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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

This paper imputed survival IPD from 500 phase III oncology trials including ~220K events and 

claimed Weibull distribution fits the survival curves well. Thus, the authors recommended to use 

parametric modelling based on Weibull distribution, which will increase the power. They also 

pointed the immunotherapy studies needs to use cure rate model which violate the proportional 

hazard assumption; thus the traditional Cox proportional hazard modeling is not the best 

approach, and a three-parameter Weibull distribution fits better. They use image processing to 

impute IPD from published KM and also generated a website cancertrials.io to illustrate the 

survival curves and Weibull distributed curves. The overall presentation is clear. However, several 

improvements can be made: 

 

1. Weibull distribution fits oncology trial curves well is not novel. It might be good to discussion 

why parametric modeling is less popular than either semi-parametric modeling Cox or 

nonparametric KM. Also, it’s not clear whether parametric modeling based on Weibull have 

appropriate statistical properties to do regression with one or more covariates, similar as Cox. Btw, 

to help readers to use parametric modeling, I would recommend to add a simple example code in 

R (Mathematica is not free and not open source, right ?). 

2. Some statement needs more discussion. For example, “nonparametric estimates did not return 

a numerical confidence interval for XX, while Weibull fitting made it possible to calculate XX”. KM, 

Cox, and Weibull can all generate appropriate confidence interval, and I assume the points they 

would like to claim is “Not all published trial reported confidence interval by nonparametric 

method” and should discuss why many studies can but didn’t provide this important information. 

3. Most of the trials data used here are phase III oncology with larger sample size, but the 

recommendation is to use parametric method on phase I/II studies with small sample size because 

it will improve the power. Supp Figure 5 is a good example for small sample size. Btw, Figure S5 A 

showed Nonparametric method has better accuracy than Parametric method when n increases, 

right ? Recommend to add some comments on why. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

This paper imputed survival data from 500 arms of phase III oncology trials, and found that the 

data can be well fitted by Weibull distribution. This is an interesting and potential useful work. 

 

1. One main point of the paper is that the result suggests that better inference (e.g., narrower CI) 

can be made for small phase I and II trials using Weibull distribution. This, however, depends on 

the assumption that the distributions of PFS and OS in phase I and II are the same as those in 

phase III, which may not be true. Phase I and II populations are often much more heterogenous 

than phase III. This extrapolation may be problematic. 

2. A key metric the paper used to report and support the result is R2. For survival data, R2 is not 

widely used because it is not as interpretable as in linear regression. The accurate definition of R2 

should be provided, as well as its interpretation for survival data. 

3. P6, the second paragraph, given the observed R2 is 0.981 and the theoretical maximum R2 is 

0.995, the interpretation that “Thus, the error between observation and the Weibull model is 

~1%” is incorrect. R2 does not have such interpretation. 

4. P6, it is useful to show the boxplot of R2 for 237 trial arms, including median, quantiles, in 

addition to the pooled mean. 

5. The paper focuses on the marginal distribution of OS and PFS. It should be noted that the 

conditional distribution may not be Weibull. In practice, the main motivation of using 

nonparametric and semiparametric methods is to minimize assumptions and product robust 

results. 

6. The paper spent 3 pages to discuss the violation of proportional hazards. This fact is well 

known, with extensive publications, especially for ICI. I do not see the need of extensive 

discussion of this under Weibull model, and is remotely related to the main result (PFS and OS can 

be well fitted by Weibull distribution). This section should be substantially shortened (<1 page). 
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DETAILED RESPONSE TO REVIEW 
MS# NCOMMS-21-22949-T 
Updated title “Cancer patient survival can be accurately parameterized, improving trial precision and 
revealing time-dependent therapeutic effects.” 

We thank the reviewers for a helpful set of suggestions. In response, we have made changes 
throughout the manuscript, generated code for survival data fitting in R, and added new analysis and 
new supplementary figures. We have also modified existing figures and supplementary materials to 
meet the journal guidelines, and we are submitting completed reporting, software, and editorial policy 
checklists.  

We believe these changes address all of the reviewers concerns and have resulted in a clearer and 
more comprehensive manuscript. Specific changes can be found as tracked changes in the text.  
 
Reviewer #1 (Remarks to the Author): 
 
This paper imputed survival IPD from 500 phase III oncology trials including ~220K events and claimed 
Weibull distribution fits the survival curves well. Thus, the authors recommended to use parametric 
modelling based on Weibull distribution, which will increase the power. They also pointed the 
immunotherapy studies needs to use cure rate model which violate the proportional hazard assumption; 
thus the traditional Cox proportional hazard modeling is not the best approach, and a three-parameter 
Weibull distribution fits better. They use image processing to impute IPD from published KM and also 
generated a website cancertrials.io to illustrate the survival curves and Weibull distributed curves. The 
overall presentation is clear. However, several improvements can be made: 

Before addressing the reviewer’s important conceptual and technical points (see below) we do want to 
point out that we do not propose that pivotal Phase 3 trials use a three parameter cure-rate model as 
part of the primary analysis and subsequent regulatory decisions. Instead, we propose that parametric 
fitting based on Weibull forms be used for early phase trials having fewer than ~100 patients. These 
trial results are widely used in prioritizing and designing Phase 3 studies. For example, in the case of 
ICI trials this includes defining what duration of follow-up is most likely to reveal a significant survival 
benefit (this is also a setting in which non-proportional hazards can complicate the discovery of benefit 
at early time points). Moreover, we wish to emphasize that we strongly favor the use of two-parameter 
Weibull forms (not three-parameter forms) that only have shape and scale parameters. This is a more 
parsimonious way of describing large amounts of data and we see no need, from the perspective of 
goodness of fit, for introduction of a third “cure rate” parameter. We have modified the text in multiple 
places to make these points clear. 

We speculate that the success of pivotal trials will be improved by better understanding early phase 
data, but this does not require or benefit from the use of parametric statistics with large patient 
populations in pivotal trials (a change that is not supported by our data and likely to be far harder to 
implement). 
 
1. Weibull distribution fits oncology trial curves well is not novel. It might be good to discussion why 
parametric modeling is less popular than either semi-parametric modeling Cox or nonparametric KM. 
Also, it’s not clear whether parametric modeling based on Weibull have appropriate statistical 
properties to do regression with one or more covariates, similar as Cox. Btw, to help readers to use 
parametric modeling, I would recommend to add a simple example code in R (Mathematica is not free 
and not open source, right ?). 
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We thank the reviewer for the suggestion that we provide present context for our work; we have 
therefore revised the Introduction and Results (Page 3, paragraph 3; Page 5, paragraph 2). Specifically, 
the revised Introduction now emphasizes the reviewer’s point that parametric fitting of survival data in 
medicine and engineering is far from novel, and is in fact commonly performed when quantifying the 
expected benefit of an intervention in econometric analysis. A wide variety of parametric forms have 
been proposed for survival data including Log Normal, Log Logistic, Gamma, Weibull, Gompertz–
Makeham, and Exponential distributions. The accuracy of these fitting procedures has until now been a 
matter of conjecture: in the absence of large-scale digital survival data it has not been possible to 
evaluate goodness of fit. Thus, most theoretical and comparative effectiveness research is limited by 
the absence of information on which parametric form represents the best match to reality. The primary 
innovation in our study is to evaluate goodness of fit of a Weibull distribution to a large number of trials 
and to investigate the poorest fits in detail. We find that poor fits are frequently associated with pre-
planned changes in protocol and - in the case of PFS – with confounding by scan time. Overall, our 
analysis demonstrates that two-parameter Weibull forms are an informative and accurate 
parameterization for survival data in solid tumors.  

In the absence of an evaluation of fitting accuracy, it is entirely appropriate that parametric methods 
have been less popular than semiparametric or nonparametric methods. The reviewer will appreciate 
that the hard part has been getting the data into a usable form – not performing the fitting per se. Our 
digitization makes it feasible to use a data-driven approach to quantify the relative fit of different survival 
distributions to a large, heterogeneous, set of cancer patient data. We also provide a description of 
settings in which use of a Weibull distribution is appropriate and why it is advantageous in these 
settings (e.g. increased precision for small sample sizes). We also discuss settings in which use of 
current methods remains appropriate (large trials).  

Estimating covariate effects is not an intended application of the analyses of this study. As a practical 
matter, imputed patient data lack covariate annotations, and thus, testing the validity of parametric 
methods for such an analysis is not possible using currently available data. This is unfortunate but if our 
work encourages the authors of trial reports to make covariate annotations available, then it will be 
possible to delve into a host of interesting questions related to covariates. 

Covariate effects are typically estimated using large, well-powered, Phase 3 trial data, a setting that – 
based on current understanding – is unlikely to benefit from use of a parametric form for estimating 
efficacy. Phase 3 trials would benefit, however, from alternative to the proportional hazards model used 
in Cox regression, and more careful consideration of the impact of trial duration on an assessment of 
benefit. It is possible that if covariates sufficiently subdivide a Phase 3 dataset (into small patient 
groups) then parametric statistics will be useful; however, we are not yet in a position to evaluate this 
possibility. 

We hope that research such as ours demonstrating the value of secondary analysis may encourage 
sharing of primary data in the future, and we have revised our Discussion to call attention to this 
important limitation in current data-sharing practices. As mentioned above, were the necessary primary 
data available, including demographic information, future work could use parametric fitting to quantify 
covariate effects (as frequently done by semiparametric approaches in Phase 3 trials) and also assess 
whether the is affected by or the assumption of proportional hazards 
is violated by covariate analysis in these settings (e.g.: breast cancer tumor grade; see Bellera et al., 
BMC Medical Research Methodology, 2010). 



Page 3

We agree with the reviewer that non-proprietary software is important and we have therefore included 
R code, with a sample instantiation of the procedure, as part of Supplementary Material 2. We 
appreciate this thoughtful suggestion. We are also continuing to improve our web site (which is based 
on R-Shiny) so it is easier to find and download subsets of the data.

2. Some statement needs more discussion. For example, “nonparametric estimates did not return a 
numerical confidence interval for XX, while Weibull fitting made it possible to calculate XX”. KM, Cox, 
and Weibull can all generate appropriate confidence interval, and I assume the points they would like to 
claim is “Not all published trial reported confidence interval by nonparametric method” and should 
discuss why many studies can but didn’t provide this important information.

We believe that our wording on this point was confusing and apologize. Nonparametric methods are 
unable to report a numeric confidence intervals when too few events occur before or after the time point 
at which the analysis is being conducted; this occurs infrequently in large, well-powered Phase 3 trials, 
but commonly in trials with small samples. This is illustrated in a figure below, which is also included as 
a new supplementary figure (Supplementary Fig. 5).“Non-informative” estimates correspond to 
subsampled survival curves with 0% (left panel) or 100% survival (right panel) at 12 months. We have 
made extensive revisions to this part of the text to address this concern,

3. Most of the trials data used here are phase III oncology with larger sample size, but the 
recommendation is to use parametric method on phase I/II studies with small sample size because it 
will improve the power. Supp Figure 5 is a good example for small sample size. Btw, Figure S5 A 
showed Nonparametric method has better accuracy than Parametric method when n increases, right ? 
Recommend to add some comments on why.

