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THE BIGGER PICTURE Accurate structure models are critical for understanding the properties of potential
therapeutic antibodies. Conventionalmethods for protein structure determination require significant invest-
ments of time and resources andmay fail. Although greatly improved, methods for general protein structure
prediction still cannot consistently provide the accuracy necessary to understand or design antibodies. We
present a deep learningmethod for antibody structure prediction and demonstrate improvement over alter-
natives on diverse, therapeutically relevant benchmarks. In addition to its improved accuracy, our method
reveals interpretable outputs about specific amino acids and residue interactions that should facilitate
design of novel therapeutic antibodies.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Therapeutic antibodiesmake up a rapidly growing segment of the biologicsmarket. However, rational design
of antibodies is hindered by reliance on experimental methods for determining antibody structures. Here, we
present DeepAb, a deep learning method for predicting accurate antibody FV structures from sequence. We
evaluate DeepAb on a set of structurally diverse, therapeutically relevant antibodies and find that our method
consistently outperforms the leading alternatives. Previous deep learning methods have operated as ‘‘black
boxes’’ and offered few insights into their predictions. By introducing a directly interpretable attentionmech-
anism, we show our network attends to physically important residue pairs (e.g., proximal aromatics and key
hydrogen bonding interactions). Finally, we present a novel mutant scoringmetric derived from network con-
fidence and show that for a particular antibody, all eight of the top-rankedmutations improve binding affinity.
This model will be useful for a broad range of antibody prediction and design tasks.
INTRODUCTION

The adaptive immune system of vertebrates is capable of

mounting robust responses to a broad range of potential patho-

gens. Critical to this flexibility are antibodies, which are special-

ized to recognize a diverse set of molecular patterns with high af-

finity and specificity. This natural role in the defense against

foreign particles makes antibodies an increasingly popular

choice for therapeutic development.1,2 Presently, the design of

therapeutic antibodies comes with significant barriers.1 For

example, the rational design of antibody-antigen interactions
This is an open access article under the CC BY-N
often depends upon an accurate model of antibody structure.

However, experimental methods for protein structure determina-

tion such as crystallography, NMR, and cryo-EM are low

throughput and time consuming.

Antibody structure consists of two heavy and two light chains

that assemble into a large Y-shaped complex. The crystallizable

fragment (FC) region is involved in immune effector function and

is highly conserved within isotypes. The variable fragment (FV)

region is responsible for antigen binding through a set of six

hypervariable loops that form a complementarity determining

region (CDR). Structural modeling of the FV is critical for
Patterns 3, 100406, February 11, 2022 ª 2021 The Authors. 1
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Figure 1. Diagram of DeepAb method for antibody structure prediction

Starting from heavy and light chain sequences, the network predicts a set of inter-residue geometries describing the FV structure. Predictions are used for guided

structure realization with Rosetta. Two interpretable components of the network are highlighted: a pre-trained antibody sequence model and output attention

mechanisms.
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understanding themechanism of antigen binding and for rational

engineering of specific antibodies.Mostmethods for antibody FV
structure prediction employ some form of grafting, by which

pieces of previously solved FV structures with similar sequences

are combined to form a predicted model.3–6 Because much of

the FV is structurally conserved, these techniques are typically

able to produce models with an overall root-mean-square devi-

ation (RMSD) less than 1 Å from the native structure. However,

the length and conformational diversity of the third CDR

loop of the heavy chain (CDR H3) make it difficult to identify

high-quality templates. Further, the H3 loop’s position between

the heavy and light chains makes it dependent on the chain

orientation and multiple adjacent loops.7,8 Thus the CDR H3

loop presents a longstanding challenge for FV structure predic-

tion methods.9

Machine learning methods have become increasing popular

for protein structure prediction and design problems.10 Specific

to antibodies11, machine learning has been applied to predict

developability12, improve humanization13, generate sequence li-

braries14, and predict antigen interactions.15,16 In this work, we

build on advances in general protein structure prediction17–19

to predict antibody FV structures. Our method consists of a

deep neural network for predicting inter-residue distances and

orientations and a Rosetta-based protocol for generating struc-

tures from network predictions. We show that deep learning ap-

proaches can predict more accurate structures than grafting-

based alternatives, particularly for the challenging CDR H3

loop. The network used in this work is designed to be directly

interpretable, providing insights that could assist in structural un-

derstanding or antibody engineering efforts. We conclude by

demonstrating the ability of our network to distinguishmutational

variants with improved binding using a prediction confidence

metric. To facilitate further studies, all the code for this work,

as well as pre-trained models, are provided.
2 Patterns 3, 100406, February 11, 2022
RESULTS

Overview of the method
Our method for antibody structure prediction, DeepAb, consists

of two main stages (Figure 1). The first stage is a deep residual

convolutional network that predicts FV structure, represented

as relative distances and orientations between pairs of residues.

The network requires only heavy and light chain sequences as

input and is designed with interpretable components to provide

insight into model predictions. The second stage is a fast

Rosetta-based protocol for structure realization using the pre-

dictions from the network.

Predicting inter-residue geometries from sequence

Due to the limited number of FV crystal structures available for

supervised learning, we sought to make use of the abundant im-

munoglobin sequences from repertoire sequencing studies.20

We leveraged the power of unsupervised representation learning

to embed general patterns from immunoglobin sequences that

are not evident in the small subset with known structures into

a latent representation. Although transformer models have

become increasingly popular for unsupervised learning on pro-

tein sequences21–24, we chose a recurrent neural network

(RNN) model for ease of training on the limited data available.

The fixed-size hidden state of RNNs forms an explicit information

bottleneck ideal for representation learning. In the recent UniRep

method, RNNs were demonstrated to learn rich feature repre-

sentations from protein sequences when trained on next-

amino-acid prediction.25 For our purposes, we developed an

RNN encoder-decoder model26; the encoder is a bidirectional

long short-term memory (biLSTM) and the decoder is a long

short-termmemory (LSTM).27 Briefly, the encoder learns to sum-

marize an input sequence residue-by-residue into a fixed-size

hidden state. This hidden state is transformed into a summary

vector and passed to the decoder, which learns to reconstruct
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the original sequence one residue at a time. The model is trained

using cross-entropy loss on a set of 118,386 paired heavy and

light chain sequences from the Observed Antibody Space

(OAS) database.28 After training the network, we generated em-

beddings for antibody sequences by concatenating the encoder

hidden states for each residue. These embeddings are used as

features for the structure prediction model described below.

The choice of protein structure representation is critical for

structure prediction methods.10 We represent the FV structure

as a set of inter-residue distances and orientations, similar to

previous methods for general protein structure prediction.18,19

Specifically, we predict inter-residue distances between three

pairs of atoms (Ca—Ca, Cb—Cb, N—O) and the set of inter-res-

idue dihedrals (u: Ca—Cb—Cb—Ca, q: N—Ca—Cb—Cb) and

planar angles (4: Ca—Cb—Cb) first described by Yang et al.18

and shown in their Figure 1. Each output geometry is discretized

into 36 bins, with an additional bin indicating distant residue pairs

ðdCa
>18�AÞ. All distances are predicted in the range of 0–18 Å,

with a bin width of 0.5 Å. Dihedral and planar angles are discre-

tized uniformly into bins of 10� and 5�, respectively.
The general architecture of the structure prediction network is

similar to our previous method for CDRH3 loop structure predic-

tion29, with two notable additions: embeddings from the pre-

trained language model and interpretable attention layers (Fig-

ure 1). The network takes as input the concatenated heavy and

light chain sequences. The concatenated sequence is one-hot

encoded and passed through two parallel branches: a 1D Re-

sNet and the pre-trained language model. The outputs of the

branches are combined and transformed into pairwise data.

The pairwise data pass through a deep 2D ResNet that consti-

tutes the main component of the predictive network. Following

the 2D ResNet, the network separates into six output branches,

corresponding to each type of geometric measurement. Each

output branch includes a recurrent criss-cross attention module,

allowing each residue pair in the output to aggregate information

from all other residue pairs. The attention layers provide inter-

pretability that is often missing from protein structure prediction

models.

We opted to train with focal loss30 rather than cross-entropy

loss to improve the calibration of model predictions, as models

trained with cross-entropy loss have been demonstrated to

overestimate the likelihood of their predicted labels.31 We pay

special attention to model calibration as later in this work we

attempt to distinguish between potential antibody variants on

the basis of prediction confidence, which requires greater cali-

bration. The model is trained on a nonredundant (at 99%

sequence identity) set of 1,692 FV structures from the Structural

Antibody Database (SAbDab).32 The pretrained languagemodel,

used as a feature extractor, is not updated while training the pre-

dictor network.

Structure realization

Similar to previous methods for general protein structure predic-

tion17–19, we used constrained minimization to generate full 3D

structures from network predictions. Unlike previous methods,

which typically begin with some form of 4�j torsion sampling,

we created initial models via multi-dimensional scaling (MDS).

We opted to build initial structures through MDS, rather than tor-

sion sampling, due to the high conservation of the framework

structural regions. ThroughMDS, we can obtain accurate 3D co-
ordinates for the conserved framework residues, thus bypassing

costly sampling for much of the antibody structure.33 As a

reminder, the relative positions of all backbone atoms are fully

specified by the predicted L3 L inter-residue dCa
,u, q, and 4 ge-

ometries. Using the modal-predicted output bins for these four

geometries, we construct a distance matrix between backbone

atoms. From this distance matrix, MDS produces an initial set

of 3D coordinates that are subsequently refined through con-

strained minimization.

Network predictions for each output geometry were con-

verted to energetic potentials by negating the raw model logits

(i.e., without softmax activation). These discrete potentials were

converted to continuous constraints using a cubic spline func-

tion. Starting from the MDS model, the constraints are used to

guide quasi-Newton minimization (L-BFGS) within Rosetta.34,35

First, the constraints are jointly optimized with a simplified

Rosetta centroid energy function to produce a coarse-grained

FV structure with the sidechains represented as a single

atom. Next, constrained full-atom relaxation was used to intro-

duce sidechains and remove clashes. After relaxation, the

structure was minimized again with constraints and the Rosetta

full-atom energy function (ref2015). This optimization procedure

was repeated to produce 50 structures, and the lowest energy

structure was selected as the final model. Although we opted to

produce 50 candidate structures, five should be sufficient in

practice due to the high convergence of the protocol (Fig-

ure S1). Five candidate structures can typically be predicted

in 10 min on a standard CPU, making our method slower

than grafting-only approaches (seconds to minutes per

sequence), but significantly faster than extensive loop sampling

(hours per sequence).

Benchmarking methods for FV structure prediction
To evaluate the performance of our method, we chose two inde-

pendent test sets. The first is the RosettaAntibody benchmark

set (47 targets), which has previously been used to evaluate anti-

body structure prediction methods.8,29,36 The second is a set of

clinical-stage therapeutic antibodies (45 targets), which was pre-

viously assembled to study antibody developability.37 Taken

together, these sets represent a structurally diverse, therapeuti-

cally relevant benchmark for comparing antibody FV structure

prediction methods.

