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Supplementary Figure 1: Lack of STAT6 phosphorylation in mdx BMDM. Levels of
p-STATEG in total cell lysate of WT and mdx BMDM were evaluated by western blot at
necrotic (top panel) and fibrotic (bottom panel) phases of the disease. WT BMDM
treated with 20 ng/ml IL4 for 2 hours, served as a positive control (Ctrl, in the top panel).
Total STAT6 was detected in all samples, and actin served as an additional loading
control. Each lane represents an independent biological sample obtained from a

different animal, and all experimental replicates are shown in the figure.
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Supplementary Figure 2: mdx BMDM at the fibrotic phase of disease show non-
specific amplified responses to heterologous stimuli. BMDM generated from WT
and mdx mice at the fibrotic phase of disease were exposed to (a) LPS (100 ng/ml) +
IFNy (20 ng/ml) and IL4 (20 ng/ml) (n=4/group for WT, n=5/group for mdx), (b)
fibrinogen (1 mg/ml) (n=4/group for WT, n=5/group for mdx), or (c) B-glucan (100 pg/ml)
(n=4/group for WT, n=5/group for mdx except IL6 at 24h n=4). Bar graphs show mRNA
transcript levels of prototypical pro-inflammatory (“M1”) and anti-inflammatory (“M2”)
marker genes at 4 and 24 hours after exposure. All values are expressed relative to the
mean basal WT (unstimulated) level determined on the same PCR plate. Data
represent means + SEM of biologically independent samples from different mice.

*P<0.05 vs unstimulated WT BMDM and 1P<0.05 vs stimulated WT BMDM at a given



41  time point (one-way ANOVA followed by Tukey post-hoc test, two-tailed). See Source

42 Data file for the exact P values.
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Supplementary Figure 3: BMDM from prenecrotic mdx mice and cardiotoxin-
injured mice do not exhibit amplified responses to heterologous stimuli. BMDM
from WT and mdx mice at the prenecrotic phase of disease were exposed to (a) LPS +

IFNy or IL4 (n=4/group) (b) fibrinogen (n=4/group), or (c) B-glucan (n=4/group except



49

50

51

52

53

54

55

56

57

58

TGFB in mdx 24h group n=3). Bar graphs show mRNA transcript levels of prototypical
pro-inflammatory (“M1”) and anti-inflammatory (“M2”) marker genes at 4 and 24 hours
after exposure. (d-e) BMDM generated from uninjured and cardiotoxin-injured WT were
exposed to heterologous stimuli as in (a-c) (n=4/group for Uninjured, n=5/group for
Injured). All values are expressed relative to the mean basal WT level determined on
the same PCR plate. Data represent means + SEM of biologically independent samples
from different mice. *P<0.05 vs unstimulated WT/Uninjured BMDM and 1P<0.05 vs
stimulated WT/Uninjured BMDM (one-way ANOVA followed by Tukey post-hoc test,

two-tailed). See Source Data file for the exact P values.
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Supplementary Figure 4: M1 and M2 marker gene expression after “training” by
muscle extract or serum in vitro. As indicated in Fig. 4a, WT BMDM were exposed for
24 hours to muscle extract (ME) derived from either (a) WT (n=5 per group) or (b) mdx

muscles (n=5/group except for TGF@ at 24h n=4). Gene expression was measured
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immediately after ME exposure (24 hours) as well as after removal of the ME stimulus
and subsequent “resting” of the cells (5 days). The dashed line indicates the mean
basal expression level for PBS-exposed WT BMDM at each time point. (c-d) Expression
of inflammatory genes 8 hours after fibrinogen exposure in WT BMDM previously
“trained” with mdx-ME at (c) different concentrations (0.1, 0.5 and 1 mg/ml) for 24 hours
(n=4 per group), or (d) different exposure durations (2, 8, 24 hours) using the same
concentration (1 mg/ml) (n=4 per group). Data are expressed relative to the PBS-trained
group identically stimulated with fibrinogen. (e) Identically to the ME protocol (Fig. 4a),
WT BMDM (n=4 per group) were “trained” with WT or mdx (4-6 weeks old) serum (5%)
followed by resting for 5 days and secondary stimulation with fibrinogen for 8 hours. The
graph shows the M1 and M2 markers gene expression levels relative to the PBS-trained
group stimulated with fibrinogen. (f) Donor macrophage (defined as CD45.2+CD11c-
CD11b+F4/80+) number (left panel) and percentage (right panel) in the tibialis anterior
(TA) muscle of mice (n=5 per group) transplanted with WT or mdx bone marrow as
shown in Fig. 4d. There were no differences between groups. All data represent means
+ SEM of independent biological or mice (a-b, f: *P<0.05 unpaired t-test, two-tailed; c-e:
*P<0.05 vs. PBS- trained WT BMDM one-way ANOVA followed by Tukey post-hoc test,