The reviewer is correct: almost all analysis presented in the manuscript was performed on Phase 3
clinical trial data. We did this because well-powered Phase 3 trials provide a “ground truth” against 
which to assess the accuracy of parametric fitting: with 200 to 1000 patients per arm, their survival 
distributions are empirically well-determined. Phase 1 or 2 trials entail smaller cohorts and much larger 
margins of uncertainty and as practical matter, relatively few report survival distributions. We have 
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nonetheless examined Phase 2 distributions that are available (e.g. KEYNOTE-022) and do not 
observe any systematic deviation from a Weibull form. 

We describe below (point 1 in response to reviewer 2) a new simulation we performed to determine if 
Weibull fitting is appropriate for analysis of the heterogenous patient populations sometime 
encountered in Phase 1 and 2 trials. 

As the reviewer correctly states, as sample size increases, the accuracy of nonparametric methods 
appears to surpass that of parametric methods. This is due to an unavoidable limitation of our 
approach: ground truth in our simulations is defined as the nonparametric survival for the full Phase 3 
trial. Therefore, by definition, as sample size increases, the error of the nonparametric approach 
reaches zero. Unfortunately, in the absence of any other established means of determining ground truth 
for a full Phase 3 trial it is not possible to fairly compare parametric or non-parametric methods. We 
thank the reviewer for noticing this important point. We have revised the Results section to include the 
explanation presented above (page 11, paragraph 2). Of note, as discussed above, our findings do not 
support the use of parametric methods to estimate drug efficacy from Phase 3 trial data. 

 
Reviewer #2 (Remarks to the Author): 
 
This paper imputed survival data from 500 arms of phase III oncology trials, and found that the data can 
be well fitted by Weibull distribution. This is an interesting and potential useful work. 
 
1. One main point of the paper is that the result suggests that better inference (e.g., narrower CI) can 
be made for small phase I and II trials using Weibull distribution. This, however, depends on the 
assumption that the distributions of PFS and OS in phase I and II are the same as those in phase III, 
which may not be true. Phase I and II populations are often much more heterogenous than phase III. 
This extrapolation may be problematic. 

We agree with the reviewer’s point and have extensively revised the Discussion to emphasize that the 
current analysis supports use of Weibull parameterization when a small patient cohort resembles a 
subset of a large patient cohort. This is of course true of both parametric and non-parametric methods. 
Early-phase and late-phase trials often have differences in patient characteristics that affect survival 
with and without therapy. We have revised the discussion to emphasize that it is important not to 
overlook differences in patient characteristics in early-late comparison and that we have shown our 
approach to be valid only with Phase 2 trials that are not substantially more diverse than is typical at 
Phase 3 with respect to tumor histology, stage, and prior therapy.  

The more specific concern is whether early phase trials can reasonably be parameterized using two-
parameter Weibull forms. One argument in favor of this is that the Phase 3 trials we have analyzed 
involve a variety of tumor types, stages (local or advanced), and prior treatment (naive or pre-treated); 
in all cases Weibull forms exhibited excellent fits.  

The question nonetheless arises whether Phase 2 cohorts in general have a mixture of these 
characteristics (e.g. in multi-histology ‘basket’ trials) that require different parameterization. A practical 
challenge in testing this (also explained in response 1.3. above) is that Phase 3 trials are the only valid 
way to assess the accuracy of a parametric fitting method because they provide a well-powered 
“ground truth.” We have found relatively few examples of matched Phase 2 and 3 survival curves in the 
literature, although we presume that trial sponsors have this information. 
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As an alternative approach we simulated trials having very heterogeneous patient populations
comprising a random mix of four different tumor types (breast, colorectal, lung, and prostate) by 
randomly sampling events from Phase 3 overall survival data. We then tested goodness of fit to Weibull 
parametric forms. When we looked at metastatic disease alone (172 OS curves; right panel below) we 
found that two-parameter Weibull forms accurately described the simulated data (R2=0.98)* and 
addition of a third “cure rate” parameter barely improved this (to R2=0.99; red line). When metastatic 
and non-metastatic disease were combined using data from 237 OS curves (left panel below) however,
a two-parameter Weibull form exhibited R2=0.95 and addition of a third “cure rate” parameter improved 
the fit to R2=0.98 (red line). 

These simulations support the use of two-parameter Weibull forms with small patient populations 
having heterogenous types of cancer at a similar stage. We have included this point in the text and in a 
new Supplementary Figure 7. However, we still favor two parameter forms because we think it unlikely 
that metastatic and non-metastatic tumors would unknowingly be mixed in a clinical trial.

*See point 2.2. for explanation on the definition of R2 

2. A key metric the paper used to report and support the result is R2. For survival data, R2 is not widely 
used because it is not as interpretable as in linear regression. The accurate definition of R2 should be 
provided, as well as its interpretation for survival data.

We thank the reviewer for pointing out a point of confusion in our description of the methodology. We 
have updated the Results section to describe how R2 is used in evaluating fits to parametric forms. This 
involves a linear transformation of distributions followed by an evaluation of fit; in the case of Weibull 
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distributions this linearized form is a Weibull plot. This has the very convenient feature that R2 then has 
the same interpretation as in linear regression (specifically, data that does do not fit Weibull forms will 
not lie on a line in a Weibull plot, reducing R2). We have revised Supplementary Data 2 to include both 
code and pseudocode (i.e. the method in plain English) to explain this computation fully. 
 
3. P6, the second paragraph, given the observed R2 is 0.981 and the theoretical maximum R2 is 0.995, 
the interpretation that “Thus, the error between observation and the Weibull model is ~1%” is incorrect. 
R2 does not have such interpretation. 

We apologize for sloppy language introduced during editing. The reviewer is of course entirely correct 
and we have changed this statement to “1-2% of variance is unexplained by Weibull model.” 

 
4. P6, it is useful to show the boxplot of R2 for 237 trial arms, including median, quantiles, in addition to 
the pooled mean. 

We thank the reviewer for this suggestion and have included median, mean, and quantile values in the 
Results section (page 7, paragraph 2). We also now direct readers to a histogram of all computed R2 

values in Figure 2e and have added a boxplot to this subpanel.  

 
5. The paper focuses on the marginal distribution of OS and PFS. It should be noted that the 
conditional distribution may not be Weibull. In practice, the main motivation of using nonparametric and 
semiparametric methods is to minimize assumptions and product robust results. 

We agree that the true underlying distribution of cancer patient survival data is unknown. The result of 
this study is not that survival distributions are Weibull distributions in an absolute mathematical sense 
but rather that empirical testing against a set of real survival data shows that a Weibull function 
describes the data with sufficient accuracy that for small trials it has nearly the same accuracy as 
nonparametric methods. Given this accuracy, use of parametric forms will increase precision, as we 
demonstrate.  

We concur that nonparametric methods have been preferred historically because they avoid 
assumptions which, if incorrect, would compromise the robustness of results. This study shows that an 
assumption of a Weibull distribution is sufficiently close to reality to provide robust results. Making 
similar assumptions about form for a worthwhile gain in statistical power has strong precedent in clinical 
trial statistics; the most prominent example being the Proportional Hazards assumption of the Cox 
model. 

We specifically see parametric methods as applicable to early-phase, signal-finding studies, where 
improving precision with acceptable accuracy could help greatly reduce the number of patients needed 
to understand the likely efficacy of a new therapy, saving trialists substantial time and resources. We do 
not suggest that this should replace established semi-parametric methods for pivotal trials and 
regulatory decisions. We have edited our Results and Discussion to better address these points (page 
10, paragraph 3; page 16, paragraph 1). We note above other aspects of our study that do pertain to 
large Phase 3 trials and are made possible by using parametric fitting to analyze hitherto unavailable 
data. 

6. The paper spent 3 pages to discuss the violation of proportional hazards. This fact is well known, 
with extensive publications, especially for ICI. I do not see the need of extensive discussion of this 
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under Weibull model, and is remotely related to the main result (PFS and OS can be well fitted by 
Weibull distribution). This section should be substantially shortened (<1 page). 

We agree with the reviewer’s call for brevity and have substantially shortened this section, with the 
revised text emphasizing the original contributions to this topic made possible only with large scale data 
and parametric fitting. We have also provided more context for prior contributions in this field through 
an updated Results section (page 13, paragraph 2). 

This article’s specific original contributions are (i) showing in diverse trials that proportional hazards is 
violated to some degree in a majority of clinical trials, far beyond ICIs, (ii) these violations can be 
understood as a consequence of differences in how the hazard increases or decreases over time (the 
shape parameter of the Weibull function); in this view it is understandable that different treatments 
would rarely have identical shape parameters, and thus rarely have proportional hazards, and (iii) as a 
consequence, trial length (follow-up time) impacts the likelihood of a positive outcome, entirely 
separately from how the number of events affects statistical power. This latter point is the most 
important and novel, and unfortunately topical because we see many Phase 3 trials failing that seem 
likely to have succeeded with longer follow up, such as KEYNOTE-022 (which had an initially negative 
result but a positive result in a later post-hoc analysis), and the recently published IMpassion131 trial 
(whose early censoring decreased power in the tail of the survival curve, resulting in the withdrawal of 
Atezolizumab for Triple Negative Breast Cancer). 



1 
 

Cancer patient survival can be accurately parameterized, improving trial precision and revealing 

time-dependent therapeutic effects and doubling the precision of small trials  

Authors: Deborah Plana1,2, Geoffrey Fell3, Brian M. Alexander3,4, Adam C. Palmer5*, Peter K. Sorger1* 

Affiliations: 
1Laboratory of Systems Pharmacology and the Department of Systems Biology, Harvard Medical 
School, Boston, Massachusetts, USA. 
 
2Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School and MIT, 
Cambridge, Massachusetts, USA. 
 
3Dana-Farber Cancer Institute, Boston, Massachusetts, USA. 
 
4Foundation Medicine Inc., Cambridge, Massachusetts, USA. 
 
5Department of Pharmacology, Computational Medicine Program, Lineberger Comprehensive Cancer 
Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. 
 
*These authors contributed equally. To whom correspondence should be addressed:  

palmer@unc.edu; peter_sorger@hms.harvard.edu (cc: 

sorger_admin@hms.harvard.edusorger_admin@hms.harvard.edu)) 

 

ORCIDs:  

Deborah Plana: 0000-0002-4218-1693 

Geoffrey Fell: 0000-0001-6436-6691 

Brian M. Alexander: 0000-0003-3903-9175 

Adam C. Palmer: 0000-0001-5028-7028 

Peter K. Sorger: 0000-0002-3364-1838 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 
 

 
 
 

 

ABSTRACT 

Individual participant data (IPD) from completed oncology clinical trials are a valuable but 

rarely availablerepresent an invaluable source of information. A lack of minable survival distributions 

has made it difficult to identify for identifying factors determining the that influence trial success and 

failure of , improving trial design and interpretation, and comparing pre-clinical trials and improve trial 

design.studies to clinical outcomes. However, the IPD used to generate published survival curves are not 

generally available. We imputed survival IPD from ~500 arms of Phase III3 oncology trials 

(representing ~220,000 events) and found that they are well fit by a two-parameter Weibull distribution. 