Deep learning outperforms grafting methods

Although our method bears resemblance to deep learning

methods for general protein structure prediction, we opted to

compare to antibody-specific methods as we have previously

found general methods to not yet be capable of producing

high-quality structures of the challenging CDR loops.29 Instead,

we compared the performance of our method on the

RosettaAntibody benchmark and therapeutic benchmark to

three antibody-specific alternative methods: RosettaAntibody-

G4,6, RepertoireBuilder5, and ABodyBuilder.3 Each of these

methods is based on a grafting approach, by which complete

FV structures are assembled from sequence-similar fragments

of previously solved structures. To produce the fairest compari-

son, we excluded structures with greater than 99% sequence

identity for the whole FV from use for grafting (similar to our

training data set). We evaluated each method according to the

backbone heavy-atom RMSD of the CDR loops and the
Patterns 3, 100406, February 11, 2022 3



Table 1. Performance of FV structure prediction methods on benchmarks

Method OCD H Fr (Å) H1 (Å) H2 (Å) H3 (Å) L Fr (Å) L1 (Å) L2 (Å) L3 (Å)

RosettaAntibody benchmark

RosettaAntibody-G 5.19 0.57 1.22 1.14 3.48 0.67 0.80 0.87 1.06

RepertoireBuilder 5.26 0.58 0.86 1.00 2.94 0.51 0.63 0.52 1.03

ABodyBuilder 4.69 0.50 0.99 0.88 2.94 0.49 0.72 0.52 1.09

DeepAb 3.67 0.43 0.72 0.85 2.33 0.42 0.55 0.45 0.86

Therapeutic benchmark

RosettaAntibody-G 5.43 0.63 1.42 1.05 3.77 0.55 0.89 0.83 1.48

RepertoireBuilder 4.37 0.62 0.91 0.96 3.13 0.47 0.71 0.52 1.08

ABodyBuilder 4.37 0.49 1.05 1.02 3.00 0.45 1.04 0.50 1.35

DeepAb 3.52 0.40 0.77 0.68 2.52 0.37 0.60 0.42 1.02

Orientational coordinate distance (OCD) is a unitless quantity calculated bymeasuring the deviation from native of four heavy-light chain coordinates.8

Heavy chain framework (H Fr) and light chain framework (L Fr) RMSDs aremeasured after superimposing the heavy and light chains, respectively. CDR

loop RMSDs are measured using the Chothia loop definitions after superimposing the framework region of the corresponding chain. All RMSDs are

measured over backbone heavy atoms.
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framework regions of both chains. We also measured the orien-

tational coordinate distance (OCD)8, a metric for heavy-light

chain orientation accuracy. OCD is calculated as the sum of

the deviations from native of four orientation coordinates (pack-

ing angle, interdomain distance, heavy-opening angle, light-

opening angle) divided by the standard deviation of each coordi-

nate.8 The results of the benchmark are summarized in Table 1

and fully detailed in Tables S1–S8.

Our deep learning method showed improvement over all graft-

ing-based methods on every metric considered. On both bench-

marks, the structures predicted by our method achieved an

average OCD less than 4, indicating that predicted structures

were typically within one standard deviation of the native struc-

ture for each of the orientational coordinates. All of the methods

predicted with sub-Angstrom accuracy on the heavy and light

chain framework regions, which are highly conserved. Still, our

method achieved average RMSD improvements of 14%–18%

for the heavy chain framework and 16%–17% for light chain

framework over the next best methods on the benchmarks.

We also observed consistent improvement over grafting

methods for CDR loop structure prediction.

Comparison of CDR H3 loop modeling accuracy

Themost significant improvements by ourmethodwere observed

for the CDR H3 loop (Figure 2A). On the RosettaAntibody bench-

mark, our method predicted H3 loop structures with an average

RMSD of 2.33 Å (±1.32 Å), a 22% improvement over the next

best method. On the therapeutic benchmark, our method

had an average H3 loop RMSD of 2.52 Å (±1.50 Å), a 16%

improvement over the next best method. The difficulty of

predicting CDR H3 loop structures is due in part to the wide

range of observed loop lengths. To understand the impact of

H3 loop length on our method’s performance, we compared the

average RMSD for each loop length across both benchmarks

(Figure 2B). In general, all of the methods displayed degraded

performance with increasing H3 loop length. However, DeepAb

typically produced the most accurate models for each loop

length.

We also examined the performance of each method on indi-

vidual benchmark targets. In Figure 2C, we plot the CDR H3
4 Patterns 3, 100406, February 11, 2022
loop RMSD of our method versus that of the alternative

methods. Predictions with an RMSD difference less than

0.25 Å (indicated by diagonal bands) were considered equiva-

lent in quality. When compared to RosettaAntibody-G, Reper-

toireBuilder, and ABodyBuilder, our method predicted more/

less accurate H3 loop structures for 64/17, 59/16, and 53/22

out of 92 targets, respectively. Remarkably, our method was

able to predict nearly half of the H3 loop structures (42 of 92)

to within 2 Å RMSD. RosettaAntibody-G, RepertoireBuilder,

and ABodyBuilder achieved RMSDs of 2 Å or better on 26,

23, and 26 targets, respectively.

Accurate prediction of challenging, therapeutically

relevant targets

To underscore and illustrate the improvements achieved by our

method, we highlight two examples from the benchmark sets.

The first is rituximab, an anti-CD20 antibody from the therapeutic

benchmark (PDB: 3PP3).38 In Figure 2D, the native structure of

the 12-residue rituximab H3 loop (white) is compared to our

method’s prediction (green, 2.1 Å RMSD) and the predictions

from the grafting methods (blue, 3.3–4.1 Å RMSD). The predic-

tion from our method captures the general topology of the loop

well, even placing many of the side chains near the native. The

second example is sonepcizumab, an anti-sphingosine-1-phos-

phate antibody from the RosettaAntibody benchmark (PDB:

3I9G).39 In Figure 2E, the native structure of the 12-residue H3

loop (white) is compared to our method’s prediction (green,

1.8 Å) and the predictions from the grafting methods (blue,

2.9–3.9 Å). Again, our method captures the overall shape of the

loop well, enabling accurate placement of several side chains.

Interestingly, the primary source of error by our method in both

cases is a tryptophan residue (around position H100) facing in

the incorrect direction.

Impact of architecture on H3 loop modeling accuracy

Themodel presented in this work includes two primary additions

over previous work for predicting H3 loop structures29: pre-

trained LSTM sequence embeddings and criss-cross attention

over output branches. To better understand the impact of each

of these enhancements, we trained two additional model ensem-

bles following the same procedure as described for the full
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Figure 2. Comparison of CDR H3 loop structure prediction accuracy

(A) Average RMSD of H3 loops predicted by RosettaAntibody-G (RAb), RepertoireBuilder (RB), ABodyBuilder (ABB), and DeepAb on the two benchmarks. Error

bars show standard deviations for each method on each benchmark.

(B) Average RMSD of H3 loops by length for all benchmark targets. Error bars show standard deviations for loop lengths corresponding to more than one target.

(C) Direct comparison of DeepAb and alternative methods H3 loop RMSDs, with diagonal band indicating predictions that were within ±0.25 Å.

(D) Comparison of native rituximab H3 loop structure (white, PDB: 3PP3) to predictions from DeepAb (green, 2.1 Å RMSD) and alternative methods (blue,

3.3–4.1 Å RMSD).

(E) Comparison of native sonepcizumab H3 loop structure (white, PDB: 3I9G) to predictions from DeepAb (green, 1.8 Å RMSD) and alternative methods (blue,

2.9–3.9 Å RMSD).
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model. The first model acts as a baseline, without LSTM features

or criss-cross attention, and the second introduces the LSTM

features. Wemade predictions for each of the 92 benchmark tar-

gets and compared the H3 loop modeling performance of these

models to the full model (Figure S2A). The baseline model

achieved an average H3 loop RMSD of 2.71 Å, outperforming

grafting-based methods. Addition of the LSTM features yielded

a moderate improvement in H3 accuracy (�0.1 Å RMSD), while

addition of criss-cross attention provided a slightly larger

improvement (�0.2 Å RMSD). We also analyzed the H3 loop

lengths of each target while comparing the ablation models (Fig-

ure S2B) and found that improvements were relatively consistent

across lengths.

Interpretability of model predictions
Despite the popularity of deep learning approaches for protein

structure prediction, little attention has been paid to model inter-

pretability. Interpretable models offer utility beyond their primary

predictive task.40,41 The network used in this work was designed

to be directly interpretable and should be useful for structural un-

derstanding and antibody engineering.

Output attention tracks model focus

Each output branch in the network includes a criss-cross atten-

tion module42, similar to the axial attention used in other protein

applications.24,43,44 We have selected the criss-cross attention

in order to efficiently aggregate information over a 2D grid

(e.g., pairwise distance and orientation matrices). The criss-
cross attention operation allows the network to attend across

output rows and columns when predicting for each residue

pair (as illustrated in Figure 3A). Through the attention layer, we

create a matrix AεRL3L (where L is the total number of residues

in the heavy and light chain Fv domains) containing the total

attention between each pair of residues (see experimental pro-

cedures). To illustrate the interpretative power of network atten-

tion, we considered an anti-peptide antibody (PDB: 4H0H) from

the RosettaAntibody benchmark set. Our method performed

well on this example (H3 RMSD = 1.2 Å), so we expected it would

provide insights into the types of interactions that the network

captures well. We collected the attention matrix for dCa
predic-

tions and averaged over the residues belonging to each CDR

loop to determine which residues the network focuses on while

predicting each loop’s structure (Figure 3B). As expected, the

network primarily attends to residues surrounding each loop of

interest. For the CDR1-2 loops, the network attends to the resi-

dues in the neighborhood of the loop, with little attention paid to

the opposite chain. For the CDR3 loops, the network attends

more broadly across the heavy-light chain interface, reflecting

the interdependence between the loop conformations and the

overall orientation of the chains.

To better understand what types of interactions the network

considers, we examined the residues assigned high attention

while predicting the H3 loop structure (Figure 3C). Within the H3

loop, we found that the highest attention was on the residues

forming the C-terminal kink. This structural feature has previously
Patterns 3, 100406, February 11, 2022 5
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Figure 3. Interpretability of model components

(A) Diagram of attention mechanism (with attention matrix A and value matrix V) and example H3 loop attention matrix, with attention on other loops indicated.

Attention values increase from blue to red.

(B) Model attention over FV structure while predicting each CDR loop for an anti-peptide antibody (PDB: 4H0H).

(C) Key interactions for H3 loop structure prediction identified by attention. The top five non-H3 attended residues (H32-Y, L32-Y, L49-Y, L55-F, and L91-S) are

labeled, as well as an H3 residue participating in a hydrogen bond (H100-S).

(D) Two-dimensional t-SNE projection of sequence-averaged LSTM embeddings labeled by source species.

(E) Two-dimensional t-SNE projects of LSTM embeddings averaged over CDR1 loop residues labeled by loop structural clusters.
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been hypothesized to contribute to H3 loop conformational diver-

sity45, and it is likely critical for correctly predicting the overall loop

structure. Of the five non-H3 residues with the highest attention,

we found that one was a phenylalanine and three were tyrosines.