two-tailed). See Source Data file for the exact P values.
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Supplementary Figure 5: Pathway analysis (Reactome database) for the Gene-
based Patterns (GP) desighated GP2, GP3 and GP4 for H3K27me3. Pathway
enrichment analysis is shown for genes showing the (a) GP2, (b) GP3, and (c) GP4
configurations. The vertical line indicates the cut-off P value = 0.05. The extended gene

lists are found in the Supplementary Data 2 table.



Transcriptional Regulation by VENTX

RUNX3 regulates WNT signaling '

Signaling by NODAL

Interleukin-21 signaling

Interleukin-35 Signalling

Interleukin-23 signaling

Repression of WNT target genes

Interleukin-20 family signaling

Interleukin-12 family signaling

PP1 (55%) Formation of the beta-catenin:TCF transactivating complex
Generic Transcription Pathway

Deactivation of the beta-catenin transactivating complex

Interleukin-2 family signaling

RNA Polymerase Il Transcription

Ca2+ pathway

Gene expression (Transcription)

RUNX1 regulates transcription of genes involved in differentiation of HSCs
Signaling by Nuclear Receptors

Degradation of beta-catenin by the destruction complex

Transcriptional regulation by RUNX3 47

3 Signaling by Interleukins
: PP2 (20%) Factors involved in megakaryocyte development and platelet production
Beta-catenin independent WNT signaling

TCF dependent signaling in response to WNT
SUMO E3 ligases SUMOylate target proteins
SUMOylation

ESR-mediated signaling

PP3 (17%) L W

c -log10(p-value)

= 0 Nuclear Receptor transcription pathway
= s = = PP4 (8 /Q) Generic Transcription Pathway

= S P RNA Polymerase Il Transcription
Gene expression (Transcription)

WT mdx mdx Negative regulation of activity of TFAP2 (AP-2) family transcription factors
Activation of the TFAP2 (AP-2) family of transcription factors
TLR4"' Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors

SUMOylation of intracellular receptors

SUMO E3 ligases SUMOylate target proteins

SUMOylation

TFAP2A acts as a transcriptional repressor during retinoic acid induced cell differentiation
Transcriptional regulation of white adipocyte differentiation

TFAP2 (AP-2) family regulates transcription of cell cycle factors
Transcriptional regulation of granulopoiesis

NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis
NR1H2 and NR1H3-mediated signaling

NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflux
SUMOylation of transcription factors

Carnitine metabolism

Recycling of bile acids and salts

Regulation of lipid metabolism by PPARalpha

Regulation of pyruvate dehydrogenase (PDH) complex

Synthesis of bile acids and bile salts via 27-hydroxycholesterol

Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol
Myogenesis

Endogenous sterols

Pyruvate metabolism

Synthesis of bile acids and bile salts

PP2

o 2 4 6 & 10 12 14 16

89

90

91

92

93

94

95

96

97

98

99

and 5 tables.

-log10 {p-value)

(PP) analysis showing the dynamically regulated patterns in mdx versus WT

pattern (I=Increased and U=Unchanged relative to Input) as follows: PP1=IUlI,

PP2=1UU, PP3=UIl and PP4=UIU. (b-c) Transcription factor enrichment Reactome

Supplementary Figure 6: Transcription factor enrichment analysis for H3K27me3

in WT, mdx and mdxTLR4”- BMDM. (a) Stacked heatmaps of the Peak-based Pattern

(designated PP1 to PP4); the normalized H3K27me3 read intensity is plotted +12 kb

over the center of peaks. The values in parentheses indicate the percentages for each

pathway analysis for (b) PP1, and (c) PP2 patterns. Vertical lines indicate the cut-off P