This makes it possible tofinding supports the use of parametric statistics to substantially increase trial 

precision with small patient cohorts typical of Phase I or II trials. For example, a 50-person trial 

parameterized using Weibull distributions is as precise as a 90-person trial evaluated using traditional 

statistics. Mining IPD1 and 2 trials. We also showedshow that frequent violations of the proportional 

hazards assumption, particularly in Phase 3 trials of immune checkpoint inhibitors (ICIs),, arise from 

time-dependent therapeutic effects and hazard ratios. Thus, the. Trial duration of ICI trialstherefore has 

an underappreciated impact on the likelihood of their success. All imputed IPD and analysis are 

available as supplementary materials and via the website https://cancertrials.io./ 

 

MAIN 

INTRODUCTION 

Extensive effort has been devoted to increasing rates of success in oncology drug 

discoverydevelopment by improving preclinical studies1–3. However, completed clinicalrandomized 
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controlled trials (RCTs) remain the most valuable single source of information for understanding 

opportunities and challenges in clinical drug development. Retrospective comparison of specific trials is 

most commonly performed via meta-analyses and systematic reviews4 with the goal of improving 

patient management in specific disease areas5. Retrospective analysis has also been credited with 

improving the statistical treatment of trial data, which can be complex and confounded6. However, 

quantitative analysis of oncology trial resultstrials is very difficult to perform at scale because individual 

participant data (IPD -namely times of progression, death and censoring; IPD), which are necessary for 

high-quality analysis, are rarely available7,8. Trial results are commonlyinstead reported in the form of 

summary statistics and, in the case of oncology trials, plots of patient survival based on the Kaplan–

Meier estimator9. These plots are generated using IPD but it has proven time-consuming and resource-

intensive to gain access to the underlying IPD values because journals and investigators do not generally 

make them available10.  

To address this problem, the International Committee of Medical Journal Editors (ICMJE) 

recently endorsed the concept of releasing IPD from clinical trials and developed a set of data reporting 

standards to encourage release of IPD from all clinical trials11.. However, less than 1% of papers 

published in the last three years actually comply with these standardsa two-year period were found to 

have made IPD publicly available12. We and others have therefore developed methods to bypass this 

problem by using image processing to impute IPD values from published plots of the Kaplan-Meier 

estimator13–15. In this manuscript we describe a comprehensive analysis of imputed IPD and 

reconstructed survival curves from ~150 publications reporting Phase 3 cancer trial results, which in 

aggregate comprise ~ 220,000 overall survival or event-free survival events (e.g. progression free 

survival, PFS).. We also make these data freely available via an interactive website 

(https://cancertrials.io/). Our approach is consistent with the Institute of Medicine’s reports on best 

practices for sharing data from published clinical trials, including crediting the sources of the data and 

sharing all code used in the analyses16. In this manuscript we describe a comprehensive analysis of 
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imputed IPD and reconstructed survival curves from ~150 publications reporting phase III cancer trial 

results, which in aggregate comprise ~ 220,000 overall survival or event-free survival events (e.g. 

progression free survival, PFS). 

We find that therapeutic responses as measured by overall survival (OS) or event-free survival fit 

well to unimodal distributions described by the two-parameter Weibull function; one parameter is 

proportional to median survival and the second quantifies changes in hazard over time. Analyzing 

survival functions with parametric distributionsAnalyzing survival functions with parametric forms of 

different types has a long history17, but evidence has been lacking about which distribution best 

represents real data. Parametric statistics are also well known to use; our analysis addresses this directly 

and showsincrease precision, but only when the fit to data is sufficiently accurate. We now show that 

survivaltherapeutic responses for multiple cancer types and therapeutic classes as measured both by 

overall survival analysis using(OS) and event-free survival (e.g. progression free survival; PFS) are well 

fit by unimodal distributions described by the two-parameter Weibull forms increases precision without 

reducing accuracy. For examplefunction; one parameter is proportional to median survival and the 

second quantifies changes in hazard over time. Using Weibull functions, we observefind that a 50-

patient trial arm (assessing overall survival) is as accurate and precise as a 90-person trialarm evaluated 

using traditional nonparametric statistics; this finding is directly applicable to improving the precision of 

therapeutic efficacy estimates made with the small patient populations typical of Phase 1 and 2 oncology 

trials18power in phase Ib/II trials.. Weibull fitting of survival data also confirms that violations of the 

assumption of proportional hazards are common in contemporary Phase 3 trials15 notably for immune 

checkpoint inhibitors (ICIs)13,19- but also more broadly. We find that differences in time-

varyingViolations arise from variation in hazard ratios between treatment arms causeover time and, as a 

consequence, so does the likelihood of trial duration to impact the likelihood of success. Simulation 

shows (which is most commonly defined as a hazard ratio <1 at a 95% confidence level). This effect is 

different from the increase in statistical confidence that occurs in any trial as a result of the accrual of 
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more events. In particular, simulation suggests that some failed trials with strong time-dependence might 

have been judged to be successful (that is, to confer a hazard ratio <1 at 95% confidence) had they been 

run for slightly longer. Trial characteristics computed from IPD also make it possible to compareallow 

for comparison of response distributions across diseases and therapeutic modalities, potentially making 

it possible to improve the design of future trials, and reduce attrition, and . The accuracy of the Weibull 

form in describing survival data may also assist cost-effectiveness analyses by validating the 

assumptions necessary for such work in representative patient dataresearch in which diverse parametric 

statistics are already in use2220. 

 

RESULTS  

Cancer patient survival data can be accurately parameterized across many diseases and drug 

classes  

We used previously described algorithms and approaches14,15 to mine published papers reporting 

the results of Phase III research3 clinical trials in breast, colorectal, lung, and prostate cancer with 

endpoints including OS or surrogates such as PFS, disease-free survival (DFS), and locoregional 

recurrence (LRR) (which we henceforth consider in aggregate as “event-free survival”). Briefly, image 

processing was used to extractFor each trial between 2014 and 2016 that met our search criteria, plots of 

the Kaplan Meier estimator were extracted from trial figures using the DigitizeIt22, software 

(Braunschweig, Germany), while the at-risk tables and the number of patient events were manually 

extracted from the publication, making it possible. We then used the digitized KM survival curves to 

impute estimate patient-level time-to-event outcomes (IPD (; e.g..: times of progression, death and 

censoring; Fig. 1A). Trial metadata were also curated and the resulting information is released in its 

entirety as supplementary materials to 1a). We recently reported the use of this approach to reconstruct 

patient-level data for oncology Phase 3 clinical trial publications identified through a PubMed 
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search21paper and via an online repository,  (the accuracy and precision of IPD imputation is discussed 

in the Methods; see. Study-level information such as cancer type, metastatic status, treatment modality, 

and trial success was also Supplementary Data Files S1-S2). manually curated. 

Analysis of OS data from 116 published figures (from 108 unique randomized controlled trial 

(RCT) reports) yielded 237 distributions (91,255 patient events) and). Data on event-free survival from 

146 figures (from 135 unique RCT reports) yielded 301 distributions (127,832 patient events). Classes 

of therapy included chemotherapy, immune checkpoint inhibitors, radiotherapy, surgery, targeted 

therapy, and placebo/observation. All imputed data were compared against the original trial publication 

for accuracy21 and trials with inaccuracies in the imputation procedure were excluded. The accuracy of 

IPD imputation is discussed further in Supplementary Data 1 and Methods. The dataset is released in 

its entirety as supplementary materials to this paper and via an online repository, https://cancertrials.io./ 

MultipleA variety of parametric forms have been proposed to describe survival in oncology trial 

data, including the Log Normal, Log Logistic, Gamma, Weibull, Gompertz–Makeham, and Exponential 

distributions23,24. These differ in their hazard functions, which describequantify the likelihood of an 

event (e.g. death or progression) at a given time. Specifically, the exponential distribution assumes a 

constant hazard, the Weibull, Gamma, and Gompertz–Makeham distributions allow hazards to change 

monotonically with time, and the Log Normal and Log Logistic functions allow for non-monotone 

hazard rates25–28. To our knowledge, no systematic assessment of the accuracy of these forms in 

describing empirical data from a large set of oncology trials has previously been described. We therefore 

assessed the goodness-of-fit (R2) of different parametric distributions to imputed IPD. First, “best-fit” 

parameter values were estimated for individual IPD distributions using a maximum-likelihood procedure 

(Fig. 1b-c). Second, mathematical transformations specific to a parametric form were used to linearize 

the distribution of event times and the corresponding survival values (in the case of the Weibull form the 

linearization is the Weibull plot)29These. Data that perfectly follow a proposed distribution would, in the 

transformed form, follow a straight line with R2 = 1.  
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Parametric forms for survival distributions differ the most at long follow-up times when their 

“the tails” of the distributions fall to an asymptotic value or to zero. However, such long event times are 

rarely recorded in traditional oncology trials, which are limited in duration by cost and increased 

censoring (often because patients switch to an alternative therapy). As a consequence, we found that two 

types of two-parameter distributions fit survival data equally well: Weibull distributions and Log-

Normal distributions (Weibull median R2 = 0.981 and Log Normal median R2 = 0.980). We 

selectedchose to use the two-parameter Weibull distribution for further analysis because its parameters 

are easily interpreted in terms familiar to oncologists. The Weibull  (shape) parameter describes 

increasing or decreasing hazard over time30, and the  (scaling) parameter is proportional to median 

survival time31. Survival data fit by Weibull distributions withhaving  <1 have decreasing hazard rates 

over time, meaning that the likelihood of progression or death is highest at the start of the trial and 

decreases over time.then falls. A value of  =1 corresponds to a constant hazard and  >1 to a hazard 

that increases with time.  

For each trial arm in our data set, we calculated the relative likelihood of different obtained best-

fit values offor  and  to describe its IPD (Fig. 1B-C) and found the best-fit parameter values (Fig. 1D). 

It can be helpful to visualize the resulting1d). The distributions for individual arms and their 

parameterizations can be visualized in three different ways: (i) as a probability density function 

(PDFfunctions (PDFs), the probabilitylikelihood that an event will occur at any point inparticular time t; 

(ii) as a cumulative density function (CDFfunctions (CDFs), the integral of the PDF with respect to t; for 

OS data, 1-CDF is overall survival at t; and (iii) as a hazard function, which corresponds to the ratio of 

the PDF and survival function. A plot of patient-level data as a PDF makes clear that death or 

progression is right-skewed for all values of  observed here, so that a substantial proportion of all 

events occur well after the modal (peak) values (as illustrated in Fig. 1B). Fitting Weibull distributions 

therefore quantifies the frequently observed phenomenon that some patients’ response to therapy is 

substantially better than the most commonly observed responses to that treatment.hazard functions, 
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which correspond to the ratio of the PDF and survival function. In oncology trials, the survival function 

is usually determined using the nonparametric Kaplan-Meier estimator (Fig. 2a-c), which accounts for 

progression or death events as well as censoring (e.g. loss of follow-up within the trial duration or 

withdrawal from the trial for reasons other than progression or death). Hazard ratios (which measure the 

treatment effect relative to a control) and their confidence intervals are universally computed using Cox 

proportional hazards regression (referred to as Cox regression hereafter), a semi-parametric 

method.withdrawal of a participant from the trial, or loss of follow-up, for reasons other than 

progression or death). A plot of patient-level data as a PDF shows that death or progression is right-

skewed for all values of  that we observed in trial data (as illustrated in Fig. 1b). Thus, a substantial 

proportion of all events occur well after the modal (peak) survival value. Fitting Weibull distributions 

therefore quantifies the frequently observed phenomenon that the response of a subset of patients to 

therapy is substantially better than the most commonly observed response to that treatment.  