The coordination of these bulky side chains appears to play a sig-

nificant role in the predicted H3 loop conformation. The fifth resi-

due was a serine from the L3 loop (residue L91) that forms a

hydrogen bond with a serine of the H3 loop (residue H100), sug-

gesting some consideration by the model of biophysical interac-

tions between neighboring residues. To understand how the

model attention varies across different H3 loops and neighboring

residues, we performed a similar analysis for the 47 targets of the

RosettaAntibody benchmark (Figure S3). Although some neigh-

boring residues were consistently attended to, we observed

noticeable changes in attention patterns across the targets (Fig-

ure S4), demonstrating the sensitivity of the attention mechanism

for identifying key interactions for a broad range of structures.
6 Patterns 3, 100406, February 11, 2022
Repertoire sequence model learns evolutionary and

structural representations

Tobetter understandwhat properties of antibodies are accessible

through unsupervised learning, we interrogated the representa-

tion learned by the LSTM encoder, which was trained only on se-

quences. First, we passed the entire set of paired heavy and light

chain sequences from the OAS database through the network to

generate embeddings like those used for the structure prediction

model. The variable-length embedding for each sequence was

averaged over its length to generate a fixed-size vector describing

the entire sequence.Weprojected the vector embedding for each

sequence into two dimensions via t-distributed stochastic

neighbor embedding (t-SNE)46 and found that the sequences

were naturally clustered by species (Figure 3D). Because the

structural data set is predominately composed of human andmu-

rine antibodies, the unsupervised features are likely providing

evolutionary context that is otherwise unavailable.
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Figure 4. Prediction of mutational effects with DeepAb model

(A) Diagram of DCCE calculation for model output predictions for an arbitrary residue pair. Plots show the change in probability density of the predicted ge-

ometries for the residue pair after making a mutation.

(B) Plot of the combined network metric against experimental binding enrichment over wild type, with negative values corresponding to beneficial mutations for

both axes. True positive predictions (red) and mutations to wild type cysteines (yellow) are highlighted.

(C) Receiver operating characteristic for predicting experimental binding enrichment over wild type with the combined network metric and each component

metric. Area under the curve (AUC) values are provided for each metric.

(D) Position of true positive predictions on anti-lysozyme FV structure.

(E) Positive predictive value for mutants ranked by the combined metric.

(F) Comparison of DCCE for a designed eight-point variant (D44.1des, red) to sequences with random mutations at the same positions.
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The five non-H3 CDR loops typically adopt one of several ca-

nonical conformations.47,48 Previous studies have identified

distinct structural clusters for these loops and described each

cluster by a characteristic sequence signature.49 We hypothe-

sized that our unsupervised learning model should detect these

sequence signatures and thus encode information about the

corresponding structural clusters. Similar to before, we created

fixed-size embedding vectors for the five non-H3 loops by

averaging the whole-sequence embedding over the residues

of each loop (according to Chothia definitions47). In Figure 3E,

we show t-SNE embeddings for the CDR1 loops labeled by

their structural clusters from PyIgClassify.49 These loops are

highlighted because they have the most uniform class balance

among structural clusters; similar plots for the remaining loops

are provided in Figure S5. We observed clustering of labels

for both CDR1 loops, indicating that the unsupervised model

has captured some structural features of antibodies through

sequence alone.

Applicability to antibody design
Moving toward the goal of antibody design, we sought to test

our method’s ability to distinguish between beneficial and
disruptive mutations. First, we gathered a previously published

deep mutational scanning (DMS) data set for an anti-lysozyme

antibody.50 Anti-lysozyme was an ideal subject for evaluating

our network’s design capabilities, as it was part of the bench-

mark set and thus already excluded from training. In the DMS

data set, anti-lysozyme was subjected to mutational scanning

at 135 positions across the FV, including the CDR loops and

the heavy-light chain interface. Each variant was transformed

into yeast and measured for binding enrichment over the

wild type.

Prediction confidence is indicative of mutation

tolerability

We explored two strategies for evaluating mutations with our

network. First, we measured the change in the network’s struc-

ture prediction confidence for a variant sequence relative to the

wild type (visualized in Figure 4A) as a change in categorical

cross-entropy:

DCCEðseqwt; seqvarÞ =
X

ij ε neighbors

X

g ε outputs

log

max
gij

P
�
gijjseqwt

�

max
gij

P
�
gij

��seqvar

�
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where seqWt and seqvar are the wild type and variant seq-

uences, respectively, and the conditional probability term de-

scribes the probability of a particular geometric output gij˛
fdCa ;ij; dCb ;ij; dN�O;ij; uij; qij; 4ijg given seqWt or seqvar. Only res-

idue pairs ij with predicted dCa<10�A were used in the calcula-

tion. Second, we used the LSTM decoder described previously

to calculate the negative log likelihood of a particular point muta-

tion given the wild type sequence, termed dLSTM:

dLSTM
�
seqvarjzwtÞ = � log P

�
seqvar;i = aa

��zwt; seqvar;i�1

�

where seqvar is a variant sequence with a point mutation to aa at

position i, and zWt is the biLSTM encoder summary vector for the

wild type sequence. To evaluate the discriminative power of the

two metrics, we calculated DCCE and dLSTM for each variant in

the anti-lysozyme data set. We additionally calculated a com-

bined metric as DCCE + 0.01 3 dLSTM, roughly equating the

magnitudes of both terms, and compared to the experimental

binding data (Figure 4B). Despite having no explicit knowledge

of the antigen, the network was moderately predictive of exper-

imental binding enrichment (Figure 4C). The most successful

predictions (true positives in Figure 4B) were primarily for muta-

tions in CDR loop residues (Figure 4D). This is not surprising,

given that our network has observed the most diversity in these

hypervariable regions and is likely less calibrated to variance

among framework residues. Nevertheless, if the DCCE +

0.01 3 dLSTM were for ranking, all the top-8 and 22 of the

top-100 single-point mutants identified would have experimental

binding enrichments above the wild type (Figure 4E).

Network distinguishes stability-enhanced designs

The anti-lysozyme DMS data set was originally assembled to

identify residues for design of multi-point variants.50 The authors

designed an anti-lysozyme variant with eight mutations, called

D44.1des, that displayed improved thermal stability and nearly

10-fold increase in affinity. To determine whether our network

could recognize the cumulative benefits of multiple mutations,

we created a set of variants with random mutations at the

same positions. We calculated DCCE for D44.1des and the

random variants and found that the model successfully distin-

guished the design (Figure 4F). We found similar success at dis-

tinguishing enhanced multi-point variants for other targets from

the same publication (Figure S6), suggesting that our approach

will be a useful screening step for a broad range of antibody

design tasks. Despite being trained only for structure prediction,

these results suggest that our model may be a useful tool for

screening or ranking candidates in antibody design pipelines.

DISCUSSION

The results presented in this work build on advances in general

protein structure prediction to effectively predict antibody FV
structures. We found that our deep learning method consistently

produced more accurate structures than grafting-based alterna-

tives on benchmarks of challenging, therapeutically relevant tar-

gets. Although we focused on prediction of FV structures, our

method is also capable of modeling single-chain nanobodies

(Figure S7). In these limited cases, the framework RMSD and

several of the CDR1 and CDR2 loops are predicted with sub-

Angstrom accuracy. However, we observe that the CDR3
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predictions tend to resemble antibody FV CDR H3 loops, indi-

cating that there may be value in training models specifically

for nanobody structure prediction.

As deep learning methods continue to improve, model inter-

pretability will become increasingly important to ensure practi-

tioners can gain insights beyond the primary predictive results.

In addition to producing accurate structures, our method also

provides interpretable insights into its predictions. Through the

attention mechanism, we can track the network’s focus while

predicting FV structures. We demonstrated interpretation of pre-

dictions for a CDR H3 loop and identified several interactions

with neighboring residues that the model deemed important for

structure. In the future, similar insights could be used within anti-

body engineering workflows to prevent disruption of key interac-

tions, reducing the need for time-consuming human analysis and

focusing antibody library design.

As part of this work, we developed an unsupervised represen-

tation model for antibody sequences. We found that critical fea-

tures of antibody structure, including non-H3 loop clusters, were

accessible through a simple LSTM encoder-decoder model.

While we limited training to known pairs of heavy and light

chains, several orders of magnitude more unpaired immunoglo-

bins have been identified through next-generation repertoire

sequencing experiments.28 We anticipate that a more advanced

language model trained on this larger sequence space will

enable further advances across all areas of antibody bioinfor-

matics research.

While this work was under review, improved deep learning

methods for general protein structure prediction were pub-

lished.43,44 These methods make extensive use of attention for

the end-to-end prediction of protein structures. Both methods

additionally separate pairwise residue information from evolu-

tionary information in the form of multiple sequence alignments,

with RoseTTAFold going further and learning a nascent struc-

tural representation in a third track. While these methods were

designed for single-chain predictions, we anticipate that similar

methods may yield advances in protein complex prediction

(including antibody FV structures). Further improvements still

may come from directly incorporating the antigen into predic-

tions, as antigen binding can lead to significant conformational

changes.51 DMPfold52, a similar method for general proteins,

has been shown to contain flexibility information within inter-res-

idue distance distributions.53 In principle, DeepAb might provide

similar insights into CDR loop flexibility, but further investigation

is necessary.

Deep learning models for antibody structure prediction pre-

sent several promising avenues toward antibody design. In this

work, we demonstrated how our network could be used to sug-

gest or screen point mutations. Even with no explicit knowledge

of the antigen, this approach was already moderately predictive

of mutational tolerability. Further, because our approach relies

only on the model outputs for a given sequence, it is capable

of screening designs for any antibody. Inclusion of antigen struc-

tural context through extended deep learning models or tradi-

tional approaches like Rosetta should only improve these re-

sults. Other quantities of interest such as stability or

developability metrics could be predicted by using the DeepAb

network for transfer learning or feature engineering.12 Further-

more, comparable networks for general protein structure
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prediction have recently been re-purposed for design through

direct sequence optimization.54–56 With minimal modification,

our network should enable similar methods for antibody design.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Jeffrey J. Gray (jgray@jhu.edu).

Materials availability

This study did not generate any unique reagents.

Data and code availability

Structure prediction data generated in this study have been deposited to Zen-

odo: 10.5281/zenodo.5525257 and are publicly available as of the date of pub-

lication. All original code is available at https://github.com/RosettaCommons/

DeepAb and deposited to Zenodo: 10.5281/zenodo.5683647. Any additional

information required to reanalyze the data reported in this paper is available

from the lead author upon request.

Independent test sets

To evaluate the performance of our method, we considered two independent

test sets. The first is the RosettaAntibody benchmark set of 49 structures,

which was previously assembled to evaluate methods over a broad range of

CDR H3 loop lengths (ranging 7–17 residues).8,36 Each structure in this set

has greater than 2.5 Å resolution, a maximum R value of 0.2, and a maximum

B factor of 80 Å2. The second comes from a set of 56 clinical-stage antibody

therapeutics with solved crystal structures, which was previously assembled

to study antibody developability.37 We removed five of the therapeutic anti-

bodies that were missing one or more CDR loops (PDB: 3B2U, 3C08,

3HMW, 3S34, and 4EDW) to create a therapeutic benchmark set. The two

sets shared two common antibodies (PDB: 3EO9 and 3GIZ) that we removed

from the therapeutic benchmark set.

