-ordering of factor loadings onto each specific factor (Inattention and

Hyperactivity/Impulsivity).

Item	Itom	Target	F	actor Loadir	ng	Parcel
No.	Item	Domain	ADHD	IA	H/I	No.
7	Has trouble organizing tasks or activities	Inattention	0.491**	0.698**		1
6	Fails to complete schoolwork, chores, or tasks	Inattention	0.502**	0.692**		1
1	Is forgetful in daily activities	Inattention	0.467**	0.650**		2
5	Does not follow through on instructions	Inattention	0.577**	0.649**		Z
4	Doesn't pay attention to details; makes careless mistakes	Inattention	0.592**	0.612**		2
9	Loses things (e.g. schoolwork, pencils, books, tools, or toys)	Inattention	0.481**	0.598**		5
8	Has trouble keeping his/her mind on work or play for long	Inattention	0.659**	0.554**		4
3	Does not seem to listen to what is being said to him/her	Inattention	0.658**	0.496**		4
10	Is easily distracted by sights or sounds	Inattention	0.616**	0.481**		5
2	Avoids or dislikes things that take a lot of effort and are not fun	Inattention	0.473**	0.439**		5
12	Blurts out answers before the question has been completed	Hyper/Impuls	0.557**		0.639**	6
11	Talks too much	Hyper/Impuls	0.495**		0.493**	0
20	Interrupts others (e.g. butts into conversations or games)	Hyper/Impuls	0.700**		0.419**	7
14	Has difficulty waiting for his/her turn	Hyper/Impuls	0.702**		0.413**	1
13	Acts as if driven by a motor	Hyper/Impuls	0.696**		0.388**	o
16	Is noisy and loud when playing or using free time	Hyper/Impuls	0.580**		0.372**	0
15	Runs or climbs when he/she is not supposed to	Hyper/Impuls	0.721**		0.222**	0
17	Leaves seat when he/she should stay seated	Hyper/Impuls	0.852**		0.093	9
19	Restless or overactive	Hyper/Impuls	0.893**		0.088	10
18	Fidgets or squirms in seat	Hyper/Impuls	0.888**		-0.026	10

ADHD= Attention-deficit hyperactivity disorder; Specific Factors: IA=Inattention, H/I=Hyperactivity/Impulsivity.

*p<0.05; **p<0.001

Table S6.

	Model Fit Indices							
Model	χ^2	df	p(χ ²)	RMSEA	CFI	TLI	AIC	BIC
				(95% CI)				
One factor: ADHD	1626.75	35	< 0.0001	0.18 (0.17-0.19)	0.76	0.55	43383.14	43647.00
Two factors: Inatt,	291.65	34	< 0.0001	0.07	0.96	0.92	40942.12	41211.26
Hyp/Imp				(0.07-0.08)				
Three factors: Inatt, Hyp,	245.00	25	< 0.0001	0.08	0.96	0.92	38582.50	38830.53
Imp				(0.07-0.09)				
Bifactor [2 groups]:	75.18	25	< 0.0001	0.04	0.99	0.98	40529.00	40845.64
ADHD, Inatt, Hyp/Imp				(0.03-0.05)				
Bifactor [3 groups]:	117.76	19	< 0.0001	0.06	0.98	0.96	38358.61	38638.30
ADHD, Inatt, Hyp, Imp				(0.05-0.07)				

Model fit indices for alternative factor structures of ADHD using parceled indicators.

Note. Models were constructed using parceled indicators that were treated as continuous. Bold signifies the best-fitting model for each rater. ADHD = Attention-Deficit Hyperactivity Disorder; Inatt = Inattention; Hyp = Hyperactivity; Imp = Impulsivity; χ^2 =chi-square; RMSEA = Root Mean Square Error of Approximation; CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; AIC= Aikake Information Criterion; BIC= Bayesian information Criterion

Table S7.