 For trials reporting OS data, we found that a two-parameter Weibull distribution had a median 

coefficient of determination of R2 = 0.981 (lower quartile, Q1: 0.966, mean: 0.975, upper quartile, Q3: 

0.989) across 237 trial arms from 116 figures in clinical trial reports (Fig. 2d, 2E; Methods).); the 

histogram of R2 values for every OS arm of every clinical trial can be found in Fig. 2e. The theoretical 

maximum R2 value can be calculated under the hypothesis that all OS distributions are Weibull 

distributions and that deviations are attributable only to sample size variability, which givesyields a 

maximum R2 = 0.995. Thus, the error between observation and~2% of variance observed is not 

explained by the Weibull model is 1%.. For trials reporting event-free survival data (e.g. PFS; 

Supplementary Fig. S1) the1) median R2 was= 0.950 (Q1 = 0.909, mean: 0.929, Q3= 0.970) as 

compared to a theoretical maximal R2 = 0.996, which corresponds to 5% of observed variance not 

explained by the Weibull model. Biomarker-stratified arms were also well described by a single two-

parameter Weibull distribution. This is illustrated in Supplementary Fig. 2a-b for Weibull fits to OS 

and PFS data for panitumumab in combination with FOLFIRI and for FOLFIRI alone in wild-type and 
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mutant KRAS metastatic colorectal cancer (trial 2005018133; average R2 = 0.99 for OS curves and 0.92 

for PFS curves). We conclude that a two-parameter Weibull distribution provides an excellent fit, with 

the few exceptions discussed in detail below, to available trial data across multiple types of cancer, 

treatment modalities, and metastatic status. 

 

Investigating the least good fits of survival data to Weibull parametrizations   

Across the entire data set, some of the worst fits for two parameter Weibull forms were observed 

for trials with relatively few events, for example, the Chronicle trial (NCT0042771334) with only 78 

deaths in the treatment arm and 16 progression events in the observation arm (Fig. 2c; Supplementary 

Fig. S11). Fit was also poor for trials involving pre-planned changes in treatment such as the ACT2 trial 

(NCT01229813)35),, in which treatment induction was followed by randomization to maintenance 

treatment at 18 weeks (Fig. 2c). In these cases such as this, responses varied over the course of the trial 

by design and a good fit to a single two-parameter survival function wasis not expected.  

For twoa small number of trials in which asymptote of the lowest quality fits,fitted survival curve 

was greater than zero (i.e. patients were expected to be alive at the end of the longest follow up), a three-

parameter Weibull distribution (consisting of the traditional two-parameter distribution with an 

additional “cure rate” term36) resulted in  had an improvement in the quality ofimproved fit 

(Supplementary Fig. S2). However, 3). Since the improvement in fit was modest and two-parameter 

Weibull forms had excellent performance for the bulk of the data, are generallyboth more 

computationally tractable forand are more parsimonious, we relied on them for all subsequent large-

scale analysis, and are more parsimonious. . However, the use of a cure rate parameter might nonetheless 

be advisable for different sets of data in which cure is a known outcome (e.g. R-CHOP for non-

Hodgkin’s lymphoma37). Biomarker-stratified arms were also described well by a single two-parameter 

Weibull distribution, as illustrated by the OS and PFS curve fits for panitumumab in combination with 
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FOLFIRI and FOLFIRI alone in wild-type and mutant KRAS metastatic colorectal cancer (trial 

20050181; Supplementary Fig. S3A-B). We conclude that a two-parameter Weibull distribution 

provides an excellent fit to available trial data across multiple types of cancer, treatment modalities, and 

metastatic status.). 

Deviation from the one-distribution Weibull model in PFS data  

 The  We also observed that event-free survival exhibited a slightly poorer fit of event-free 

survival data to Weibull distributions as compared toforms than OS data (5% vs 2% of observed 

variance not explained). Inspection of the relevant curves showed that this was caused primarily by a 

steep fall seensharp decrease in some survival curves at early time points and a shallowed decrease 

subsequently; this behavior has previously been interpreted as evidence for subpopulations of 

responding and non-responding patients, particularly in trials of immune checkpoint inhibitors (ICIs38). 

It has also been attributed to delayed T-cell activation by ICI therapy39. For trials of these agents, we 

found that fitfits to PFS data could be improved by using a mixture model comprising two different two-

parameter Weibull distributions, each with its own  and  parameters. This is potentially consistent with 

thea two-population hypothesis (Fig. 3a; Supplementary Fig. S44). However, the same was a mixture 

model also true ofresulted in a better fit to the control arms in these trials, suggesting that the deviation 

from a single distribution at early time-points was not ICI-specific. Moreover, a mixture model exhibited 

no meaningful improvement in fit as compared to a single-distribution fit for OS data from ICI or 

control arms in these trials (Fig. 3b; Supplementary Fig. S4).4). Finally, when we examined PFS data 

from an additional 25 ICI trials, we found that the drop in patient survival at early event times (which we 

identified as determined by finding the time t corresponding to the greatest change in the slope of the 

survival curve) was strongly correlated with the time of the first radiological scan (as reported in trials’ 

methods sections; Pearson correlation 0.982, p < 10-21; Supplementary Data File S33). We 

thensurmised that fitting Weibull distributions to PFS data was confounded by scan times. To test this 
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idea we simulated the influence of scan times on PFS by beginning withtaking a single 2-parameter 

Weibull distribution, and supposing that progression could only be observed whenimposing a tumor is 

scanned, which occurs periodically (often at scanning interval of 9 or 12-week intervals depending 

onweeks (the actual value was extracted from the trial protocol). Accounting for scan time recapitulated 

the initial This generated the steep decline in PFS values observable in boththe control and experimental 

arms of actual ICI trials, and improved fit to PFS distributions, raising mean R2 from to 0.93 to 0.98, 

compared to 0.92 without considering scan times (Fig. 3c; Supplementary Fig. S44; Methods). We 

conclude that the initiala steep drop in initial PFS arises when observations corresponding to the left-

hand tail ofis likely to arise because values at early time points from a unimodal response distribution 

are concentrated in time because radiologicalby scans used to measure tumor progression are performed 

at discrete intervals. Thus,We further conclude that mixture models involving two Weibull curves doare 

not appear necessary to accurately describe survival for ICIs or any other class of therapy that we have 

examined. Instead, when scan times are accounted for, single two-parameter Weibull distributions are 

observedfound to have an outstandingexcellent fit (R2 =0.98) to PFS data. (R2 =0.98). 

 

Parametric fitting improves the precision of drug efficacy estimates 

To compare the performance of Weibull-based methods and nonparametric methods used for 

survival estimates,  

analysis we calculated 12-month pointwise confidence intervals (at 12-months). This is a 

frequently reported statistic for many early phase oncology trials (Phase 1 and 2) that involve relatively 

small numbers of patients. It is often referred to as a “landmark” outcome in systematic reviews and 

meta-analysis of oncology clinical trials40, and used to guide the design of larger trials. A challenge in 

the analysis of such data is that, when too few events have occurred, nonparametric numeric confidence 

estimates return non-informative values (usually reported as a value “not reached” or 

“indeterminate”28for “small cohorts” simulated by sampling  as illustrated for two different scenarios in 
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Supplementary Fig. 5a). To determine how parametric analysis would perform in this setting, we 

subsampled groups of 20 to 100 patients at random from datathe arms of imputed from real trial arms. 

Nonparametric methods are unable to report a numeric confidence interval when too few events occur 

before or after the time point at which the analysis is being conducted (12 months in our simulations; 

“failed”Phase 3 trials. We then compared estimates correspond to 100% or 0% of 12-month survival 

respectively). Infor small cohorts this issue is with a well known to limit the power of nonparametric 

analysis.-powered ground truth value obtained using the full Phase 3 dataset. We found that no 

numerical confidence interval could be computed12-month survival estimates were non-informative for 

20% to 40% of OS trial arms, and for 23% to 61% of event-free survival trial arms, with higher failure 

rates occurring withwhen the sample size was smaller simulation sample sizes.(Supplementary Fig. 5b-

c). In comparison, use of a Weibull parametric form made it possible to calculate 12-month confidence 

intervals in every casefor all of the ~45,000 simulated 20 to 100 patient trials that we examined (~19,000 

OS and ~25,000 event-free survival simulations). The same advantage applies to median survival time, 

which is relevant because many early-phase oncology trials report median survival (or EFS, PFS) with 

an estimated upper bound that is “not reached” and therefore uninformative. Thus, Weibull fitting is 

broadly applicable in survival analysis of small cohorts because it makes it possible to reliably obtain 

confidence intervals for median survival and for time points of interest..  

 For Considering only the subset of OS curves infor which confidence intervals could be 

computed using both parametric and nonparametric methods (125 curves), thewe found that a Weibull-

based approach was more precise (it had a narrower confidence interval) across all sample sizes, and 

accuracy was comparable. By way of illustration, the precision of a 50-patient trial was comparable to 

that of a 90-patient study using traditional methods (Fig. 4). For event-free survival (for which 99 event-

free survival curves could be compared), the precision of a Weibull-based approach was also greater 

than a nonparametric approach across all sample sizes (Supplementary Fig. S5A). Thus, modeling cancer patient 

survival using Weibull functions increases precision, without compromising accuracy. The impact is greatest for trials having 
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sample sizes typical of phase Ib or II trials. This is also a setting in which use of innovative statistical methods is most likely 

to be acceptable from a regulatory standpoint, while accuracy was equivalent for small sample sizes (fewer than 

40 patients) (Supplementary Fig. 6a). We conclude that the use of Weibull distributions to 

parameterize data from small trials reporting either OS or PFS data approximately doubles the number 

of trials for which informative confidence intervals can be determined for a point survival estimate (e.g. 

survival at 12 months). Moreover, for the subset of trials in which parametric and nonparametric 

methods can be directly compared, the former is as precise using roughly half the number of patients. 

Figure 4 indicates that survival estimates made using Weibull parameterization decrease in 

relative accuracy as compared to nonparametric methods as patient number is increased. This arises 

simply because nonparametric analysis of the full set of Phase 3 data was defined as the ground truth. It 

is nonetheless true that using Weibull forms is most valuable when cohorts are small (fewer than ~40 

patients). This sample size is typical of Phase 1 or 2 oncology trials, a setting in which alternative 

statistical methods are also most likely to be acceptable from a regulatory standpoint.  