While benchmarking alternative methods, we found that some methods

were unable to produce structures for every target. Specifically, RosettaAnti-

body failed to produce predictions for four targets (PDB: 1X9Q, 3IFL, 4D9Q,

and 4K3J) and both RepertoireBuilder and ABodyBuilder failed to produce

predictions for two targets (PDB: 4O02 and 5VVK). To compare consistently

across all methods, we report values for only the targets that all methods suc-

ceeded inmodeling. However, we note that DeepAbwas capable of producing

structures for all of the targets attempted. From the RosettaAntibody bench-

mark set, we omit PDB: 1X9Q and 3IFL. From the therapeutic benchmark

set, we omit PDB: 4D9Q, 4K3J, 4O02, and 5VKK. We additionally omit the

long L3 loop of target 3MLR, which not all alternative methods were able to

model. In total, metrics are reported for 92 targets: 47 from the RosettaAnti-

body benchmark and 45 from the therapeutic benchmark. We use the Chothia

CDR loop definitions to measure RMSD throughout this work.47

Representation learning on repertoire sequences

Training data set

To train the sequence model, paired FV heavy and light chain sequences were

collected from the OAS database28, a set of immunoglobin sequences from

next-generation sequencing experiments of immune repertoires. Each

sequence in the database had previously been parsed with ANARCI57 to anno-

tate sequences and detect potentially erroneous entries. For this work, we

extract only the FV region of the sequences, as identified by ANARCI.

Sequences indicated to have failed ANARCI parsing were discarded from

the training data set. We additionally remove any redundant sequences. These

steps resulted in a set of 118,386 sequences from five studies58–62 for model

training.

Model and training details

To learn representations of immunoglobin sequences, we adopted an RNN

encoder-decoder model26 consisting of two LSTMs.27 In an encoder-decoder

model, the encoder learns to summarize the input sequence into a fixed-

dimension summary vector, from which the decoder learns to reconstruct

the original sequence. For the encoder model, we used a bidirectional two-

layer stacked LSTM with a hidden state size of 64. The model input was
created by concatenation of paired heavy and light chain sequences to form

a single sequence. Three additional tokens were added to the sequence to

mark the beginning of the heavy chain, the end of the heavy chain, and the

end of the light chain. The concatenated sequence was one-hot encoded, re-

sulting in an input of dimension (L + 3) 3 23, where L is the combined heavy

and light chain length. The summary vector is generated by stacking the final

hidden states from the forward and backward encoder LSTMs, followed by a

linear transformation from 128 to 64 dimensions and tanh activation. For the

decoder model, we used a two-layer stacked LSTM with a hidden state size

of 64. The decoder takes as input the summary vector and the previously de-

coded amino acid to sequentially predict the original amino acid sequence.

The model was trained using cross-entropy loss and the Adam optimizer63

with a learning rate of 0.01, with learning rate reduced upon plateauing of vali-

dation loss. A teacher forcing rate of 0.5 was used to stabilize training. The

model was trained on one NVIDIA K80 GPU, requiring �4 h for 5 epochs

over the entire data set. We used a batch size of 128, maximized to fit into

GPU memory.

Predicting inter-residue geometries from antibody sequence

Training data set

To train the structure predictionmodel, we collected a set of FV structures from

the SAbDab32, a curated set of antibody structures from the PDB.64 We

removed structures with less than 4-Å resolution and applied a 99% sequence

identity threshold to remove redundant sequences. We chose this high

sequence similarity due to the high conservation characteristic of antibody se-

quences, as well as the over-representation of many identical therapeutic an-

tibodies in structural databases. Additionally, we hoped to expose the model

to examples of small mutations that lead to differences in structures. This is

particularly important for the challenging CDR H3 loop, which has been

observed to occupy an immense diversity of conformations even at the level

of four-level fragments.65 Finally, any targets from the benchmark sets, or

structures with 99% sequence similarity to a target, were removed from the

training data set. These steps resulted in a set of 1,692 Fv structures, a mixture

of antigen bound and unbound, for model training.

Model and training details

The structure prediction model takes as input concatenated heavy and light

chain sequences. The sequences are one-hot encoded and passed through

two parallel branches: a 1D ResNet and the biLSTM encoder described above.

For the 1D ResNet, we add an additional delimiter channel to mark the end of

the heavy chain, resulting in a dimension of L 3 21, where L is the combined

heavy and light chain length. The 1D ResNet begins with a 1D convolution

that projects the input features up to dimension L 3 64, followed by three

1D ResNet blocks (two 1D convolutions with kernel size 17) that maintain

dimensionality. The second branch consists of the pre-trained biLSTM

encoder. Before passing the one-hot encoded sequence to the biLSTM, we

add the three delimiters described previously, resulting in dimension (L +3)

3 23. From the biLSTM, we concatenate the hidden states from the forward

and backward LSTMs after encoding each residue, resulting in dimension L

3 128. The outputs of the 1D ResNet and the biLSTM are stacked to form a

final sequential tensor of dimension L 3 160. We transform the sequential

tensor to pairwise data by concatenating row- and column-wise expansions.

The pairwise data, dimension L 3 L 3 320, is passed to the 2D ResNet. The

2D ResNet begins with a 2D convolution that reduces dimensionality to L 3

L 3 64, followed by 25 2D ResNet blocks (two 2D convolutions with kernel

size 5 3 5) that maintain dimensionality. The 2D ResNet blocks cycle through

convolution dilation values of 1, 2, 4, 8, and 16 (five cycles in total). After the 2D

ResNet, the network branches into six separate paths. Each output branch

consists of a 2D convolution that projects down to dimension L 3 L 3 37,

followed by a recurrent criss-cross attention (RCCA) module.42 The RCCA

modules use two criss-cross attention operations that share weights, allowing

each residue pair to gather information across the entire spatial dimension.

Attention queries and keys are projected to dimension L3 L3 1 (one attention

head). Symmetry is enforced for dCa
, dCb

, and u predictions by averaging the

final outputs with their transposes. All convolutions in the network are followed

by ReLU activation. In total, the model contains about 6.4 million trainable

parameters.

We trained five models on random 90/10% training/validation splits and

averaged over model logits to make predictions, following previous
Patterns 3, 100406, February 11, 2022 9
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methods.8,19 Models were trained using focal loss30 and the Adam optimizer63

with a learning rate of 0.01, with learning rate reduced upon plateauing of vali-

dation loss. Learning rate was reduced upon plateauing of the validation loss.

Each model was trained on one NVIDIA K80 GPU, requiring �60 h for 60

epochs over the entire data set.

Structure realization

Multi-dimensional scaling

From the network predictions, we create real-value matrices for the dCb
, u, q,

and 4 outputs by taking themidpoint value of themodal probability bin for each

residue pair. From these real-valued distances and orientations, we create an

initial backbone atom (N, Ca, and C) distance matrix. For residue pairs pre-

dicted to have dCb
>18�A, we approximate the distances between atoms using

the Floyd-Warshall shortest path algorithm.66 From this distance matrix, we

use MDS67 to produce an initial set of 3D coordinates. The initial structures

from MDS typically contained atom clashes and non-ideal geometries that

required further refinement.

Energy minimization refinement

Initial structures fromMDS were refined by constrained energy minimization in

Rosetta. For each pair of residues, the predicted distributions for each output

were converted to energy potentials by negating the raw model logits (i.e.,

without softmax activation) and dividing by the squared dCa
prediction.

The discrete potentials were converted to continuous functions using the

built-in Rosetta spline function. We disregarded potentials for residue pairs

with predicted dCa
>18�A, as well as those with a modal bin probability below

10%. For dN�O potentials, we also discarded with predicted dN�O> 5�A or

modal bin probability below 30% to create a local backbone hydrogen-

bonding potential. The remaining potentials are applied to the MDS structure

as inter-residue constraints in Rosetta.

Modeling in Rosetta begins with a coarse-grained representation, in which

the side-chain atoms are represented as a single artificial atom (centroid).

The centroid model is optimized by gradient-based energy minimization (Min-

Mover) using the L-BFGS algorithm.34,35 The centroid energy function includes

the following score terms in addition to learned constraints: vdw (clashes),

cen_hb (hydrogen bonds), and rama and omega (backbone torsion angles). Af-

ter centroid optimization, we add side-chain atoms and relax the structure to

reduce steric clashes (FastRelax). Finally, we repeat the gradient-based en-

ergyminimization step in the full-atom representation to produce a final model.

We repeat this procedure to produce 50 decoymodels and select the structure

with the lowest energy as the final prediction. Only the relaxation step in the

protocol is non-deterministic, leading to high convergence among decoys.

In practice, we expect 5–10 decoys will be sufficient for most applications.

Predicting structures with other recent methods

To contextualize the performance of our method, we benchmarked three

recent methods for antibody FV structure prediction: RosettaAntibody-G6,

RepertoireBuilder5, and ABodyBuilder.3 RosettaAntibody-G predictions were

generated using the command-line arguments recommended by Jeliazkov

et al.6 (Appendix S1). We note that we only used the RosettaAntibody grafting

protocol (antibody), omitting the extensive but time-consuming H3 loop sam-

pling (antibody_H3).4,6 RepertoireBuilder and ABodyBuilder predictions were

generated using their respective web servers. For each target in the bench-

marks, we excluded structures with sequence similarity greater than 99%

from use for predictions, to mirror the conditions of our training set. We note

that this sequence cutoff does not prevent methods from grafting identical

loops from slightly different sequences.

Attention matrix calculation

During the criss-cross attention operation42, we create an attention matrix

AεRL3L3ð2L�1Þ, where for each residue pair in the L 3 L spatial dimension,

we have 2L�1 entries corresponding to the attention values over other residue

pairs in the same row and column (including the residue pair itself). To interpret

the total attention between pairs of residues, we simplify the attentionmatrix to

A0
εRL3ð2L�1Þ, where for each residue i in the sequence, we only consider the

attention values in the i-th row and column. In A0, for each residue i there are

two attention values for each other residue j, corresponding to the row- and

column-wise attention between i and j. We further simplify by summing these

row- and column-wise attention values, resulting in an attention matrix
10 Patterns 3, 100406, February 11, 2022
A00
εRL3L, containing the total attention between pairs of residues. In the

main text, we refer to A00 as A for simplicity.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100406.
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Figure S1. Convergence of predicted structures for two benchmark examples. (A) Funnel plots showing accuracy (OCD, 
RMSD) versus score for 50 DeepAb decoys for target 3PP3 (therapeutic benchmark), with low-scoring structure in red. (B) 
Superimposed decoy structures for target 3PP3. (C) Funnel plots showing accuracy (OCD, RMSD) versus score for 50 
DeepAb decoys for target 3I9G (RosettaAntibody benchmark), with low-scoring structure in red. (D) Superimposed decoy 
structures for target 3I9G. 

 
  



 

 
Figure S2. Impact of architecture additions on H3 loop accuracy. (A) Average RMSD of H3 loops predicted by baseline 
model (without LSTM features or CCA), baseline model with LSTM features, and full model.  Error bars show standard 
deviations for each model on each benchmark. (B) Direct comparison of H3 RMSD for each target as architecture is 

expanded, with diagonal bands indicating predictions that were within ±0.25	Å. Point color indicates H3 loop length for each 
target. 