Model 2

EFr

PS

-0.21* [0.08]

-0.16 [0.10]

on EF, before and after adjusting for processing speed differences.									
	Inattention		Hyperactivity/Impulsivity ß [SE]		General ADHD ß [SE]				
Brodictor		SE]					EF		
Treateror	Dim.	Diag.	Dim.	Diag.	Dim.	Diag.	ß [SE]		
		(ADHD-IA)		(ADHD-HI)		(ADHD-C)			
Model 1									
EF	-0.24** [0.05]	-0.17* [0.05]	0.01 [0.06]	-0.10 [0.06]	-0.12* [0.05]	-0.12 [0.07]			

-0.10 [0.10]

-0.07 [0.13]

-0.11 [0.09]

-0.08 [0.10]

-0.004 [0.13]

-0.33* [0.17]

0.76** [0.03]

Standardized regression coefficients of ADHD symptom factors and diagnostic ADHD subtypes on EF, before and after adjusting for processing speed differences.

Note. Dim.= dimensional latent domain factor; Diag.= symptom count threshold variable (ADHD

-0.09 [0.10]

0.23 [0.13]

-0.12 [0.10]

-0.22* [0.12]

presentation); EF= Common executive function factor; PS= processing speed latent factor; EFr= Common executive function factor residualized for processing speed

p*<0.05; *p*<0.01

Table S8.

Predictor	Inattention		Hyperactivity/ Impulsivity		General ADHD		EF		Speed-resid EF	
	ß	р	ß	р	ß	р	ß	р	ß	р
Model 1										
Age	0.07	0.05	-0.06	0.13	-0.25*	<.001	0.73*	<.001	0.22*	<.001
Age ²	-0.03	0.39	-0.05	0.12	0.05	0.14	-0.10	0.001	-0.08	0.004
Model 2										
Age	0.23*	< 0.001	-0.07	0.18	-0.18	0.01				
Age ²	-0.05	0.25	-0.08	0.05	0.09	0.14				
$\mathrm{EF} \times \mathrm{Age}$	-0.01	0.85	0.05	0.31	-0.08	0.18				
EFxAge ²	0.01	0.78	0.02	0.69	0.001	0.99				
Model 3										
Age	0.29*	< 0.001	-0.14	0.02	-0.13	0.05				
Age ²	-0.05	0.23	-0.09	0.04	0.09	0.17				
rEF × Age	0.004	0.94	0.05	0.32	-0.07	0.28				
rEFxAge ²	0.005	0.90	0.04	0.35	-0.02	0.67				

Main and moderation effects of age (modeled linearly and quadratically) on EF and ADHD.

**p*<0.001

Table S9.

Moderation of the association between EF and parent-rated ADHD using sociodemographic

variables.

Predictor	Inattention		Hyperactivity/ Impulsivity		General ADHD	
	ß	р	ß	p	ß	р
Model 1						
EF	-0.24*	< 0.001	-0.08	0.82	-0.12*	0.01
Model 2						
Processing Speed	-0.16	0.10	0.23	0.07	-0.08	0.43
Speed-residualized EF (rEF)	-0.21*	0.01	-0.09	0.34	-0.11	0.23
Model 3a: Age moderation						
EF	-0.29*	< 0.001	0.02	0.76	-0.15*	0.01
Age	0.23*	< 0.001	-0.08	0.13	-0.16*	0.002
$EF \times Age$	-0.04	0.29	0.000	0.99	-0.03	0.46
Model 3b: Age moderation						
Processing Speed	-0.10	0.10	0.21	0.10	-0.06	0.57
Speed-residualized EF (rEF)	-0.25*	0.01	-0.11	0.35	-0.12	0.25
Age	0.28	0.07	-0.13	0.03	-0.13	0.03
$rEF \times Age$	-0.01	0.82	-0.01	0.89	-0.01	0.70
Model 4a: Sex moderation						
EF	-0.24*	< 0.001	0.01	0.86	-0.12*	0.01
Sex	0.04	0.36	-0.15*	0.004	0.23*	< 0.001
$EF \times Sex$	-0.02	0.72	0.04	0.49	-0.05	0.26
Model 4b: Sex moderation						
Processing Speed	-0.16	0.10	0.23	0.08	-0.07	0.48
Speed-residualized EF (rEF)	-0.12*	0.01	-0.09	0.36	-0.12	0.18
Sex	-0.02	0.89	-0.26	0.13	0.45	0.01
rEF × Sex	0.02	0.70	0.03	0.46	-0.06	0.13