As one illustration of the use of Weibull parameterization, we analyzed a recent trial that 

encompassed both Phase I1 and II2 data, and tested pembrolizumab with dabrafenib and trametinib for 

metastatic BRAF-mutant melanoma (MK-3475-022/KEYNOTE-022; NCT02130466)41. Parametric 

fitting for 15 patients in Phase I1 yielded a median valuePFS of 15.214.8 months and 95% confidence 

interval for median PFS of 7.8 to 23 months, while nonparametric estimates yielded a median value of 

15.4 months and 95% confidence interval of 5.4 months to “not reached” (median value 15.4 months).”. 

Nonparametric analysis of a Phase II2 cohort of 60 patients withinfor this same trial 

demonstratedrevealed a median PFS of 16 months and a 95% confidence interval of 8.6–21.5 (Ref42). 

Thus, parametric fitting of data from 15 patients made a comparably precise and accurate estimate of 

median PFS as nonparametric analysis of 60 patients (Supplementary Fig. S5B6b). The availability of 

a more precise inferencesparametric approach would makein principle have made it possible to use the 

same number of patients enrolled in single phase IIthis Phase 2 study (e.g.: 60 patients) to perform three 
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different signal-finding studies (each involving 20 patients) with no loss of statistical power. This 

mightwould have been particularly helpful in the case of KEYNOTE022, a trial whichthat failed to meet 

its primary endpoint.  

 

Evaluating the impact of patient heterogeneity on the accuracy of Weibull parameterization 

Subsampling Phase 3 trials to generate synthetic arms having the small numbers of patients 

typical of Phase 1 and 2 trial cohorts has the advantage that the Phase 3 data serve as the ground truth. 

However, it has the disadvantage that patient populations in early stage trials are often more 

heterogenous than in pivotal trials. We have been unable to identify a sufficient number of matched 

early and late phase survival data for comprehensive investigation of this issue. As an alternative 

approach, we simulated a trial having a heterogeneous population of ~900 patients with a mixture of 

breast, colorectal, lung, and prostate cancer cases. The simulated cohort was constructed by subsampling 

five patients from each of 172 trials arms that reported OS for patients with metastatic cancer. We 

observed that for a representative simulation, a two-parameter Weibull form accurately described the 

synthetic trial data (R2=0.98; Supplementary Figure 7). However, a representative synthetic cohort 

involving patients drawn from both metastatic and local cancers (237 trial arms) is not as well fit by a 

two-parameter model (R2=0.95) but fit improves with the addition of a cure-rate parameter (R2=0.98). 

From this analysis we conclude that trial arms having different types of solid tumors, as encountered in 

some basket trials, can be accurately parameterized by two-parameter Weibull functions. If metastatic 

and non-metastatic disease are mixed in an RCT, addition of a third parameter is likely to improve fit. 

 

Weibull fitting quantifies survival differences in survival across cancer types  

 The availability of a large set of IPD made it possible to search for systematic differences in the 

parameters of survival distributions by disease class. Best-fit Weibull parameters were compared across 

cancer types and metastatic status using an ANOVA test with a Bonferroni correction for multiple 
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hypothesis testing at a two-tailed significance level of 0.05 (see Supplementary Data File S22). The 

largest difference in parameter differencevalues was between metastatic and non-metastatic disease, 

irrespective of tumor type (  values corresponding to median survival of 2622 and 174180 months 

respectively). We also observed that  values were significantly larger for breast cancer than lung cancer 

on a variety of experimental and control treatmentsin the metastatic setting (  values corresponding to 

median survival of 3828 versus 1514 months in the metastatic setting) (Fig. 5), which is consistent with 

previous data on relative disease severity43,44.. Parameter values for trials reporting event-free survival 

parameter values werefollowed a similar pattern to OS values (Supplementary Fig. S68, 

Supplementary Data File S22). Lung cancers had a significantly lower  (shape parameter) for OS as 

compared to other cancer types (average  =1.30 for lung; versus ~1.5 to 1.6 for breast, colorectal, and 

prostate cancers), demonstrating a relatively high probability of early death in the course of treatment, 

even when controlling for differences in median survival times.. This difference in shape corresponds to 

a widerwide distribution of lung cancer survival times as compared to other cancer types (e.g.: the 

ESPATUE , which may reflect heterogeneity in lung cancer trial had a survival time distribution with a 

10th percentile value of 3 months and a 90th percentile value of 49 months; Fig. 5C).cohorts. We propose 

that parameters drawn from IPD could be used to model cancer survival distributions across diseases, 

facilitatingfor future exploratory trials and to facilitate inter-group comparisoncomparisons in master 

protocol or basket trials, which often involve different cancers types44,45,46.  

 

Violations of proportional hazards and Impact of trial length on estimates of relative hazard  

Randomized controlled trials in oncologycancer are conventionally evaluated in a majority of 

cases based on hazard ratios;the use of Cox regression to estimate the semi-parametric hazard ratio 

(hereafter referred to as HRSP). If the hazard ratio is significantly below one then the test treatment has 

decreaseddecreases the risk of death or progression relative to control, and the trial is regarded as 
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successful28,32. Cox regression estimates the semi-parametric hazard ratio (hereafter referred to as HRSP) 

based on the number and timing of death, progression, or censoring events, all of which increase over 

time. As expected, when Weibull  and  parameter values were compared between experimental and 

control arms, a trial was more likely to be successful (HRSPwhich, following common practice, we 

defined as HRSP < 1 at 95% confidence) when differences in  values were greaterlarger: the median 

difference between control and experimental  values in OS curves was -0.946% for unsuccessful trials 

and 29% for successful trials (Fig. 6A). A similar pattern was observed for event-free survival data, with 

control and experimental  values differing by 1.0% for unsuccessful trials and 35.736% for successful 

trials (Supplementary Fig. S79).  

Fundamental to the model of proportional hazards is the idea that the hazard functions for control 

and experimental arms are described by hazard functions related by a constant of proportionality (the 

hazard ratio) that does not change over time. However, prior work has shown that this assumption is 

frequently violated13,15,47. From the perspective of Weibull distributions, thisproportionality means that 

the two arms have the same shape parameter (i.e.  = 0 where  is the difference in  values, , is 

zero); the). A trial will bewith   = 0 is successful (hazard ratio < 1) if the experimental arm has 

significantly larger  value than the control arm. However, across 121 comparisons of experimental and 

control arms from 116 OS trial figures, we found that  values actually varied from +0.65 to -0.80 

(median absolute value | | = 0.11; Fig. 6a). For event-free survival data, 154155 comparisons of 

experimental and control arms from 146 trial figures revealed a range of  values from +0.55 to -0.85 

(median | | = 0.08) (Supplementary Fig. 9). Using a traditional Grambsch–Therneau test4849 to -0.85 

(median | | = 0.08) (Supplementary Fig. S7). Thus, the assumption in the proportional hazards model 

that  = 0 is frequently violated. To compare this to previous reports of violation of proportional 

hazards, we used a Grambsch–Therneau test at a significance level of p < 0.1. In our dataset, 18 out of 

108 unique publications reporting OS data (~17%) were found to violate proportional hazards, and a 

significant deviation from the proportional hazards assumption corresponded to | |=0.30. For unique 
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trials reporting event-free survival data, 47/135 (~35%) were found to violate proportional hazards by 

the Grambsch–Therneau test at 10% significance, and this significance cutoff also corresponded to 

| |=0.30. ICI trials tended to violate proportional hazards at a higher rate compared to all other trials 

(4/5 trials). Thus, differences in Weibull  parameters greater than 0.3 for control and experimental trial 

arms identify significant deviations from the assumption of proportional hazards and are most common 

in ICI trials., a  proportional hazards violation was found in 18/108 OS and 47/135 event-free survival 

trials, and 8/10 ICI trial comparisons (3/5 for OS and 5/5 for PFS)15; a corresponding 90% confidence 

level yields a significance threshold of | |=0.30.  

We used parametric fitting To explore the originorigins and consequenceconsequences of non-

proportional proportionality of hazards in trialsurvival data. Specifically, we used best-fit Weibull shape 

and scale parameters for each trial arm (and confidence intervals thereof) to calculate the ratio of 

cumulative hazards between experimental and control arms hazard at time t (HRc(t)), for all values of t 

from the start to the end of the trial. This approach returned robust estimates of relative empiric hazard 

for each trial arm as a function of an approach that makes no assumptions about proportionality, and 

compared HRc(t) to the hazard ratio calculated using Cox regression (HRSP; which is semiparametric 

and time without assuming proportionality. Trials that deviated little from the proportional hazards 

assumption, such as the failed ATTENTION trial (NCT01377376) with  =0.003 or theinvariant). In 

both successful RECOURSE Trial (NCT01607957) with  =0.13, Weibulland unsuccessful trials for 

which | | was small, HRc(t) (blue lines in Fig. 6b, c) closely approximated HRSP from Cox regression 

((red lines; note that the HRSP under the assumption of proportional hazards is, by definition, time-

independent). In the case of ). In contrast, when  =-0.26 (for the successful trial CheckMate 057 (; 

NCT0167386749) a value  =-0.26 denotes a deviation from proportional hazards and we observed that 

HRc(t) matchedand HRSP at only one point in timediffered for most of the trial duration (Fig. 6E6d). 

This was also true of CA184-043 (NCT00861614) for which;  = -0.30; this trial), which was judged 

to have failed based on HRSP50 ((Fig. 6D).6e). However, in this trial, the HRc(t) also matched HRSP from 
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Cox at a single point in time but it fell steadily to <1over time and had reached a value below one by the 

end of the trial.. Unless the shape of the hazard function were to change substantially change over one 

additionalafter month 25, it seems probable that CA184-043 would have been judged a success by 

conventional HRSP criteria had had it continued slightlyfor only a few months longer.  

To more fully explore the dependence of trial duration on outcome, we simulated a series of two-

arm trials having a range of differences in  and  values. We then plotted the fraction of trials that 

were successful, as judged by Cox regression. Success was evaluated both at an early stopping point, 

when ~60% of events had been recorded (tA) or a late stopping point when ~95% of events had been 

recorded (tB; Fig. 7; Methods). For simulated trials in which  was smaller for the experimental than the 

control arm, the experimental arm exhibited lower survival at early times and then crossed over the 

control arm at later times (as shown in Fig. 7a). In these cases, a later time point was associated with a 

greater likelihood of success than an earlier time point (Fig. 7b,c). The greater the value of , the 

greater the impact of curve crossing and duration of follow-up on outcome. Moreover, all ICI trials in 

our data set fell into this category (e.g. Fig. 6a). The reasons for time-dependent therapeutic effects are 

unknown, but in ICI trials it has been suggested that they arise from treatment-related toxicity at early 

times or delayed treatment effects13,52,53.  

The importance of trial duration on success was recentlyis demonstrated inby the MK-3475-

022/KEYNOTE-022 trial of pembrolizumab with dabrafenib and trametinib for BRAF-mutant 

melanoma, where. The pre-planned analysis at 24 months did not identify a statistically significant 

benefit (PFS HR of 0.66, 95% CI: 0.40-1.07) but a subsequent analysis at a median 36.6 months of 

follow-up did (PFS HR of 0.53, 95% CI: 0.34-0.83)42,51. We conclude that violations of the assumption 

of proportional hazards in clinical trial data do not simply involve statistical deviations, but actual 

variations in treatment effect over time – and this is true of both OS and PFS data. This contrasts the 

assumption in Cox regression that HRSP has a fixed value over the course of the trial, such that time 



19 
 

enters into consideration only insofar as enough events must accrue for HRSP to be judged significantly 

different from one.. Parametric fitting of the original Phase 2 data at 24 months found a difference in the 

survival curve  values ( =-0.21). This is the scenario in which a statistically significant benefit from 

therapy is more likely to be identified at longer follow-up, as was confirmed by data at 36.6 months. 