  



 

 
Figure S3. H3 loop attention for RosettaAntibody benchmark targets.  Model 𝐶! attention while predicting H3 loop 
structures for each of the 47 targets in the RosettaAntibody benchmark.  Attention values increase from blue to red.  For each 
target, the side chains of the five most attended non-H3 residues are represented as sticks. 

 
 
  



 

 
Figure S4. Variability of key residues identified by attention mechanism. Model 𝐶! attention while predicting H3 loop 
structures for three targets in the RosettaAntibody benchmark.  Attention values increase from blue to red.  For each target, 
the side chains of the five most attended non-H3 residues are represented as sticks. (A) H3 attention for 1OAQ prediction. (B) 
H3 attention for 3MLJ prediction. (C) H3 attention for 3M8O prediction.  

 
 
 
 
  



 

 
Figure S5. Non-H3 CDR loop t-SNE embeddings labeled by structural clusters.  CDR-specific embeddings are created by 
averaging the bi-LSTM encoder hidden states of residues for each CDR loop.  

 
 
  



 

 
Figure S6. Identification of stable multi-point variants for two AbLIFT designs. Both wild type structures were present in 
the training dataset, resulting in a slight bias for the native sequence. (A) Mutation positions for two anti-VEGF multi-point 
variants presented by Warszawski et al1. (B) Comparison of Δ𝐶𝐶𝐸 values for G6des1 (nine-point variant) and random nine-point 
variants at the same positions. (C) Comparison of Δ𝐶𝐶𝐸 values for G6des13 (six-point variant) and random six-point variants at 
the same positions. (D) Mutation positions for two anti-QSOX1 multi-point variants. (E) Comparison of Δ𝐶𝐶𝐸 values for 
h492.1des3 (seven-point variant) and random seven-point variants at the same positions. (F) Comparison of Δ𝐶𝐶𝐸 values for 
h492.1des18 (four-point variant) and random four-point variants at the same positions. 

 
  



 

 
Figure S7. Nanobody structures predicted by DeepAb. Four nanobody structures predicted by DeepAb (green) aligned to 
native structures (gray). Prediction accuracy is reported as RMSDs over the framework region and the three CDR loops. (A) 
Predicted structure for nanobody 3TPK (framework: 0.58 Å, CDR1: 3.29 Å, CDR2: 1.07 Å, CDR3: 4.73 Å). (B) Predicted 
structure for nanobody 4KRP (framework: 0.82 Å, CDR1: 2.36 Å, CDR2: 2.07 Å, CDR3: 5.56 Å). (C) Predicted structure for 
nanobody 5IMM (framework: 0.46 Å, CDR1: 1.89 Å, CDR2: 0.58 Å, CDR3: 7.60 Å). (D) Predicted structure for nanobody 5M2J 
(framework: 1.01 Å, CDR1: 1.12 Å, CDR2: 0.86 Å, CDR3: 8.34 Å) 

 
  



 

Table S1. CDR loop RMSD and OCD results for DeepAb on RosettaAntibody benchmark. 
Target OCD H Fr (Å) H1 (Å) H2 (Å) H3 (Å) L Fr (Å) L1 (Å) L2 (Å) L3 (Å) 

1dlf 6.04 0.65 0.92 0.82 3.84 0.51 0.37 0.64 0.32 
1fns 1.72 0.37 0.62 1.15 2.01 0.32 0.51 0.27 0.51 
1gig 1.95 0.39 0.64 0.47 2.49 0.47 0.36 0.99 1.14 
1jfq 3.20 0.49 0.49 1.07 1.10 0.33 0.43 0.21 0.54 
1jpt 1.42 0.43 0.36 0.67 1.29 0.24 0.72 0.41 0.37 

1mfa 2.08 0.45 0.50 0.69 1.45 0.29 0.89 0.41 1.24 
1mlb 5.36 0.46 0.42 0.60 1.14 0.42 0.44 0.76 0.64 
1mqk 2.68 0.24 0.29 0.34 1.04 0.48 0.46 0.38 1.76 
1nlb 3.21 0.27 0.21 0.59 0.56 0.50 0.77 0.33 0.35 
1oaq 1.33 0.39 0.37 0.67 1.93 0.38 0.58 0.39 0.40 
1seq 2.45 0.39 0.66 0.58 2.93 0.36 0.41 0.20 0.40 
2adf 2.87 0.42 0.48 0.61 1.77 0.53 0.75 0.28 0.59 
2d7t 15.91 0.65 0.80 0.78 2.27 0.44 0.42 0.36 1.00 
2e27 3.29 0.34 0.54 0.53 4.30 0.58 0.71 0.49 1.90 
2fb4 5.83 0.34 0.30 0.34 3.53 0.88 0.91 0.47 0.63 
2fbj 6.73 0.46 0.57 1.01 1.44 0.45 1.02 0.62 1.99 
2r8s 2.59 0.48 0.64 1.83 2.55 0.37 0.32 0.41 0.49 
2v17 2.12 0.36 0.44 1.26 2.44 0.67 0.69 0.35 0.86 
2vxv 1.95 0.35 0.65 1.09 5.28 0.35 0.26 0.90 1.77 
2w60 4.64 0.29 0.36 0.54 1.97 0.36 0.43 0.30 0.49 
2xwt 0.46 0.43 1.24 0.54 3.13 0.32 0.61 1.07 0.99 
2ypv 3.73 0.82 0.69 0.70 2.36 0.33 0.68 0.39 0.55 
3e8u 3.26 0.48 0.56 0.59 1.30 0.37 0.51 0.42 0.35 
3eo9 4.42 0.36 0.53 0.68 2.42 0.34 0.41 0.39 0.79 
3g5y 3.75 0.29 0.52 0.37 0.72 0.60 0.24 0.35 0.42 
3giz 2.10 0.37 0.56 0.43 1.95 0.31 0.25 0.28 0.25 

3gnm 0.81 0.29 0.44 0.30 2.78 0.40 0.63 0.19 0.47 
3go1 2.13 0.36 1.47 1.22 3.28 0.47 0.95 0.83 1.83 
3hc4 4.13 1.02 0.49 0.99 0.89 0.41 0.46 0.30 0.37 
3hnt 3.28 0.39 0.19 0.66 1.19 0.49 0.36 0.90 0.93 
3i9g 1.24 0.27 0.41 0.55 1.78 0.47 0.40 1.66 0.34 
3liz 1.67 0.33 0.52 0.37 4.77 0.50 0.66 0.32 0.30 
3lmj 3.20 0.40 3.16 5.81 5.26 0.27 0.46 0.35 1.68 

3m8o 4.42 0.56 1.48 1.19 2.98 0.48 1.49 0.32 1.08 
3mlr 2.36 0.51 0.57 0.53 3.65 0.43 0.50 0.34 - 

3mxw 1.03 0.41 0.59 0.56 1.08 0.32 0.30 0.25 0.68 
3nps 21.84 1.19 3.24 1.76 4.84 0.45 0.67 0.48 1.01 
3oz9 2.89 0.48 0.53 0.90 1.21 0.46 0.85 0.21 1.52 
3p0y 2.10 0.37 0.70 0.98 1.53 0.21 0.39 0.30 1.53 
3t65 1.91 0.28 0.36 0.40 1.48 0.39 0.49 0.36 0.39 
3umt 2.52 0.36 0.60 0.73 2.05 0.47 0.79 0.47 0.30 
3v0w 4.87 0.42 0.86 0.53 0.91 0.44 0.34 0.33 0.44 
4f57 2.22 0.27 0.32 1.08 1.36 0.23 0.34 0.23 0.73 
4h0h 3.06 0.30 0.33 0.62 1.22 0.47 0.35 0.37 0.29 
4h20 3.81 0.52 0.26 0.60 2.63 0.35 0.34 0.29 0.83 
4hpy 3.71 0.33 2.58 0.29 1.94 0.27 0.66 0.34 2.23 
4nzu 4.35 0.31 0.27 0.73 5.64 0.40 0.26 0.42 0.37 
Mean 3.67 0.43 0.72 0.85 2.33 0.42 0.55 0.45 0.86 

SD 3.58 0.18 0.66 0.81 1.32 0.12 0.25 0.28 0.58 
 
  



 

Table S2. CDR loop RMSD and OCD results for DeepAb on therapeutic benchmark. 
Target OCD H Fr (Å) H1 (Å) H2 (Å) H3 (Å) L Fr (Å) L1 (Å) L2 (Å) L3 (Å) 
1bey 1.64 0.58 1.45 0.86 2.35 0.62 0.73 0.55 0.65 
1cz8 1.92 0.30 0.64 0.76 1.65 0.24 0.30 0.28 0.38 
1mim 1.60 0.49 0.54 0.49 1.01 0.36 0.61 0.48 0.81 
1sy6 1.78 0.32 0.46 0.62 2.16 0.40 0.32 0.31 0.90 
1yy8 1.78 0.98 0.49 0.68 0.62 0.42 0.57 0.49 0.74 
2hwz 3.17 0.25 0.50 0.35 1.93 0.46 0.70 0.37 2.40 
3eo0 2.50 0.31 3.25 1.05 4.49 0.27 1.27 0.23 0.44 
3gkw 9.94 1.24 2.79 1.08 7.48 0.42 0.72 0.35 0.91 
3nfs 3.88 0.46 0.44 0.54 1.10 0.39 0.65 0.36 0.84 
3o2d 5.31 0.38 0.39 0.71 2.26 0.24 0.54 0.27 0.40 
3pp3 1.18 0.26 0.42 0.91 2.09 0.45 0.84 0.43 0.44 
3qwo 2.37 0.32 0.65 1.24 1.58 0.27 0.39 0.43 0.54 
3u0t 9.53 0.58 1.60 0.79 3.07 0.50 0.83 0.54 1.01 
4cni 3.76 0.32 0.31 1.02 2.79 0.44 0.33 0.39 0.63 
4dn3 2.61 0.40 2.29 0.79 1.82 0.35 1.27 0.34 1.26 
4g5z 3.98 0.30 0.36 0.44 1.45 0.47 0.30 0.57 0.46 
4g6k 5.89 0.30 0.40 1.05 1.87 0.46 0.73 0.27 1.06 
4hkz 4.03 0.25 0.43 0.46 3.04 0.26 0.27 0.28 0.56 
4i77 3.24 0.41 0.89 1.04 2.37 0.29 0.80 0.27 0.60 
4irz 1.77 0.38 0.43 0.52 3.05 0.41 1.00 0.41 1.38 

4kaq 3.63 0.54 0.45 0.58 2.38 0.37 0.49 0.32 0.38 
4m6n 6.05 0.35 0.70 0.40 2.76 0.28 1.32 0.29 2.02 
4nyl 5.31 0.52 0.35 0.56 4.74 0.55 0.52 0.46 0.78 
4od2 1.38 0.44 0.42 0.61 5.53 0.45 0.78 1.36 2.14 
4ojf 1.35 0.36 0.28 1.09 1.71 0.24 0.42 0.32 0.55 