Model 5a: SES moderation							
EF	-0.25	< 0.001	0.04	0.54	-0.08	0.10	
SES	0.03	0.51	-0.11	0.03	-0.07	0.03	
$EF \times SES$	-0.04	0.37	-0.07	0.30	0.11	0.02	
Model 5b: SES moderation							
Processing Speed	-0.16	0.10	0.25	0.05	-0.08	0.41	
Speed-residualized EF (rEF)	-0.23*	0.01	-0.06	0.54	-0.07	0.44	
SES	0.06	0.76	0.13	0.48	-0.45*	0.01	
$rEF \times SES$	-0.004	0.93	-0.07	0.23	0.10	0.03	
Model 6a: Race moderation							
EF	-0.40	0.04	-0.28	0.04	-0.22	0.24	
Hispanic	-0.07	0.11	0.13*	0.01	-0.01	0.75	
Black	-0.003	0.94	-0.003	0.95	0.07	0.30	
Asian	-0.05	0.17	0.04	0.29	-0.07	0.05	
EF × Hispanic	-0.03	0.63	-0.03	0.63	-0.07	0.16	
$EF \times Black$	-0.12	0.10	-0.09	0.10	-0.06	0.53	
EF × Asian	0.004	0.92	-0.09	0.03	0.02	0.64	
Model 6b: Race moderation							
Processing Speed	-0.15	0.12	0.23	0.07	-0.08	0.41	
Speed-residualized EF (rEF)	-0.37	0.04	-0.29	0.03	-0.07	0.68	
Hispanic	-0.11	0.40	0.26	0.11	0.12	0.53	
Black	0.29	0.31	0.17	0.34	0.16	0.42	
Asian	0.02	0.87	0.31*	0.01	-0.24	0.04	
rEF × Hispanic	0.01	0.76	-0.04	0.38	-0.04	0.47	
$rEF \times Black$	-0.08	0.34	-0.05	0.29	-0.02	0.71	
rEF × Asian	-0.02	0.56	-0.08*	0.01	0.05	0.08	

Note. All sociodemographic moderator variables were centered: age and SES were mean-

centered, race and sex were effect-coded. Coefficients reported are the standardized values.

*p<FDR-adjusted threshold for significance

Table S10.

Association between higher- and first-order EF domain and processing speed and

		PS				
	Common EF	WM	Inhibition	Switching	Updating	(Est.
						[95% CI])
PS	0.82**	0.52**	0.27**	0.53**	0.18**	
	[0.79-0.86]	[0.42-0.61]	[0.12-0.42]	[0.43-0.63]	[0.08-0.27]	
SEC	0.17*	0.08	0.01	0.07	0.13	0.12**
SES	[0.10-0.24]	[-0.09-0.26]	[-0.16-0.19]	[-0.32-0.46]	[-0.08-0.34]	[0.06-0.18]
Age	0.73**	0.41**	0.36**	0.30**	0.31**	0.77**
	[0.69-0.77]	[0.34-0.49]	[0.23-0.50]	[0.20-0.41]	[0.25-0.37]	[0.74-0.80]
Sex	0.01	0.08	-0.07	0.00	-0.03	-0.02
	[-0.07-0.10]	[-0.01-0.16]	[-0.22-0.08]	[-0.01-0.10]	[-0.11-0.06]	[-0.10-0.06]
Race						
Hispanic	-0.16**	-0.15**	0.09	-0.08	0.21**	-0.07
	[-0.240.07]	[-0.240.08]	[-0.040.21]	[-0.18-0.01]	[-0.290.13]	[-0.15-0.01]
Black	-0.14*	-0.14*	-0.05	-0.12	0.16**	-0.03
	[-0.230.06]	[-0.220.05]	[-0.19- 0.10]	[-0.22-0.01]	[-0.250.07]	[-0.11-0.05]
Asian	-0.01	0.01	0.01	-0.05	0.01	0.01
	[-0.12-0.10]	[-0.09- 0.11]	[-0.09- 0.11]	[-0.18-0.08]	[-0.13-0.12]	[-0.10-0.12]

sociodemographic moderator variables.

Note. For race and sex, parameter estimates reflect mean differences (standardized betas) between the reference (white, female) and alternate category. For age and SES, Pearson's R estimates are reported. Associations between each moderator variable and lower- (i.e. WM, Inhibition, Switching, Updating) and higher-order EF factors (Common EF) were assessed in separate models.