To more fully explore the dependence of trial duration on outcome, we simulated a series of 

trials in which control and experimental arms exhibited a range of differences in  and  values and then 

plotted the fraction of trials that were successful, as judged by Cox regression under a proportional 

hazards assumption (HRSP <1 at 95% confidence). In evaluating “success”, we applied Cox regression 

and ignored violations of proportional hazards as is the currently accepted standard (see Discussion). 

Success was evaluated at a stopping point defined by 60% of events being recorded (tA) or a late 

stopping point of 95% of events being recorded (tB; Fig. 7; Methods). For simulated trials in which  

was smaller for the experimental than the control arm, the likelihood of success was substantially greater 

at the late stopping point as compared to the earlier stopping point (Fig. 7A-B; conversely, early 

termination, for apparent futility for example, would incorrectly support a conclusion of inferiority). In 

these cases, we see that the experimental arm exhibited lower survival at early times and then crossed 

the control arm at a later time to exhibit higher survival.From these data we conclude that oncology 

trials exhibit continuous deviations from the assumptions of the proportional hazards model. The 

underlying variation in treatment effect over time can be identified by Weibull fitting as situations in 

which | | >>0. In these cases, the duration of the trial can have an effect on the likelihood of success in 

a manner that is not accounted for by Cox regression. We suggest that future trials, particularly of ICIs, 

evaluate  and model the possible impact of trial duration on the likelihood of success.  

 The greater the value of , the greater the impact of curve crossing and duration of follow-up 

on outcome. All ICI trials in our data set fall in this category, since their experimental arms have smaller 

 parameters than their control arms (Fig. 6A), resulting in decreasing HRc(t) over time and curve 
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crossing. Thus, the time at which these trials are terminated impacts outcome, independent of the 

number of events needed to reach statistical significance. The reasons for time-dependent therapeutic 

effects are unknown, but in ICI trials it has been suggested that they are related to initial treatment-

related toxicity or delays in treatment effect. We conclude that future ICI trials should consider the 

impact of time-varying changes in relative hazard (which are detectable via Weibull fitting) on trial 

success as a factor independent of the number of events needed to reach statistical significance in the 

estimate of HRSP. 

 

DISCUSSION 

Using a set of ~220,000 imputed participant survival events from published oncology trials we 

find that survival functions for solid tumors, including those from trials that report OS or event-free 

survival data (i.e.: PFS),) or are biomarker-stratified, are well fit by two-parameter Weibull distributions. 

The poorest fits are often explainable by pre-planned changes in treatment and by the confounding 

effects of radiological scan times on evaluation of PFS. The Weibull  (or shape) parameter defines 

increasing or decreasing hazard over time and the  parameter is proportional to the median survival 

time., making fitted parameter values readily interpretable. Both  and  differ between treatment and 

control arms;  quantifies violations in the assumption of proportional hazards that is used in Cox 

regression and  measures the magnitude of the therapeutic effect. The excellent fit of survival data to 

a single parametric function for many types and stages of cancer and across drug classes demonstrates 

that therapeutic benefit can be well-described by a simple function that models response as varyingin 

which responses vary continuously across a population. In the trials studied here, the likely presence of 

prognostic factors, or responder and non-responder populations, did not sufficiently separate survival 

functions to produce bimodal distributions that would have necessitated the systematic use of mixture 

models or cure-rate parameters.  
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Our findings support modeling survival in early stage oncology clinical trials by using 

parametric statistics. Parametric statistics are already used in cost-effectiveness analysis20 and other 

simulation studies. Our, although it has not been established which parametric forms (Weibull, Log 

Normal, Gompertz–Makeham, etc.) accurately fit empirical survival data uses a large and diverse 

clinical data set to verify. We now establish that Weibull distributions are the preferred parametric form 

and that theyinvolving clinically interpretable parameter values have sufficient accuracy to be the 

preferable parametric form for applicationsdescribing survival in trials of solid tumors. By simulating 

trials of different sizes, we find that modeling with parametric statistics substantially improves precision 

with equivalent accuracy: assessing 12-month point estimates of survival outcomes(e.g. at 12-months) 

using a Weibull-based parametric approach makesapproximately doubles the number of trials in which 

informative confidence intervals can be obtained. In cases in which parametric and nonparametric 

approaches can be compared directly, we find that a 50-person trial reporting OS data is as precise as a 

90-person trial evaluated using nonparametric methods. This underestimates the actual benefit of using 

Weibull forms because nonparametric methods did not return a numerical confidence interval in 20-40% 

of OS simulatedThis advantage pertains primarily to trials with small numbers of participants (20-100 

patients, whereas parametric estimation was successful in all cases.per arm); when arms are larger, the 

advantage of parametric statistics disappears and conventional Cox regression is the preferred method. 

Thus, the use of parametric statistics based on Weibull forms should be strongly considered in early 

phase signal-seeking studies with the goal of rapidly and economically identifying the optimal setting in 

which to perform Phase III3 trials.  

Weibull distributions are also appropriate for cost-effectiveness research for oncology drugs, an 

increasingly important topic for drug approval in many countries. In this context, it is important to note 

that Weibull and Log-Normal distributions provide equivalently good fits to IPD and the Weibull form 

was chosen in the current study because of its interpretability in terms of hazard rates and median 

survival. Log-Normal distributions may have corresponding advantages in pharmaco-economic 
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analysis54. Moreover, insofar as there exist multiple ways to implement parametric statistics, we note 

that our results pertain specifically to approaches detailed in the Methods (these, which are largely 

conventional).. Alternative statistical approaches to increasing trial precision, for example by changing 

significance cut-offs of traditional confidence intervals (levels to create narrower nonparametric 

confidence intervals while still maintaining an acceptable level of Type I error), have not yet been 

empirically explored in detail but can be pursued using the imputed IPD provided with this manuscript. 

In current practice, Cox regression is used to compare survival functions based on the 

proportional hazards assumption, which states that the ratio of control and experimental hazard 

functionsrates is constant over time. Success usually corresponds to HR < 1 at 95% confidence. With 

respect to Weibull distributions, the assumption of proportional hazards corresponds to no difference in 

shape, i.e.  = 0. It is well established that a subset of trials deviate from the proportional hazards 

assumption13,15 . However, in real trial OS data,we find that  was found to varyvaries over a wide 

range, from 0.65 to -~ +0.80 with ICI trials as a class having the largest | | values.7 to -0.8, and that the 

majority of trials analyzed deviate from the proportional hazards assumption to some degree. If we 

useapply previously described criteria (the Grambsch–Therneau test at 10% threshold)48to determine 

which violations of proportional hazards are to identify significant deviations from proportional 

hazards13,15 we find that they correspond to  > 0.3 and apply toviolations in ~17% of trials reporting 

OS and ~35% of trials reporting PFS data. , and that this significance level corresponds to | | > 0.3.  

Analysis of imputed data from published trials, and simulations in whichusing empirical survival 

functions are resampled, shows that violations of proportional hazards are not statistical curiosities but 

instead arise from time-varying treatment effects. In the data analyzed here, this was most evident in ICI 

trials, but was also seen in trials of the BCL-2 inhibitor venetoclax, in which experimental and control 

armsarm PFS curves cross each other some time after trial initiation55.  

. The biological basis of time-varying treatment effects (and curve crossing) are not known in 

detail but could arise from high toxicity in a subset of patients early in treatment, delayed onset of 
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treatment effects, or exceptionally durable responses in some patients (indicating the presence of 

prognostic factors) 13,15,52,53.. Regardless, the practical consequence of these effects is that the duration of 

a trial has a direct impact on outcome, independent of statistical considerations such as increasing 

confidence in HR values as trial events accrue (as in Cox regression).  

We found that it was possible to use Weibull fitting to identify trials judged as failures by Cox 

regression in which HR was trending steadily below one at the end of a trial but, and an extension of 

only a few months was predicted to result in success. We suggest that such considerations be taken into 

account in Future work could explore the designuse of future trialsWeibull fitting in trial interim 

analysis, particularly in trials where | | >>0 such as for ICIs. 

Additional information that can be mined from IPD, to improve futurehelp determine when to 

terminate trials includesfor treatment futility.  Additional changes that could be implemented in future 

trials include improving how sample size and power are estimated. Such calculations are most 

commonly performed under an assumption of an exponential fit to survival data. Alternative 

distributions have been proposed for such analyses56–59 but without any means for selecting optimal 

parameter values for simulation. Using the Weibull fitting described here, empirically-derived parameter 

values can be drawn directly from past trial data. In some cases, past trial data might also be useful for 

the generationA final set of synthetic control arms. Additional applications includeinvolves the use of 

parametric forms for subgroup analysis in Phase III3 and basket trials. Since studies of this type are 

intended to test therapeutic hypotheses rather than lead to drug registration, the regulatory barriers to 

using parametric statistics are limited. Parameterized Bayesian trial designs, such as the continual 

reassessment method (CRM) or escalation with overdose control (EWOC), are other model-based 

methods already in use used to define specific parameter values and improve the efficiency of Phase I1 

studies60. 

Even modest improvements in the design and interpretation of oncology clinical trials are likely 

to have a substantial payoff. The overall approval rate for new oncology drugs remains low: only 3% of 
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drugs tested in a Phase I1 clinical trial and 7% of drugs tested in a Phase II2 study are ultimately found 

to be superior to standard of care comparators in pivotal Phase III3 studies61. Methods to more 

accurately understand drug activity in small patient populations are included in the National Cancer 

Institute’s (NCI) 2020 “provocative questions” and could lead to a wider use of master protocol trials. 

Improving trial efficiency and predictability will become increasingly critical as the number of new 

monotherapies and combinations continues to rise, patient populations become more subdivided based 

on the molecular characteristics of their tumors, and it becomes impractical to enroll enough patients to 

test all promising drug treatments62.  

The use of nonparametric statistics was historically appropriate because treatment effects could 

be calculated precisely without the need for extensive computation32, which was largely infeasible prior 

to the widespread availability of personal computers. Moreover, the proportional hazards assumption 

appears to be largely valid when scoringassessing OS in the context of cytotoxic chemotherapies (OS 

trials including chemotherapies in our data set had a median | | = 0.11,10, well below the | | = 0.30 

threshold for significant violation). However, the widespread violation ofdeviation from proportional 

hazards reported in this and previous studies, and its likely origins in the biology of new and more 

diverse forms of cancer therapy, call for a reconsideration of Cox regression. Several approaches for 

comparing treatment effects have been proposed including weighted63 or adaptive log-rank tests64, 

restricted mean survival testtimes65,66, and permutation-based approaches67. It is probably appropriate 

for. Trialists, sponsors, and regulatory agencies may want to examine the possible use of such methods 

in the setting of the ICI trials that are the focus of so much current research. 