4qxg 0.95 0.37 0.37 0.47 1.55 0.36 0.44 0.46 1.67 
4x7s 1.99 0.37 1.43 0.65 2.18 0.29 0.39 0.22 0.55 
4ypg 3.94 0.38 0.62 0.45 3.00 0.37 0.45 0.66 0.86 
5csz 5.58 0.23 0.34 0.38 2.11 0.30 0.89 0.36 0.98 
5dk3 4.00 0.32 0.54 0.58 2.49 0.33 0.32 0.55 0.52 
5ggq 2.13 0.31 0.34 0.54 1.45 0.28 0.18 0.31 0.20 
5ggu 5.51 0.24 0.43 0.46 6.14 0.32 0.27 0.25 0.34 
5i5k 8.73 0.73 0.63 0.79 4.57 0.84 0.78 0.64 0.95 
5jxe 3.98 0.29 0.67 0.46 2.85 0.59 0.49 0.58 0.77 

5kmv 6.17 0.52 0.62 0.71 0.73 0.34 0.58 0.45 0.51 
5l6y 3.89 0.25 0.47 0.54 5.44 0.21 0.28 0.52 2.29 
5n2k 2.78 0.24 0.35 0.29 2.70 0.35 0.51 0.32 4.55 
5nhw 2.43 0.29 0.69 0.48 0.80 0.26 0.76 0.37 4.34 
5sx4 0.46 0.46 0.94 0.69 0.88 0.33 0.26 0.34 0.57 
5tru 3.00 0.33 0.40 0.43 1.34 0.30 1.01 0.25 1.22 
5vh3 3.95 0.31 0.67 0.36 0.95 0.40 0.32 0.38 0.42 
5wuv 2.83 0.43 0.69 0.87 2.82 0.24 0.22 0.32 0.56 
5xxy 2.99 0.38 0.54 0.94 1.30 0.37 1.10 0.56 0.44 
5y9k 1.98 0.38 2.29 0.98 2.07 0.29 0.72 0.63 1.21 
6and 1.56 0.33 0.58 0.80 2.57 0.32 0.52 0.38 0.51 
Mean 3.52 0.40 0.77 0.68 2.52 0.37 0.60 0.42 1.02 

SD 2.16 0.19 0.67 0.24 1.50 0.12 0.30 0.19 0.92 
 
  



 

Table S3. CDR loop RMSD and OCD results for RosettaAntibody-G on RosettaAntibody benchmark. 
Target OCD H Fr (Å) H1 (Å) H2 (Å) H3 (Å) L Fr (Å) L1 (Å) L2 (Å) L3 (Å) 

1dlf 9.61 0.69 1.17 1.14 4.92 0.61 0.67 1.00 0.64 
1fns 3.22 0.58 0.79 1.20 4.32 0.35 0.67 0.44 1.13 
1gig 8.70 0.59 0.68 0.86 4.35 0.90 0.78 2.29 1.00 
1jfq 5.07 0.67 0.97 1.07 1.34 0.51 0.40 0.83 0.74 
1jpt 6.69 0.52 1.62 0.99 1.48 0.30 0.67 0.90 0.75 

1mfa 7.30 0.76 0.82 1.07 3.39 0.93 2.37 0.98 1.29 
1mlb 4.15 0.59 1.23 0.58 5.45 0.59 0.54 1.18 0.85 
1mqk 6.21 0.41 0.71 0.88 1.78 0.71 0.79 0.81 1.95 
1nlb 4.41 0.52 0.62 0.52 1.47 0.55 0.54 0.79 0.89 
1oaq 7.46 0.76 1.22 0.85 1.96 0.88 0.64 1.72 1.21 
1seq 2.73 0.46 1.04 1.61 6.57 0.45 0.48 1.20 0.81 
2adf 6.20 0.39 0.78 0.56 2.11 0.39 0.42 0.91 0.43 
2d7t 13.32 0.82 1.07 0.87 5.90 0.53 0.56 0.79 0.98 
2e27 4.19 0.33 0.47 0.36 3.03 0.57 0.30 0.63 1.46 
2fb4 2.54 0.42 1.17 0.58 8.25 1.15 1.26 0.78 0.64 
2fbj 12.86 0.48 0.83 0.57 1.38 0.48 1.15 0.89 2.18 
2r8s 6.83 0.62 1.93 1.76 2.76 0.52 3.04 0.38 0.57 
2v17 9.30 0.58 0.86 1.60 1.72 0.68 0.63 0.63 0.63 
2vxv 0.86 0.37 0.90 1.00 4.40 0.42 0.30 0.64 0.62 
2w60 2.59 0.54 1.17 0.62 0.77 0.74 0.59 1.25 0.37 
2xwt 4.50 0.44 1.41 0.43 2.48 0.57 0.74 0.54 2.08 
2ypv 5.19 0.71 1.03 0.84 6.09 0.48 0.35 0.84 0.59 
3e8u 2.87 0.61 0.84 0.66 2.32 0.41 0.67 0.71 0.67 
3eo9 5.22 0.49 1.47 0.91 2.06 0.43 0.36 0.78 0.69 
3g5y 2.18 0.29 0.75 0.39 0.42 0.73 0.48 0.78 0.46 
3giz 2.69 0.48 0.74 0.55 4.86 0.48 1.98 0.79 0.68 

3gnm 1.96 0.31 0.62 0.51 2.45 0.44 0.66 0.70 0.79 
3go1 6.31 0.47 1.61 2.44 6.56 0.38 0.60 0.82 2.89 
3hc4 7.98 1.03 0.57 1.13 1.39 0.46 0.55 0.32 0.26 
3hnt 0.36 0.62 1.24 0.74 3.27 0.63 0.43 1.05 0.90 
3i9g 5.75 0.52 0.44 1.06 2.93 0.61 0.75 0.78 0.80 
3liz 2.71 0.58 1.41 0.34 4.57 0.75 0.34 0.58 0.37 
3lmj 0.75 0.73 3.21 6.59 6.60 0.48 0.58 0.77 1.71 

3m8o 8.76 0.64 2.22 1.04 8.38 0.46 1.27 1.03 1.10 
3mlr 3.72 0.57 0.70 1.12 3.04 5.30 3.16 1.63 - 

3mxw 2.71 1.21 1.31 1.29 1.72 0.41 0.74 0.66 0.80 
3nps 3.59 1.27 3.74 2.99 5.53 0.61 1.02 0.87 2.64 
3oz9 10.17 0.54 0.79 0.88 2.16 0.61 0.98 0.94 2.15 
3p0y 3.34 0.38 2.74 2.61 2.60 0.54 0.30 0.71 1.77 
3t65 1.81 0.35 0.93 0.75 0.44 0.41 0.67 0.50 0.69 
3umt 7.46 0.59 1.59 0.97 4.04 0.55 0.50 0.67 0.83 
3v0w 7.14 0.56 1.53 1.59 1.74 0.41 0.51 0.63 0.99 
4f57 4.10 0.58 1.17 2.46 8.28 0.69 1.01 0.92 1.41 
4h0h 5.66 0.52 0.65 0.67 2.67 0.58 0.61 0.76 0.74 
4h20 3.67 0.54 0.86 0.35 1.75 0.58 0.50 0.86 1.57 
4hpy 3.78 0.38 2.77 0.61 0.61 0.54 0.75 0.97 1.18 
4nzu 5.55 0.47 0.83 0.77 7.16 0.71 0.45 1.12 0.82 
Mean 5.19 0.57 1.22 1.14 3.48 0.67 0.80 0.87 1.06 

SD 2.96 0.20 0.71 1.01 2.21 0.71 0.63 0.34 0.61 
 
 
  



 

Table S4. CDR loop RMSD and OCD results for RosettaAntibody-G on therapeutic benchmark. 
Target OCD H Fr (Å) H1 (Å) H2 (Å) H3 (Å) L Fr (Å) L1 (Å) L2 (Å) L3 (Å) 
1bey 4.23 0.96 1.81 2.06 3.58 0.67 0.72 1.20 1.22 
1cz8 3.32 0.35 2.82 0.30 0.40 0.45 0.75 0.96 0.61 
1mim 13.64 0.63 1.00 0.74 0.85 0.63 1.35 0.98 2.36 
1sy6 3.53 0.32 0.88 0.46 1.62 0.49 0.52 0.80 0.84 
1yy8 5.26 1.17 0.99 1.04 4.84 0.55 0.58 0.77 0.71 
2hwz 1.74 0.31 1.05 0.42 1.79 0.56 0.58 1.06 2.23 
3eo0 5.58 0.72 2.81 1.61 9.58 0.39 1.57 1.13 0.83 
3gkw 10.31 1.23 2.68 0.94 7.81 0.65 1.53 1.15 0.94 
3nfs 4.31 0.84 1.80 1.65 3.34 0.46 1.00 0.91 1.38 
3o2d 4.18 0.56 0.86 0.94 4.71 0.55 0.82 0.83 0.40 
3pp3 2.22 0.53 0.90 1.30 4.15 0.54 1.06 0.90 0.92 
3qwo 4.57 0.35 0.66 1.32 1.73 0.56 0.71 1.18 2.22 
3u0t 17.22 0.66 2.22 1.15 5.15 0.71 1.17 0.96 1.40 
4cni 9.41 0.58 0.64 1.30 3.42 0.52 0.34 0.79 0.81 
4dn3 7.94 0.68 3.74 1.30 2.66 0.41 1.44 0.89 1.02 
4g5z 4.56 0.38 0.79 0.40 0.56 0.50 0.31 0.73 0.53 
4g6k 4.11 0.38 0.76 1.24 2.33 0.59 0.73 0.69 0.53 
4hkz 4.75 1.07 1.01 1.00 3.55 0.59 0.43 0.46 0.65 
4i77 4.27 0.87 0.90 1.09 3.10 0.35 1.10 0.66 0.53 
4irz 2.62 0.64 1.02 1.26 3.33 0.58 0.70 0.80 1.30 

4kaq 3.65 1.02 1.12 0.79 2.82 0.48 0.36 0.61 0.94 
4m6n 4.57 0.31 0.66 0.66 3.81 0.66 1.27 0.88 1.57 
4nyl 3.47 0.54 1.02 0.76 4.36 0.77 0.98 0.77 0.82 
4od2 5.18 0.69 0.88 0.60 8.60 0.63 0.74 0.96 1.72 
4ojf 4.80 0.45 1.05 1.22 4.98 0.48 0.27 1.12 0.73 

4qxg 3.26 0.54 0.97 0.79 1.76 0.44 0.39 0.48 2.14 
4x7s 5.23 0.62 1.52 3.26 2.46 0.57 0.60 0.60 0.60 
4ypg 2.84 0.47 1.18 1.20 4.51 0.34 0.54 0.63 1.23 
5csz 5.96 0.59 0.71 1.32 2.69 0.39 0.75 0.38 1.31 
5dk3 1.27 0.56 2.54 0.73 0.94 0.34 0.85 0.52 0.33 
5ggq 1.15 0.46 0.89 0.75 2.17 0.46 1.93 0.89 0.38 
5ggu 6.62 0.97 1.20 1.00 8.20 0.43 0.43 0.81 0.61 
5i5k 8.32 1.10 0.92 0.96 5.21 0.89 0.99 0.74 1.57 
5jxe 3.75 0.50 3.68 1.66 5.74 0.68 1.23 0.68 0.73 