*p<0.05; **p<0.01 (after FDR-adjustment)

Table S11.

Standardized regression coefficients of ADHD symptom factors on Common EF, before and after adjusting for processing speed

differences at the domain-specific and higher-order EF level.

	Model 1 (Common EF	Model 2 (Common EF +	Model 3 [†] (+4 EF Domain paths)
	only)	Processing Speed)	
Paths from Common EF to ADHD			
Common $EF \rightarrow$ Inattention	-0.24** [0.05]	-0.21* [0.08]	-0.12* [0.05]
Common EF \rightarrow Hyperactivity/Impulsivity	0.01 [0.06]	-0.09 [0.10]	0.06 [0.06]
Common EF \rightarrow General ADHD	-0.12* [0.05]	-0.11 [0.09]	-0.07 [0.06]
Paths from Processing Speed to EF			
$PS \rightarrow Common EF$		0.76***[0.03]	
$PS \rightarrow EF$ Domain: Inhibition			0.56*** [0.12]
$PS \rightarrow EF$ Domain: Working Memory			0.61*** [0.06]
$PS \rightarrow EF$ Domain: Switching			0.78*** [0.06]
$PS \rightarrow EF$ Domain: Updating			0.60*** [0.06]
Paths from Processing Speed to ADHD			
$PS \rightarrow Inattention$		-0.16 [0.10]	-0.33***[0.06]
$PS \rightarrow Hyperactivity/Impulsivity$		0.23 [0.13]	0.17 [0.09]
$PS \rightarrow General ADHD$		-0.08 [0.10]	-0.17* [0.07]
Model Comparison (χ_{diff}^2)			
Nested model: Model 2			34.85***

Note. Bolded estimates indicate significance (**p*<0.05; ***p*<0.01; ****p*<0.001).

[†]The secondary specification of processing speed, EF, and ADHD (Model 3) highlights the construct validity of EF, as the factor loadings of all EF domains on Common EF remained significant (p<0.001) demonstrating convergent validity above and beyond any influence of processing speed.

Supplementary Figures

Figure S1. Hierarchical factor structure of the super-ordinate Common EF factor. Estimates represent standardized factor loadings. Fit statistics: RMSEA=0.02, $\chi^2(77)=113.14$, *p*<0.01, CFI=0.99, TLI=0.98, SRMR=0.04.

Figure S2. Factor structure of processing speed. Estimates represent standardized factor loadings. Fit statistics: RMSEA=0.00, CFI=1.00, TLI=1.00, SRMR=0.00. This is a just-identified model.

Figure S3. Frequency distribution of parceled responses to parent-reported Conners-3 items.

Note. Each parcel contains summed responses from two items.

Figure S4. Full model representation of bifactor ADHD regressed onto common executive functioning (EF), after accounting for the effects of processing speed on EF at the domain-specific level. *Note*. Added paths are indicated in bold.

Figure S5. Latent variable interaction model.

Note. Path diagram for the moderation of the EF-ADHD association by socioeconomic status. Bold lines indicate the interaction of EF and SES regressed onto each latent domain of ADHD. The same interaction models were used to assess moderation effects of age, race, and sex on the EF-ADHD association.

Panel depicts the association between EF, processing speed and: (a) combined-presentation ADHD (ADHD-C), (b) predominantly inattentive-presentation ADHD (ADHD-IA), and (c) hyperactive/impulsive-presentation ADHD (ADHD-HI). *Note*. Age and sex were included as covariates in these models. The effects of age and sex were controlled for at the level of the factor for processing speed and at the level of first-order factor for EF. All point estimates are standardized regression coefficients. Bold lines indicate significance (*p<0.05; **p<0.01). For visualization purposes, speed-residualized Common EF is represented a separate factor from Common EF, connected by a line to differentiate it from a factor loading; it was not modeled independently in our analyses and should not be interpreted as such. Fit statistics: Chi-square posterior predictive p-value (PPP)<0.05 for all models; Univariate fit statistics: PPP_{ADHD-C}=0.51; PPP_{ADHD-IA}=0.53; PPP_{ADHD-HI}=0.54.