 

Limitations of this study 

This work is not a formal meta-analysis or systematic review of a specific treatment regimen or 

disease, but instead a broadly conceived research study; no treatment decisions should be made based on 
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our findings. A specific limitation of this study is that it uses imputed IPD rather than original data. A 

relatedA specific limitation is that we only analyze four tumor types (breast, colorectal, lung, and 

prostate); extending the analysis to additionalother cancer types will require imputing IPD from 

additional trials. FinallyAdditionally, we use Cox regression to determine whether real or simulated 

trials are “successful” (e.g. Fig. 6 and 7) even when underlyingtheir survival distributions clearly violate 

proportional hazards. We do this because a finding of HR <1 at a pre-specified level of confidence is the 

only widely accepted method for evaluating trial outcomes. Potential limitations in parametric 

approaches may be addressable by reconstructing a larger number of trials for additional cancer types; 

however, this is a substantial undertaking.Finally, we used subsampled patient events from completed, 

Phase 3 trials to infer the properties of small patient populations commonly used in Phase 1 and 2 trials 

on the assumption that underlying survival functions have similar parametric forms in early and late 

stage trials. We are unable to rigorously assess this assumption but we find the simulated trials 

comprising four different cancer types are also well fit by two-parameter Weibull forms suggesting that 

having a heterogenous patient population (as encountered in many early phase trials) does not reduce the 

accuracy of parametric analysis. The parameters of best-fit Weibull distribution are very likely to differ 

between Phase 1 or 2 and Phase 3 studies whenever there are differences in inclusion criteria, such as 

prior therapy, performance status, tumor stage, and histology. Notably, a similar limitation can be 

expected from other methods (e.g. traditional nonparametric approaches) that use early-phase efficacy 

data to design pivotal studies.  

A final limitation of this study is that it uses imputed IPD rather than original data. We are forced 

to use imputed IPDdo this because original results are simply not released, and most published oncology 

trial reports do not provide the numerical values used to plot the Kaplan-Meier estimators. Release of 

numerical data underlying graphical representations has become the norm in pre-clinical research and is 

at the heart of efforts by funding agencies to make data FAIR (findable, accessible, interoperable and 

reusable).). Multiple calls have been made to make IPD from research clinical trials publicly accessible 
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to ensure the reproducibility of study results and facilitate meta-analyses, but compliance remains low12. 

Outside of oncology, calls for reuse of both contemporary and historical control arms have arisen in 

repurposing trials for COVID-19, particularly when the same set of institutions is conducting many 

parallel trials outside of a master protocol framework.. We have made the data described in this paper 

available via an interactive web site (https://cancertrials.io/) that we will continue to expand with new 

imputed data and analysis. We also welcome the submission of primary data.  

Ongoing data collection efforts relevant to clinical trials include the US National Cancer 

Institute’s (NCI) Project DataSphereData Sphere68, the NCINCI’s National Clinical Trials Network 

(NCTN) and Community Oncology Research Program (NCORP) Data Archive, and The Yale 

University Open Data Access (YODA) Project69. Unfortunately these projects have substantial 

limitations with respect to the type of analysis presented here: (i) most IPD are greater than six years old 

and do not cover many of the drugs of greatest current interest, including ICIs; (ii) most public data 

derives from control, not experimental treatment arms; (iii) much of the data involves summary 

statistics, not IPD, and requests for underlying data can be strictly limited; (iv) if access to IPD is 

granted, they are often available online for inspection but are not downloadable for computational 

analysis. A substantial unmet need therefore exists for primary data from clinical trials to be made 

available for reuse. One approach is to amend the requirements for data deposition on ClinicalTrials.Gov 

(per U.S. Public Law 110-85) to include IPD. 

 

METHODS 

Individual participant data imputation and curation  

 The original data set consisted of 152153 unique trials in breast, colorectal, lung, and prostate 

cancer in the metastatic and non-metastatic settings from 2014-201621. Trials were removed from the 

original data set if there were any inconsistencies in the imputed patient data as compared to its 
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associated clinical trial (e.g.: differing numbers of patients from the publication at-risk table and imputed 

data). The quality of the data imputation was confirmed quantitatively, by calculating the hazard ratio 

for imputed data and comparing it to the corresponding trial’s reported hazard ratio, and qualitatively, by 

overlaying the Kaplan-Meier curve generated from the imputed data on top of the published curve. 

Trials with a hazard ratio difference greater than 0.1, or with perceptible visual differences, were 

removed from the final data set and not analyzed further (Supplementary Data File S1).1). Trials 

enrolling patients with malignant pleural mesothelioma (e.g. MAPS, NCT00651456) were classified as 

“lung” trials.  

 

Parametric fitting of patient survival data  

 The imputed event times for the imputed patients, either death for overall survival distributions 

or surrogate events in the case of event-free survival distributions, were compared to the event times 

simulated under each parametric distribution. The likelihood of a specific parametric form to fit patient 

data was computed by maximum likelihood estimation. Specifically, the relative likelihood of a patient 

event taking place at a particular point in time was calculated under that parametric distribution’s 

probability density function. The likelihood of a censoring event taking place was calculated by 

integrating the probability density function (the cumulative density function), and computing the 

likelihood of a patient event taking place in the trial after the censoring time (1- the cumulative 

probability atup to that time under the cumulative density function). This procedure was repeated for all 

patient events in an arm of a clinical trial, and the overall likelihood of a fit was calculated by 

multiplying all relative likelihoods.  

 

Computing R2 explained by the Weibull fit 
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For imputed patient events in a clinical trial arm, the event times (deaths or surrogate events) and 

corresponding percent survival (OS or event-free survival) were computed. Weibull parametric fitting 

was used to obtain the best-fit  and  values corresponding to the imputed patient data. The differences 

between the survival distribution under a best-fit Weibull model and the imputed data were analyzed 

through a Weibull plot70. In this approach, the event times and corresponding survival are normalized 

such that if the data follow a Weibull distribution, the points will be linear. The event times were 

normalized through the transformation: ln t/ , while survival was normalized by: ln (-ln S (t))/ . 

Coefficient of determination (R2 ) values were calculated to determineassess the goodness of Weibull 

fitting for all trial arms in the data set.  

 

Computing Weibull fits to trials of immune checkpoint inhibitors 

 Trials of immune checkpoint inhibitors were selected from the data set (five in total). Each trial’s 

OS and PFS IPD were fit to a 1) single Weibull distribution 2) a mixture distribution made of two 

Weibull distributions. The quality of all fits was assessed by computing the variance in event time 

explained by the fit and the Akaike information criterion (AIC). An additional set of simulations was 

performed to account for the periodicity of radiological scans in detecting progression events, and. The 

quality of fit wasfor these simulations is not readily interpretable through use of a Weibull plot, and was 

instead quantified by the coefficient of determination (R2).) between observed and fitted PFS. 

 

Assessing the relationship between trial scan timetimes and PFS dropdrops 

 Trials of immune checkpoint inhibitors in oncology were obtained through a PubMed search of 

the terms "neoplasms” or “cancer” and “Clinical Trial, Phase III” along with therapies of interest 

(“ipilimumab” or “pembrolizumab” or “nivolumab”). The search was filtered to yield 25 trials with PFS 
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data and a reported scan time, in addition to the five trials in the original data set, for a total of 30 trials 

for subsequent analysis. PFS curves were extracted from each of the trials and images were analyzed 

using DigitizeIt software22 (Braunschweig, Germany) to estimate the timing of the PFS drop in each 

survival curve. The trial scan time interval was obtained from each publication’s methods, blinded 

fromto the image associated with each trial. All extracted values can be found in Supplementary Data 

File S3. 3.  

 

Simulating differences in trial success based on  and  values 

 Control and experimental arms of clinical trials were simulated 1000 times by drawing 100 

patient events from Weibull distributions with differing  and  values.  values in the experimental arm 

ranged from 0.5 to 4.5,  values from 0.4 to 1.6, and control arm parameter values were kept constant 

(1.5 and 1 respectively);). Figure 7 shows results in the region of interest, from experimental arm =0.5 

to 2.5. Events were censored at either early time points (corresponding to a ~60% event rate, a time 

equal to the control arm  value) or later time points (corresponding to a ~95% event rate, a time equal 

to four times the control arm  value). Trial success was calculated for each simulation by using a Cox 

regression at a significance level of p=0.05, in accordance with standard statistical methods used in 

clinical trials. Significance was calculated using a Wald test.  

 

 Calculating the precision and accuracy of parametric and nonparametric survival estimates 

across sample sizes through subsampling  

IPD for each trial arm in the data set was extracted. 213 OS and 273 event-free survival trial 

arms were used for further analysis; these trial arms had at least 100 patients (the maximum number of 

patient subsampling events used in this experiment) and at least one event (i.e.: death, progression) 
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taking place before 12 months. For each trial arm, 20-100 patient events (with a step size of 10 events) 

were subsampled from the imputed IPD. At least 3 non-censoring events were selected during each 

sampling simulation. This procedure was repeated ten times per sample size and trial. Parametric and 

nonparametric 95% confidence intervals for 12-month survival were computed for every sampling 

simulation.  

Accuracy and precision plots were constructed for the subset of simulated trial arms returning 

numerical nonparametric confidence intervals (125 OS trial arms and 99 event-free survival trial arms). 

Note that nonparametric estimates did not return a numerical confidence interval for 41% of OS trial 

arms and 64% of event-free survival trial arms, while Weibull fitting made it possible to calculate 12-

month confidence intervals for every trial arm in every simulation. 

 

Quantification and statistical analysis tools 

Analysis was performed using Wolfram Mathematica Version 12.1.0.0. Details of the statistical 

analysis performed, exact values of n and what they represent, definitions of the summary statistics used, 

definitions of significance, and trial inclusion and exclusion criteria can be found in the Method Details, 

Figure captions, and Results sections of the manuscript. Compute-intensive analyses (e.g. sample size 

simulations) were conducted on the O2 High Performance Compute Cluster, supported by the Research 

Computing Group, at Harvard Medical School. 

 

DATA AVAILABILITY  

All data generated or analyzed during this study are included in this published article (and its 

supplementary information files). 
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CODE AVAILABILITY  

All code used in this study is included in Supplementary Data File S2. Each piece of code is provided in 

a folder containing a Mathematica Notebook (.nb), all data required by the code, and the corresponding 

code output. With source data kept within the same folder as the code, the Mathematica Notebook can 

be executed in Wolfram Mathematica version 11 by selecting “Evaluate Notebook” from the 

“Evaluation” menu. 