5kmv 11.64 0.60 1.57 0.87 1.28 0.48 0.86 1.07 0.53 
5l6y 11.90 0.36 0.72 0.97 12.57 0.50 0.58 0.82 1.87 
5n2k 4.14 0.47 0.78 0.49 3.91 0.62 1.08 1.01 6.54 
5nhw 3.48 0.46 2.54 0.68 1.24 0.68 0.81 0.82 5.18 
5sx4 7.47 1.09 1.32 1.03 1.42 1.13 1.58 0.89 10.26 
5tru 4.89 0.46 0.70 0.51 3.24 0.36 1.84 0.59 1.55 
5vh3 2.71 0.51 1.41 0.70 3.10 0.56 0.70 0.76 0.40 
5wuv 2.54 0.42 0.90 0.74 3.70 0.38 0.46 0.48 1.19 
5xxy 3.82 0.55 1.46 2.02 2.63 0.55 1.19 0.49 0.53 
5y9k 7.84 0.76 2.97 1.20 7.23 0.70 1.12 1.68 1.63 
6and 6.16 0.44 1.62 0.79 2.69 0.53 1.07 0.91 0.67 
Mean 5.43 0.63 1.42 1.05 3.77 0.55 0.89 0.83 1.48 

SD 3.32 0.25 0.83 0.52 2.53 0.15 0.41 0.24 1.76 
 
 
 
  



 

Table S5. CDR loop RMSD and OCD results for RepertoireBuilder on RosettaAntibody benchmark. 
Target OCD H Fr (Å) H1 (Å) H2 (Å) H3 (Å) L Fr (Å) L1 (Å) L2 (Å) L3 (Å) 

1dlf 10.60 0.86 0.84 1.02 2.93 0.60 0.39 0.51 0.40 
1fns 5.37 0.51 0.54 1.45 3.99 0.55 0.53 0.24 0.42 
1gig 5.07 0.60 0.58 0.85 3.11 0.40 0.59 1.09 0.93 
1jfq 3.60 0.65 0.51 1.15 1.88 0.34 0.36 0.41 0.28 
1jpt 1.47 0.51 0.37 0.72 0.53 0.40 0.59 0.55 0.38 

1mfa 7.63 0.61 0.52 0.82 0.41 0.45 0.70 0.56 0.49 
1mlb 4.94 0.58 0.52 1.68 0.65 0.57 0.56 0.90 0.60 
1mqk 4.48 0.34 0.53 0.83 1.92 0.46 0.55 0.50 2.04 
1nlb 9.29 0.46 0.72 0.50 1.79 0.66 0.44 0.49 0.72 
1oaq 5.63 0.55 0.50 0.58 2.14 0.50 0.58 0.63 1.02 
1seq 7.46 0.62 0.65 0.72 3.71 0.37 0.66 0.35 0.86 
2adf 4.67 0.31 0.60 0.86 2.51 0.34 0.46 0.49 0.32 
2d7t 8.09 0.71 1.13 0.65 3.73 0.54 0.76 0.42 1.06 
2e27 8.15 0.66 0.63 0.51 4.62 0.48 0.36 0.52 2.40 
2fb4 1.45 0.43 0.43 0.64 5.29 0.98 0.79 0.50 1.45 
2fbj 7.51 0.51 0.94 0.87 2.37 0.38 1.16 0.87 2.10 
2r8s 1.50 0.50 0.88 1.86 2.50 0.45 0.88 0.62 1.04 
2v17 9.98 0.42 0.50 1.20 2.34 0.78 1.03 0.62 0.65 
2vxv 1.91 0.22 0.72 0.74 3.92 0.53 0.39 0.92 2.62 
2w60 4.14 0.48 0.74 0.50 2.46 0.42 0.69 0.25 0.63 
2xwt 8.67 0.39 1.43 0.44 3.63 0.53 0.36 0.87 1.51 
2ypv 6.75 1.04 0.74 0.92 3.88 0.69 0.91 0.39 0.70 
3e8u 4.91 0.73 0.50 0.66 1.54 0.42 0.65 0.45 0.68 
3eo9 5.64 0.39 0.87 0.58 3.39 0.48 0.50 0.52 0.70 
3g5y 7.72 0.60 0.48 0.36 1.04 0.67 0.48 0.43 0.47 
3giz 4.82 0.67 0.80 0.56 2.58 0.48 0.47 0.57 0.55 

3gnm 3.65 0.76 0.58 0.99 1.41 0.47 0.70 0.27 0.71 
3go1 3.17 0.43 2.23 0.95 3.48 0.65 1.05 0.95 3.52 
3hc4 3.15 1.05 0.46 1.13 0.92 0.53 0.52 0.37 0.20 
3hnt 4.28 0.59 0.65 0.84 1.68 0.59 0.40 0.93 1.87 
3i9g 2.80 0.29 0.50 0.55 3.85 0.57 0.64 0.46 1.00 
3liz 5.59 0.29 0.73 0.50 4.43 0.69 0.33 0.36 0.40 
3lmj 2.61 0.99 3.21 7.12 6.56 0.45 0.49 0.43 2.40 

3m8o 11.24 0.65 1.92 1.15 7.45 0.79 1.64 0.44 0.67 
3mlr 5.69 0.52 0.25 1.27 5.60 0.59 0.82 0.47 - 

3mxw 4.49 0.92 0.80 1.30 1.94 0.30 0.39 0.38 0.66 
3nps 4.87 0.73 2.83 0.92 4.31 0.68 1.24 0.50 1.45 
3oz9 4.49 0.62 0.52 1.70 2.98 0.54 0.62 0.24 1.76 
3p0y 6.18 0.52 1.15 1.60 3.11 0.38 0.58 0.25 1.40 
3t65 3.02 0.42 0.27 0.66 0.43 0.36 0.75 1.04 0.40 
3umt 8.31 0.74 1.22 0.59 3.47 0.44 0.52 0.27 0.42 
3v0w 4.86 0.49 0.80 0.67 2.12 0.46 0.60 0.51 0.79 
4f57 3.20 0.28 0.45 0.76 0.57 0.22 0.44 0.21 0.50 
4h0h 5.21 0.64 0.51 0.68 3.01 0.62 0.36 0.38 0.36 
4h20 3.30 0.79 0.51 0.50 4.45 0.33 0.67 0.73 1.51 
4hpy 2.38 0.64 2.61 0.56 2.45 0.30 0.50 0.35 1.42 
4nzu 3.24 0.59 0.65 1.03 5.11 0.49 0.49 0.41 0.91 
Mean 5.26 0.58 0.86 1.00 2.94 0.51 0.63 0.52 1.03 

SD 2.46 0.20 0.65 0.98 1.59 0.15 0.26 0.23 0.73 
 
 
  



 

Table S6. CDR loop RMSD and OCD results for RepertoireBuilder on therapeutic benchmark. 
Target OCD H Fr (Å) H1 (Å) H2 (Å) H3 (Å) L Fr (Å) L1 (Å) L2 (Å) L3 (Å) 
1bey 2.80 0.54 1.49 0.91 3.96 0.68 0.91 0.70 0.61 
1cz8 0.59 0.26 0.82 0.75 3.66 0.39 0.35 0.36 0.42 
1mim 3.42 0.56 0.64 0.92 0.63 0.38 0.83 0.62 1.14 
1sy6 3.71 0.71 0.99 1.04 3.17 0.41 0.26 0.48 0.37 
1yy8 6.38 0.61 0.54 0.55 4.21 0.35 0.45 0.52 0.91 
2hwz 4.98 0.28 0.89 1.31 2.33 0.44 0.90 0.59 2.27 
3eo0 3.96 0.34 3.13 1.15 4.38 0.30 1.43 0.30 0.74 
3gkw 15.79 1.40 2.74 1.62 9.66 0.56 1.64 0.67 0.60 
3nfs 2.53 0.57 0.60 0.69 1.91 0.54 0.56 0.61 0.60 
3o2d 10.03 0.93 0.71 0.97 2.75 0.46 0.47 0.30 0.43 
3pp3 4.02 0.29 0.46 1.17 3.36 0.64 0.62 0.59 0.81 
3qwo 3.14 0.36 0.34 1.34 2.77 0.38 0.76 0.54 0.66 
3u0t 10.10 0.67 1.62 0.91 2.29 0.50 1.05 0.47 0.93 
4cni 1.46 0.60 0.89 1.26 1.28 0.63 0.51 0.52 0.59 
4dn3 2.36 0.49 1.54 0.93 1.74 0.33 1.36 0.52 1.44 
4g5z 6.55 0.49 0.84 0.57 1.51 0.61 0.40 0.69 0.68 
4g6k 2.36 0.62 0.51 1.22 2.95 0.67 0.57 0.46 0.93 
4hkz 2.29 0.26 0.42 0.83 2.98 0.37 0.38 0.48 0.61 
4i77 5.19 0.29 1.22 0.87 3.39 0.40 0.49 0.48 0.68 
4irz 3.99 0.99 1.26 0.60 3.98 0.46 0.71 0.40 1.55 

4kaq 4.21 0.75 0.47 0.89 2.79 0.70 0.80 0.57 0.80 
4m6n 4.11 0.31 0.76 0.36 2.51 0.34 1.88 0.35 1.65 
4nyl 7.73 0.74 0.45 0.67 5.12 0.71 0.63 0.69 1.05 
4od2 0.89 0.63 0.49 0.76 6.49 0.51 1.11 1.25 2.14 
4ojf 6.62 0.76 0.59 1.32 3.84 0.39 0.58 0.40 0.57 

4qxg 0.82 0.42 0.45 0.76 2.06 0.47 0.52 0.66 1.81 
4x7s 6.16 0.77 1.72 1.18 2.71 0.45 0.45 0.28 0.69 
4ypg 4.22 1.05 1.15 1.09 2.87 0.49 0.33 0.93 0.82 
5csz 2.55 0.56 0.74 0.66 2.67 0.26 0.50 0.33 1.43 
5dk3 5.32 0.80 0.61 1.20 2.80 0.49 0.46 0.70 0.40 
5ggq 1.88 0.64 0.47 0.73 0.55 0.51 0.36 0.63 0.51 
5ggu 4.40 0.38 0.52 0.48 6.34 0.51 0.49 0.35 0.92 
5i5k 3.29 1.16 0.62 1.03 4.87 0.90 0.87 0.61 1.10 
5jxe 3.76 0.79 0.57 1.50 2.86 0.66 0.54 0.61 0.62 

5kmv 3.52 0.35 0.66 0.54 0.56 0.22 0.44 0.37 0.40 
5l6y 1.88 0.96 0.91 0.63 5.61 0.32 0.31 0.53 1.99 
5n2k 1.65 0.62 0.94 0.88 3.28 0.48 0.69 0.21 4.27 
5nhw 3.38 0.99 0.66 0.84 1.22 0.27 1.08 0.21 4.76 
5sx4 7.62 1.29 0.94 1.40 2.49 0.46 0.61 0.62 0.79 
5tru 1.95 0.36 0.32 0.98 2.32 0.33 1.72 0.33 0.96 
5vh3 4.22 0.27 0.60 0.63 1.62 0.56 0.48 0.58 0.70 
5wuv 1.98 0.63 0.88 0.78 3.00 0.38 0.23 0.34 0.41 
5xxy 4.89 0.51 0.66 2.10 2.37 0.46 1.07 0.62 0.43 
5y9k 7.48 0.59 2.79 0.74 4.13 0.34 0.32 0.35 1.90 
6and 6.29 0.45 0.52 1.48 2.80 0.47 0.95 0.37 0.41 
Mean 4.37 0.62 0.91 0.96 3.13 0.47 0.71 0.52 1.08 