value = 0.05. The extended lists for these data can be found in Supplementary Data 4
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Supplementary Figure 7: H3K4me3 promoter occupancy in BMDM. ChIP-gPCR
was performed to determine promoter region occupancy of H3K4me3 on both M1 and
M2 marker genes in (a) WT versus mdx BMDM (n=5 per group) and (b) mdx versus
mdxTLR47BMDM (n=5 per group). IgG antibody was used as a control for non-specific
binding of antibody. Data represent means = SEM of independent biological samples
from different mice. *P<0.05 (unpaired t-test, two tailed). See Source Data file for the

exact P values.
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Supplementary Figure 8: Gene-based Pattern (GP) analysis of H3K27ac ChIP

sequencing for WT, mdx and mdxTLR47- BMDM at the necrotic phase of disease.
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(a) Violin/box plots representing normalized intensity fold change (H3K27ac vs. Input) in
the region 5kb upstream to the transcription start site (TSS) of all genes across the
whole genome; *P<0.0001 compared to WT BMDM, and T P<0.0001 compared to the
mdx group (two-sided Mann-Whitney U-test). Maxima and minima are shown at the
extreme limits of the plot, box boundaries indicate the 25" and 75" percentiles,
whiskers represent the 10" and 90" percentiles, and the horizontal line within the box
denotes the median value. (b) Heatmaps showing different Gene-based Patterns
(I=Increased and U=Unchanged relative to Input) in order of frequency: GP1 (IUU), GP2
(UIV), GP3 (1Ul) and GP4 (UIl) of the normalized H3K27ac read intensity (proportional
to red color intensity) in the 5 kb promoter region of the genes. The values in
parentheses indicate the percentages for each pattern. (c-f) Pathway enrichment
analysis (Reactome database) for genes showing the GP1-4 configuration (see
Supplementary Data 1 and 2 tables for the extended list of all Gene-based Patterns and

enriched pathways, respectively). The vertical line indicates the cut-off P value = 0.05.
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Supplementary Figure 9: Transcription factor enrichment analysis for H3K27ac in

WT, mdx and mdxTLR4”7 BMDM. (a) Heatmaps showing different Peak-based

Patterns (I=Increased and U=Unchanged relative to Input) in order of frequency: PP1

(IUV), PP2 (UIU), PP3 (IUl) and PP4 (Ull) of the normalized H3K27ac read intensity

(proportional to red color intensity) in the 24 kb nearby region around the peak. The

values in parentheses indicate the percentages for each pattern. Transcription factor

enrichment Reactome pathway analysis for (b) PP1 and (c) PP2 patterns are shown.

Vertical lines indicate the cut-off P value = 0.05. The extended lists for these data can

be found in Supplementary Data 4 and 5 tables.
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Supplementary Figure 10: Phenotype of macrophages in WT and mdx limb

muscles. Tibialis anterior (TA) muscles from WT and mdx mice were processed and

the percentages of pro-inflammatory macrophages (iNOS+ CD206- population, in upper

panel and iINOS+ TGF- population, in lower panel) were determined by flow cytometry.

Data are mean values = SEM of independent biological samples from different mice
(n=3/group). *P<0.05 (unpaired t-test, two-tailed). See Source Data file for the exact P

values.
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Supplementary Figure 11: Phenotype of host macrophages in injured muscles
after adoptive transfer with WT or mdx BMDM. No significant differences in host (a)
pro-inflammatory macrophages (iNOS+ CD206- TGF[3- population) (n=10/group) and
(b) anti-inflammatory macrophages (iNOS- CD206+ TGFB+ population) (n=9/group),
were found in comparisons between mice adoptively transferred with either WT or mdx
BM. Similarly, no significant differences in the host (c) pro-inflammatory macrophages
(n=5/group) and (d) anti-inflammatory macrophages (n=5/group) were observed
between groups adoptively transferred with either mdx or mdxTLR4” BM. All data are
means + SEM of independent biological samples from different mice. There are no
significant differences between groups (unpaired t-test, two-tailed). See Source Data file

for the exact P values.
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Supplementary Figure 12: Gating strategy. Flow cytometry gating strategies are
shown for: (a) Hematopoietic progenitor cells, (b) Innate myeloid cells, and (c)
Lymphocytes, in bone marrow. (d) Gating strategy for the analysis of pro- and anti-
inflammatory macrophages in the injured host (CD45.1) limb muscles of mice after

adoptive transfer with donor (CD45.2) bone marrow cells.
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