2. Each piece of code is provided in a folder containing a Mathematica Notebook (.nb), all data required 

by the code, and the corresponding code output. With source data kept within the same folder as the 

code, the Mathematica Notebook can be executed in Wolfram Mathematica by selecting “Evaluate 

Notebook” from the “Evaluation” menu. Sample R code illustrates the parametric fitting and confidence 

interval construction procedures. 
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SUPPLEMENTARY INFORMATION  

Supplementary Data File S1. Clinical trial metadata and IPD. Trial metadata file includes: trial name, 

author, registration number, journal, publication date, cancer type, cancer metastatic status, whether a 

significant difference was found between the trial experimental and control arm, treatment name, 

treatment type, and number of patients enrolled in the trial. Comparisons between the imputed trials’ 

hazard ratios and the original trial hazard ratios are included to assess imputation quality (procedure 

described in Methods). IPD is provided as 262 .csv files. Each .csv file contains IPD from a different 

figure from a published clinical trial. Description of all variables included in metadata and .csv files can 

be found in “README.txt”.  

Supplementary Data File S2. Analysis code. Each piece of code is provided in a folder containing a 

Mathematica Notebook (.nb), all data required by the code, and the corresponding code output. With 

source data kept within the same folder as the code, the Mathematica Notebook can be executed in 

Wolfram Mathematica version 11 by selecting “Evaluate Notebook” from the “Evaluation” menu. 

Supplementary Data File S3. Weibull fitting of ICI trial arms. The first tab contains percent variance 

explained and AIC for one and two-distribution fits of ICI trial arms. The second tab contains the timing 

of ICI trial PFS drops and the corresponding trial scan times. 
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Fig 1: Procedure for parameterizing survival curves starting with published figures. (A) 

Kaplan-Meier survival curve and at-risk table obtained from clinical trial publication. Individual 

patient data (IPD) were imputed from digitized survival curves and at-risk tables as previously 

described (see Methods). (B) Each set of parameters corresponds to a different probability density 

function (PDF) and survival function (which corresponds to 1- the cumulative density function 

(CDF)). The likelihood of observing actual data is then computed. (C) Likelihood calculation is 

repeated for all possible parameter values. (D) The most likely (best) fit is obtained by finding the 

parameter values with the maximum likelihood.  
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Fig. 2: Representative fits of Weibull distributions to overall survival trial data. (A) Weibull fits 

to data for plots of the Kaplan-Meier estimator falling in the top 25th percentile quality of all fits 

(NCT00973609, NCT01212991) (B) at the 50th percentile (NCT00003140/NCT00754845, 

NCT01607957) and (C) in the bottom 25th percentile (NCT00427713, NCT01229813). (D) Weibull 

plot for patient events in all OS trials (for 237 trial arms from 116 publication figures). This is a 

transformation of survival data that is linear if the data follow a Weibull distribution. (E) Goodness 

of fit as the coefficient of determination (R2) explained by fitted Weibull functions for all trial arms 

reporting OS data.  
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Supplementary Fig. S1. Representative fits of Weibull distributions to event-free survival data. 

Weibull fits to data for plots of the Kaplan-Meier estimator falling in the top 25th  percentile quality for 

all fits (excellent fits; NCT00294996, NCT00053898), at the 50th percentile (good fits; NCT00402519, 

NCT01001377), and in the bottom 25th percentile (poor fits; NCT00427713, NCT number not reported). 

Data derived from trials reporting event-free survival data, primarily PFS (301 survival curves from 146 

figures).  

 

 

 

 



43 
 

 
Supplementary Fig. S2. Improvements in fit of Weibull distributions to overall survival data using 

three-parameter models. Two-parameter fits for the trial arms in Figure 2 representative of the bottom 

quartile of all Weibull fits (NCT00427713, NCT01229813) and two-parameter fits with an additional 

cure rate parameter. 
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Fig 1: Procedure for parameterizing survival curves starting with published figures. a 

Kaplan-Meier survival curve and at-risk table obtained from clinical trial publication. Individual 

participant data (IPD) were imputed from digitized survival curves and at-risk tables as previously 

described (see Methods). b Each set of parameters corresponds to a different probability density 

function (PDF) and survival function (which corresponds to 1- the cumulative density function 

(CDF)). The likelihood of observing actual data is then computed. c Likelihood calculation is 

repeated for a set of possible parameter values. d The most likely (best) fit is obtained by finding 

the parameter values with the maximum likelihood.  
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Fig. 2: Representative fits of Weibull distributions to overall survival trial data. a Weibull fits to 

data for plots of the Kaplan-Meier estimator falling in the top 25th percentile quality of all fits 

(NCT00973609, NCT00982111) b between the first and third quartile (NCT01377376, 

NCT00601900) and c in the lower quartile (NCT00427713, NCT01229813). d Weibull plot for 

patient events in all OS trials (for 237 trial arms from 116 publication figures). This is a 

transformation of survival data that is linear if the data follow a Weibull distribution. e Goodness of 

fit as the coefficient of determination (R2) explained by fitted Weibull functions for all trial arms 

reporting OS data. Boxplot center line indicates median; box limits indicate the upper and lower 

quartile values; whiskers span the full dataset.  
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 Fig. S3. Fit of Weibull models to overall survival and progression-free survival data from 

biomarker stratified trials. Data obtained from the 20050181 trial (NCT number not reported).  
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Fig. 3: Fit of Weibull models to overall survival and progression-free survival data for trials of 

immune checkpoint inhibitors. (A) Progression-free survivala PFS distributions and (B) overall 

survivalb OS distributions for individual arms of two trials of immune checkpoint inhibitors 

(NCT01673867, NCT01057810) with fit to either one or two Weibull distributions. PFS data are best 

described by using a mixture model of two Weibull distributions, each with two parameters. OS 

distributions are described equivalently well by a one or two-distribution fit. (C)c PFS simulations that 

account for the periodicity of radiological scans to detect progression improve the quality of one-

distribution Weibull fits, as quantified by the coefficient of determination (R2).  
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Fig. S4. Additional fits to overall survival and progression-free survival data for trials of immune 

checkpoint inhibitors. Progression-free survival and overall survival distributions for three trials of 

immune checkpoint inhibitors with one and two-distribution fits using Weibull functions, as well as 

simulations that account for the periodicity of radiological scans to detect progression 

(NCT01642004, NCT02142738, NCT00861614).  
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Fig. 4: Impact of parametric statistics on precision and accuracy of overall survival confidence 

interval estimates. Comparison of nonparametric and parametric (Weibull distribution) methods to 

compute 12-month overall survivalOS confidence intervals for trials with small cohorts (20 to 100 

patients) produced by randomly subsampling patient events from 125 actual trial arms. Note that 

nonparametric estimates did not return a numericalan informative confidence interval for 41% of OS 

curves, (out of 213 OS curves with at least 100 patients), while Weibull fitting made it possible to 

calculate 12-month confidence intervals for every survival curve in every simulation. Precision is 

defined as the width of the confidence interval in percent survival. Accuracy is defined as the absolute 

difference between the 12-month survival estimated from small cohorts (for each of 10 simulations per 

sample size and trial), and the value computed from all patients in a given Phase III3 trial. Lines denote 

mean values and shaded regions are 95% confidence intervals.  
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Fig.  

Supplementary Fig. S5. Impact of parametric statistics on precision and accuracy of event-free 

survival estimates. (A) Comparison of nonparametric and parametric (Weibull distribution) methods to 

compute 12-month event-free survival confidence intervals for trials with small cohorts (20 to 100 

patients) produced by randomly subsampling patient events from 99 event-free survival trial arms. Note 

that nonparametric estimates did not return a numerical confidence interval for 64% of event-free 

survival curves, while Weibull fitting made it possible to calculate 12-month confidence intervals for 

every survival curve in every simulation. Precision is defined as the width of the confidence interval in 

percent survival. Accuracy is defined as the absolute difference between the 12-month survival 

estimated from small cohorts (for each of 10 simulations per sample size and trial), and the value 

computed from all patients in a given phase III trial. Shaded regions are 95% confidence intervals. (B) 

Median PFS confidence intervals calculated with parametric and nonparametric methods on phase I 

clinical trial data, and the corresponding phase II study results (MK-3475-022/KEYNOTE-022; 

NCT02130466).  
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Fig. 5: Best fit Weibull parameter values for trials reporting overall survival data. Weibull fits for 

trials reporting overall survival data. (A)5: Best-fit Weibull parameter values for trials reporting 

overall survival data. Weibull fits for trials reporting OS data, encompassing 237 survival curves from 

116 trial figures. a Survival distributions categorized by cancer type and metastatic status (defined as 

trials that included patients with distant metastases). Representative survival functions and fits for trials 

across a variety of cancer types including (B)b metastatic colorectal cancer (NCT01584830) (C)c non-

metastatic lung cancer (NCT number not reported) (D)d metastatic prostate cancer (NCT00110162) and 

(E)e non-metastatic breast cancer (NCT number not reported).  
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Supplementary Fig. S6. Best fit Weibull parameter values for trials reporting event-free survival 

data. Weibull fits for event-free survival curves labeled by metastatic status and cancer type 

(encompassing 301 survival curves from 146 trial figures). 
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Fig. 6: Parameter values for Weibull fits to overall survival data scored by trial outcome. (A)a 

Differences in Weibull  and  parameters for experimental and control arm OS data (drawn from 116 

trial figures). For , the value for the control arm was subtracted from the value for the experimental 

arm. Differences in  were computed by determining the percent change in  in the experimental arm 

with respect to the control arm (positive values indicate larger  in the experimental arm). Asterisks 

denote trials that tested immune checkpoint inhibitors. Success in all cases was judged based on the 

original report and most often corresponded to HR<1 at 95% confidence bybased on Cox proportional 

hazards regression. Hazard ratio and Weibull ratio of cumulative hazards of four clinical trials in the 

data set: (B)b NCT01377376 (tivantinib plus erlotinib vs. erlotinib), (C)c NCT01607957 (TAS-102 vs. 

placebo), (D) NCT00861614 (ipilimumab vs. placebo), (E)d NCT01673867 (nivolumab vs. docetaxel). 

The uncertainty in estimating the ratio of cumulative hazards typically falls with time, narrowing the 
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95% confidence interval depicted in blue.), e NCT00861614 (ipilimumab vs. placebo after 

radiotherapy).  

 

Supplementary Fig. S7. Parameter values for Weibull fits to event-free survival data scored by 

outcome of the trial. For , the value in the control arm was subtracted from the value for the 

experimental arm. Differences in  were computed by determining the percent change in  value in the 

experimental arm with respect to the control arm (positive values indicate larger  in the experimental 

arm). Success in all cases was judged based on the original report and most often corresponded to HR<1 

at 95% confidence by Cox proportional hazards regression. 
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Fig. 7: Effect of trial duration on success when proportional hazards is violated. (A)a One of many 

simulated trials having a range of Weibull  and  parameters similar to those observed in actual trials 

reporting OS data; in this trial  = –0.5 and the ratio of  for experimental and control arms was 1.2. 

The labels tA and tB denote times corresponding to approximately 60% or 95% of all trial events (for real 

OS trial arms in this article, in metastatic cancers, these event rates correspond to median times of tA = 

1622 months and tB= 5150 months). (B)b Percent of simulated successful trials at time tA (left panel) or 

tB (right panel). The simulated trial depicted in panel A is denoted by an asterisk. “Success” was scored 

as HR<1 at a 95% confidence level using the Cox proportional hazards regression; this metric was used 

despite the violation of proportional hazards because it is the accepted approach for assessing efficacy in 

pivotal trials (see text and Methods for details). 
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