SD 2.85 0.28 0.63 0.35 1.68 0.14 0.40 0.19 0.90 
 
 
  



 

Table S7. CDR loop RMSD and OCD results for ABodyBuilder on RosettaAntibody benchmark. 
Target OCD H Fr (Å) H1 (Å) H2 (Å) H3 (Å) L Fr (Å) L1 (Å) L2 (Å) L3 (Å) 

1dlf 8.05 0.66 0.93 0.47 4.19 0.63 1.10 0.49 0.80 
1fns 3.07 0.38 0.52 0.52 5.44 0.55 0.83 0.42 0.84 
1gig 11.80 0.54 0.99 0.62 4.02 0.44 0.55 1.09 0.54 
1jfq 5.43 0.64 0.53 1.17 1.25 0.49 0.24 0.23 0.27 
1jpt 3.00 0.60 0.76 1.32 1.28 0.40 1.05 0.50 0.69 

1mfa 2.28 0.42 0.38 0.38 0.17 0.23 0.70 0.23 0.37 
1mlb 4.00 0.57 0.72 1.01 0.84 0.41 0.47 0.65 0.56 
1mqk 4.24 0.37 0.43 0.44 2.37 0.42 1.02 0.42 2.13 
1nlb 3.54 0.31 0.50 0.31 2.42 0.42 1.05 0.21 0.88 
1oaq 3.29 0.62 0.54 0.66 1.83 0.42 0.55 0.51 1.27 
1seq 9.24 0.33 0.55 1.02 5.12 0.32 0.80 0.26 1.17 
2adf 4.38 0.21 0.73 0.74 2.07 0.54 0.60 0.33 0.53 
2d7t 13.72 0.76 0.69 0.82 2.88 0.48 0.73 0.37 1.26 
2e27 4.52 0.31 0.49 0.42 4.56 0.64 0.38 0.61 2.37 
2fb4 2.92 0.51 0.50 0.46 5.63 0.77 0.92 0.49 1.31 
2fbj 6.53 0.40 0.43 0.53 1.99 0.49 1.18 0.92 2.24 
2r8s 1.63 0.70 4.01 2.25 6.93 0.45 0.42 0.62 0.58 
2v17 3.25 0.46 0.49 1.20 2.66 0.72 0.89 0.60 0.91 
2vxv 1.52 0.25 0.79 0.71 4.68 0.54 0.59 0.91 3.48 
2w60 10.18 0.30 0.46 0.65 2.49 0.60 0.57 0.66 0.35 
2xwt 8.91 0.54 1.21 0.60 3.51 0.34 0.40 0.90 0.82 
2ypv 5.96 0.51 0.86 0.90 2.67 0.61 0.33 0.28 0.78 
3e8u 1.81 0.56 0.58 0.98 2.24 0.31 0.53 0.50 0.40 
3eo9 5.51 0.42 0.57 1.51 3.04 0.54 0.57 0.59 1.49 
3g5y 4.70 0.24 0.39 0.38 0.94 0.71 0.28 0.49 0.60 
3giz 2.92 0.40 0.38 0.51 2.94 0.52 0.55 0.53 0.56 

3gnm 5.54 0.57 0.69 0.46 2.17 0.33 0.67 0.24 0.75 
3go1 6.19 0.53 1.45 0.87 3.23 0.65 1.74 0.90 3.59 
3hc4 5.45 1.13 2.54 1.38 3.59 0.32 0.53 0.35 0.65 
3hnt 2.20 0.58 0.29 0.49 2.27 0.56 0.69 1.09 1.29 
3i9g 1.47 0.25 0.58 0.90 3.32 0.38 0.83 0.44 0.55 
3liz 2.68 0.48 0.65 0.54 4.38 0.61 0.37 0.27 0.72 
3lmj 4.17 0.50 3.10 2.78 4.88 0.60 0.59 0.81 1.02 

3m8o 3.18 0.93 2.31 0.86 5.67 0.74 3.00 0.56 2.19 
3mlr 3.98 0.51 0.80 1.24 4.93 0.54 0.75 0.74 - 

3mxw 2.70 0.92 2.07 1.26 2.74 0.57 0.61 0.55 0.97 
3nps 2.86 0.86 3.35 1.71 5.10 0.58 1.01 0.45 1.77 
3oz9 6.12 0.49 0.63 0.55 2.63 0.68 0.75 0.69 2.52 
3p0y 4.34 0.40 0.91 1.76 2.57 0.35 0.46 0.22 1.58 
3t65 1.47 0.23 0.26 0.32 0.26 0.37 0.50 0.41 0.33 
3umt 4.64 0.44 0.82 0.92 2.67 0.47 0.95 0.51 0.43 
3v0w 5.99 0.43 0.83 0.83 1.53 0.26 0.36 0.25 0.38 
4f57 3.85 0.28 0.40 0.78 0.60 0.22 0.52 0.21 0.50 
4h0h 5.76 0.80 0.50 1.18 1.47 0.66 0.64 0.74 0.46 
4h20 5.12 0.64 1.76 0.42 2.73 0.52 0.44 0.38 0.94 
4hpy 2.87 0.30 2.80 0.61 0.62 0.39 0.55 0.36 1.28 
4nzu 3.43 0.27 0.51 0.72 2.53 0.46 0.36 0.42 0.85 
Mean 4.69 0.50 0.99 0.88 2.94 0.49 0.72 0.52 1.09 

SD 2.66 0.20 0.88 0.51 1.58 0.14 0.44 0.23 0.79 
 
 
  



 

Table S8. CDR loop RMSD and OCD results for ABodyBuilder on therapeutic benchmark. 
Target OCD H Fr (Å) H1 (Å) H2 (Å) H3 (Å) L Fr (Å) L1 (Å) L2 (Å) L3 (Å) 
1bey 2.81 0.56 1.07 1.31 3.37 0.66 0.75 0.82 1.08 
1cz8 1.09 0.19 0.26 0.26 0.33 0.19 0.36 0.23 0.27 
1mim 4.83 0.54 0.76 0.60 0.71 0.41 0.84 0.49 2.77 
1sy6 2.03 0.84 0.76 0.77 7.12 0.42 0.41 0.43 0.44 
1yy8 0.93 0.15 0.14 0.15 0.12 0.28 0.16 0.13 0.13 
2hwz 1.31 0.27 0.67 1.31 1.77 0.47 0.79 0.61 2.20 
3eo0 2.15 0.33 3.51 1.18 9.54 0.27 1.45 0.22 3.46 
3gkw 20.52 1.40 3.19 4.76 7.82 0.72 1.21 0.39 0.84 
3nfs 2.89 0.51 0.58 0.91 1.52 0.34 0.75 0.55 0.91 
3o2d 3.42 0.39 0.66 0.55 3.88 0.49 0.80 0.38 0.94 
3pp3 3.15 0.28 0.83 0.98 3.30 0.50 0.93 0.51 1.38 
3qwo 1.39 0.27 0.67 1.31 1.77 0.47 0.79 0.61 2.20 
3u0t 10.88 0.72 1.74 0.96 3.69 0.55 0.80 0.87 1.39 
4cni 2.52 0.36 0.58 1.08 1.09 0.51 0.40 0.45 0.86 
4dn3 3.15 0.48 2.52 1.94 1.93 0.48 1.34 0.47 1.63 
4g5z 4.89 0.43 0.37 0.52 2.15 0.65 0.87 0.76 0.71 
4g6k 7.37 0.55 2.57 1.30 1.38 0.73 0.79 0.26 1.53 
4hkz 1.50 0.33 0.41 0.74 0.15 0.36 0.37 0.35 0.74 
4i77 1.89 0.29 1.48 1.19 2.28 0.37 0.60 0.50 1.12 
4irz 0.94 0.57 2.81 1.06 5.16 0.55 1.03 0.48 1.61 

4kaq 4.46 0.94 0.33 0.94 5.19 0.41 0.50 0.42 0.67 
4m6n 10.07 0.31 0.52 0.54 3.54 0.62 1.35 0.42 2.63 
4nyl 5.47 0.53 0.61 0.77 4.14 0.69 0.60 0.44 0.68 
4od2 2.30 0.53 0.51 0.67 5.41 0.58 1.60 1.51 2.19 
4ojf 3.17 0.48 0.46 2.13 2.70 0.33 0.88 0.60 0.60 

4qxg 3.87 0.41 0.66 0.71 1.64 0.46 1.81 0.77 1.31 
4x7s 12.37 0.66 1.63 1.09 2.94 0.36 5.18 0.38 1.28 
4ypg 2.70 0.42 0.81 0.64 4.17 0.40 3.29 0.86 0.79 
5csz 2.19 0.30 0.51 0.48 3.69 0.43 1.82 0.48 0.74 
5dk3 3.00 0.37 0.81 1.08 2.34 0.34 1.04 0.54 0.49 
5ggq 3.80 0.40 0.43 0.65 2.40 0.41 0.33 0.28 0.92 
5ggu 2.19 0.27 0.28 0.49 4.30 0.30 0.27 0.23 0.43 
5i5k 7.23 1.09 1.62 2.41 2.17 0.83 1.02 0.67 1.07 
5jxe 3.65 0.35 0.58 0.84 2.43 0.63 0.97 0.64 0.80 

5kmv 6.28 0.62 0.89 1.08 0.71 0.38 0.77 0.54 1.30 
5l6y 3.69 0.28 0.70 0.62 3.76 0.27 0.24 0.28 2.16 
5n2k 2.24 0.36 0.20 0.38 2.52 0.44 0.44 0.40 5.24 
5nhw 3.76 0.27 0.74 0.61 0.64 0.27 0.84 0.21 4.69 
5sx4 4.30 1.25 1.70 1.11 3.88 0.35 0.30 0.71 0.51 
5tru 5.56 0.34 0.52 0.47 2.07 0.28 1.68 0.41 1.26 
5vh3 4.05 0.43 0.71 0.72 3.35 0.44 0.70 0.39 0.52 
5wuv 4.97 0.58 1.20 1.21 4.54 0.34 0.44 0.39 0.56 
5xxy 10.94 0.61 1.15 1.07 3.15 0.48 1.25 0.58 1.45 
5y9k 2.39 0.56 3.11 0.76 1.18 0.39 3.46 0.55 1.62 
6and 2.16 0.32 0.97 1.54 2.87 0.44 0.63 0.39 0.65 
Mean 4.37 0.49 1.05 1.02 3.00 0.45 1.04 0.50 1.35 

SD 3.67 0.26 0.86 0.73 1.97 0.14 0.92 0.23 1.06 
 
  



 

Note S1. RosettaAntibody grafting command. 

antibody.linuxgccrelease -fasta 1dlf.fasta -exclude_pdbs 1dlf 1c5c 2dlf 1wz1 
1c5b 
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